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-
Short Recap

We have looked at Turing machines as a computational model

a finite state machine with an infinite tape, upon which a head can move, read, and write
have looked at Turing machine variants, seen that they are equivalent:

the LRS Turing machine (the head can move left, right, or stay put)

the multitape Turing machine (multiple tapes, multiple heads)

the nondeterministic Turing machine

the enumerator
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______________________________________________________________________________
Church Turing Thesis

@ So, all variants of Turing machines we've seen are equivalent in expressivity.
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______________________________________________________________________________
Church Turing Thesis

@ So, all variants of Turing machines we've seen are equivalent in expressivity.

@ This is no coincidence: all can perform finite work in a single step, all have unlimited
access to infinite memory.

@ In fact, Turing machines capture all such computational models
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______________________________________________________________________________
Church-Turing Thesis

@ the notion of algorithm is not new
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Church-Turing Thesis

@ the notion of algorithm is not new

@ yet a formal description of what an algorithm is, or what is solvable using algorithms, did
not appear until the 20th century.

@ Many mathematicians assumed that one needed only to find the right “method”, did not
even consider something might be unsolvable.
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Church-Turing Thesis

@ Church and Turing independently formalized the notion of algorithm

@ Previous, intuitive notion: a method according to which after a finite number of
operations an answer is given (paraphrased, many formulations)

e Formal: an algorithm is a decidable Turing machine (deciders)
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______________________________________________________________________________
Church-Turing Thesis

Church and Turing independently formalized the notion of algorithm

Previous, intuitive notion: a method according to which after a finite number of
operations an answer is given (paraphrased, many formulations)

Formal: an algorithm is a decidable Turing machine (deciders)

Church Turing thesis: each intuitive definition of algorithms can be described by decidable
Turing machines
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Decidability

Definition

A language L is decidable if a Turing machine M, exists that decides it, that is, if M, either
accepts or rejects any input w.
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Decidability

Definition

A language L is decidable if a Turing machine M, exists that decides it, that is, if M, either
accepts or rejects any input w.

@ This week we will discuss the decidability of various problems related to the classes of
languages we have seen so far: regular, context-free, and Turing-recognizable.

e Acceptance problem: Given a DFA/NFA/CFG/PDA/TM/... and an input w, does the
machine/grammar accept w?

e Emptiness problem: Given a DFA/NFA/CFG/PDA/TM/..., is its generated language
empty?

e Equality problem: Given two DFA/NFA/CFG/PDA/TM/..., are the two generated
languages equal?
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Notation

For an object O (graph, automaton, Turing machine, etc.), let (O) represent its string
representation. For example:

&)

can be represented as the string
{1,2,3,(1,2),(1,3)}

@)
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-
Acceptance problem - DFA

Let Appa = {(B,w) | B is a DFA that accepts input string w}
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Acceptance problem - DFA

Let Appa = {(B,w) | B is a DFA that accepts input string w}
@ Acceptance problem “Given B and w, does B accept w?' < “(B,w) € Apra’?

Theorem
Apra is a decidable language. J

Proof idea: We create a Turing machine that simulates B on w:
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Acceptance problem - DFA

Let Appa = {(B,w) | B is a DFA that accepts input string w}
@ Acceptance problem “Given B and w, does B accept w?' < “(B,w) € Apra’?

Theorem
Apra is a decidable language. J

Proof idea: We create a Turing machine that simulates B on w:

Mpga = On input (B, w)
1. Simulate B on w.
2. If the simulation ends in an accept state, accept,

if it ends in a nonaccepting state, reject.
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-
Acceptance problem - DFA

Corollary
The class of regular languages is decidable. J

Proof:

@ For a given regular language L, we need to construct a decider M, that accepts all w € L
and rejects all s ¢ L.
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-
Acceptance problem - DFA

Corollary
The class of regular languages is decidable. J

Proof:

@ For a given regular language L, we need to construct a decider M, that accepts all w € L
and rejects all s ¢ L.

@ we can encode its DFA B into a decider for L:

M; = On input w
1. Simulate Mpga on (B, w).
2. If Mpga accepts, accept,
if it rejects, reject.
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Acceptance problem - NFA/RE

@ What about NFAs and REs?

INF2080 Lecture :: 1st March 10 / 43



-
Acceptance problem - NFA/RE

@ What about NFAs and REs?
@ We have seen that they have equivalent expressive power to DFAs

INF2080 Lecture :: 1st March 10 / 43



-
Acceptance problem - NFA/RE
@ What about NFAs and REs?

@ We have seen that they have equivalent expressive power to DFAs
@ So are the languages Anra and Agge decidable?

INF2080 Lecture :: 1st March 10 / 43



-
Acceptance problem - NFA/RE

@ What about NFAs and REs?

@ We have seen that they have equivalent expressive power to DFAs

@ So are the languages Anra and Agge decidable?

@ We can use the known procedures to convert NFA—DFA and RE—NFA!

INF2080 Lecture :: 1st March 10 / 43



-
Acceptance problem - NFA/RE

@ What about NFAs and REs?

@ We have seen that they have equivalent expressive power to DFAs

@ So are the languages Anra and Agge decidable?

@ We can use the known procedures to convert NFA—DFA and RE—NFA!

Anea = {(B,w) | B is an NFA that accepts w}

Theorem
The language Anga is decidable. J

INF2080 Lecture :: 1st March 10 / 43



Acceptance problem - NFA/RE

@ What about NFAs and REs?

@ We have seen that they have equivalent expressive power to DFAs

@ So are the languages Anra and Agge decidable?

@ We can use the known procedures to convert NFA—DFA and RE—NFA!

Anea = {(B,w) | B is an NFA that accepts w}
Theorem
The language Anga is decidable. J

Proof:
Mpga = On input (B, w)
1. Convert B to an equivalent DFA C.
2. Simulate Mpga on input (B, w)

if it accepts, accept; if it rejects, reject.

INF2080 Lecture :: 1st March 10 / 43



-
Acceptance problem - NFA/RE

Are = {(R,w) | B is a regular expression that generates w}

Theorem
The language Age is decidable. J
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Acceptance problem - NFA/RE

Are = {(R,w) | B is a regular expression that generates w}

Theorem

The language Age is decidable. J

Proof: Similar to before, however now we reduce to NFA case:

Mge = On input (R, w)
1.
2.

Convert R to an equivalent NFA B.
Simulate Myga on input (B, w)

if it accepts, accept; if it rejects, reject.
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-
Acceptance problem - Regular languages

@ So we see that it is does not matter which computational model we use to represent the
regular language; this has no effect on decidabillity
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Acceptance problem - Regular languages

@ So we see that it is does not matter which computational model we use to represent the
regular language; this has no effect on decidabillity

@ Recall the Church-Turing thesis: intuitive notion of algorithm/procedure < Turing
machine algorithm
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Acceptance problem - Regular languages

@ So we see that it is does not matter which computational model we use to represent the
regular language; this has no effect on decidabillity

@ Recall the Church-Turing thesis: intuitive notion of algorithm/procedure < Turing
machine algorithm

@ Our “procedures” of converting NFA—DFA, RE—~NFA, CFG«++PDA can be formally
described using a decidable TM!
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Emptiness problem - Regular languages

Next “decision problem:” Given a DFA A, is the language generated by A empty?

INF2080 Lecture :: 1st March 13 / 43



-
Emptiness problem - Regular languages

Next “decision problem:” Given a DFA A, is the language generated by A empty?
& (A) € Eppa = {(A) | Ais a DFA and L(A) = 0}7?

INF2080 Lecture :: 1st March 13 / 43



-
Emptiness problem - Regular languages

Next “decision problem:” Given a DFA A, is the language generated by A empty?
& (A) € Eppa = {(A) | Ais a DFA and L(A) = 0}7?
@ When does a DFA accept a string w?

INF2080 Lecture :: 1st March 13 / 43



-
Emptiness problem - Regular languages

Next “decision problem:” Given a DFA A, is the language generated by A empty?
& (A) € Eppa = {(A) | Ais a DFA and L(A) = 0}7?

@ When does a DFA accept a string w? When it reaches an accept state!

INF2080 Lecture :: 1st March 13 / 43



-
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-
Emptiness problem - Regular languages

Next “decision problem:” Given a DFA A, is the language generated by A empty?
< (A) € Eppa = {(A) | Alis a DFA and L(A) = 0}7
@ When does a DFA accept a string w? When it reaches an accept state!
@ So all the TM has to do is check whether an accept state is reachable from the start state.

@ We use the “marking” technique we have previously seen to keep track of the DFA's states
that have been reached.
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Emptiness problem - Regular languages

Theorem
The language Epga is decidable. J

Proof:

Npea = On input (A)

Mark the start state of A.

Repeat 3. until no new states are marked:

Mark any state with an incoming transition from a marked state.

S

If no accept state is reached,accept; else, reject.
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______________________________________________________________________________
Equality problem - Regular languages

What if we have two regular languages, accepted by DFAs A and B, and want to check
whether they are equal?
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whether they are equal?
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@ Now we use the set theoretic notion of symmetric difference to help us!

@ The symmetric difference of two languages L(A) and L(B) is defined as
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-
Equality problem - Regular languages

What if we have two regular languages, accepted by DFAs A and B, and want to check
whether they are equal?
< (A,B) € EQpra = {(A,B) | A and B are DFAs and L(A) = L(B)}?

@ Now we use the set theoretic notion of symmetric difference to help us!

@ The symmetric difference of two languages L(A) and L(B) is defined as

(LAY N L(B)) U (L(A) N L(B))

@ Two sets are equal if and only if their symmetric difference is empty!— emptiness problem!
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______________________________________________________________________________
Equality problem - Regular languages

(L(A) N L(B)) U (L(A) N L(B))
Recall closure properties of regular languages:

@ closed under union, intersection, and complement (among other things)
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Equality problem - Regular languages

(L(A) N L(B)) U (L(A) N L(B))
Recall closure properties of regular languages:

@ closed under union, intersection, and complement (among other things)

@ have seen procedures for constructing the DFA for unions/intersections/complements of
regular languages.
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Equality problem - Regular languages

(L(A) N L(B)) U(L(A) N L(B))
Recall closure properties of regular languages:
@ closed under union, intersection, and complement (among other things)

@ have seen procedures for constructing the DFA for unions/intersections/complements of
regular languages.

@ Using these, we can construct a DFA that accepts the symmetric difference of two regular
languages.
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______________________________________________________________________________
Equality problem - Regular languages

Theorem
The language EQpra is decidable. J
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Equality problem - Regular languages

Theorem
The language EQpra is decidable. J

Proof:
Spra = On input <A, B)
Construct C, the DFA of the symmetric difference of L(A) and L(B).
Run Npga on C. (checks whether L(C) is empty)
If Npra accepts, accept; if Npga rejects, reject.
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Summary - Regular languages

@ Regular languages are decidable:
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Summary - Regular languages

Regular languages are decidable:

the acceptance problem (does A accept w?) is decidable, independent of the
computational model in which we chose to describe regular languages;

the emptiness problem (is L(A) empty?) is decidable;
the equality problem (are L(A) and L(B) equal?) is decidable.

@ in each case: we reduced the question to checking membership in a language.
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Decision problems - CFLs

What about the decision problems for context-free languages?
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Decision problems - CFLs

What about the decision problems for context-free languages?
Are the languages

Acre ={(G,w) | G is a CFG that generates w}
Ecre ={(G) | G is a CFG and L(G) = 0}
EQcre ={(G,H) | G and H are CFGs and L(G) = L(H)}

decidable?
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Acceptance problem - CFLs

Theorem
The language Acrc is decidable. J

Proof:
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Proof:

@ We cannot do the proof analogously to the DFA case: PDAs do not necessarily always
terminate (they can endlessly loop, writing on to the stack).
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Acceptance problem - CFLs

Theorem

The language Acrc is decidable. J
Proof:

@ We cannot do the proof analogously to the DFA case: PDAs do not necessarily always
terminate (they can endlessly loop, writing on to the stack).

@ Instead, we use the fact that every CFG can be converted to a grammar in Chomsky
Normal Form.

@ One can show (Problem 2.38 in Sipser) that if a grammar is CNF, then every derivation of
w has length 2n — 1, where n is the length of w.

@ That way we only need to check all derivations of length 2n — 1 to see if any generates w!
INF2080
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Acceptance problem - CFLs

Theorem
The language Ackc is decidable. J

Proof:

Mcrc = On input (G, w)
1. Convert G to a CFG in Chomsky Normal Form.
2. If n =0, where nis the length of w, list all derivations with 1 step.
Else, list all derivations with 2n — 1 steps.

3. If any of the derivations generate w accept; otherwise, reject.
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Decidability of CFLs

As in the regular language case, we can use this last result to show:

Corollary
Every context-free language is decidable. J
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Decidability of CFLs

As in the regular language case, we can use this last result to show:
Corollary

Every context-free language is decidable. J

Proof: completely analogous to the DFA/regular case:

M; = On input w
1. Simulate Mcrg on (B, w).

2. If Mcpg accepts, accept,
if it rejects, reject.
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Emptiness problem - CFLs

Theorem

The language Ecpc = {(G) | G is a CFG and L(G) = 0} is decidable. J

Proof idea:

@ In the DFA case, we checked reachability of accept states from the start state through a
marking procedure.
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______________________________________________________________________________
Emptiness problem - CFLs

Theorem
The language Ecpc = {(G) | G is a CFG and L(G) = 0} is decidable. J

Proof idea:
@ In the DFA case, we checked reachability of accept states from the start state through a
marking procedure.
@ Can we do the same here?
@ Yes! but slightly differently.

@ Consider the grammar consisting of only S — S. If we were to start with S and iteratively
generate all derivations, we would never terminate.
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Emptiness problem - CFLs

Theorem
The language Ecpc = {(G) | G is a CFG and L(G) = 0} is decidable. J

Proof idea:

@ In the DFA case, we checked reachability of accept states from the start state through a
marking procedure.

@ Can we do the same here?

@ Yes! but slightly differently.

@ Consider the grammar consisting of only S — S. If we were to start with S and iteratively
generate all derivations, we would never terminate.

@ We're interested in finding out whether a string of terminals can be generated from S. So
why not first mark terminals, then mark a variable A if there is a rule A — s where s
consists of marked symbols?

INF2080 Lecture :: 1st March 23 /43



______________________________________________________________________________
Emptiness problem - CFLs

Theorem
The language Ecpc = {(G) | G is a CFG and L(G) = 0} is decidable. J

Proof idea:

@ In the DFA case, we checked reachability of accept states from the start state through a
marking procedure.

@ Can we do the same here?

@ Yes! but slightly differently.

@ Consider the grammar consisting of only S — S. If we were to start with S and iteratively
generate all derivations, we would never terminate.

@ We're interested in finding out whether a string of terminals can be generated from S. So
why not first mark terminals, then mark a variable A if there is a rule A — s where s
consists of marked symbols?— go through derivations “backwards”. If S is marked, then a
string of terminals can be generated.
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______________________________________________________________________________
Emptiness problem - CFLs

Theorem
The language Ecrc = {(G) | G is a CFG and L(G) = 0} is decidable. J

Example: Grammar

S — ARB
A—a
B—b

R — aRb | ¢
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Emptiness problem - CFLs

Theorem
The language Ecre = {(G) | G is a CFG and L(G) = 0} is decidable. J

Example: Grammar
S — ARB
A= a
B—b
R — aRb | ¢
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Emptiness problem - CFLs

Theorem
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______________________________________________________________________________
Emptiness problem - CFLs

Theorem
The language Ecpc = {(G) | G is a CFG and L(G) = 0} is decidable. J

Example: Grammar
S — ARB
A= a
B—b
R sRb| ¢

— S is marked, so language is not empty!
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Emptiness problem - CFLs

Theorem
The language Ecrc = {(G) | G is a CFG and L(G) = (0} is decidable. J

Proof:

Ncrg = On input (G)
Mark all terminal symbols in G.
Repeat 3. until no new variables are marked:
Mark any variable A where G hasarule A— Uy ... Uy

and each symbol U; has been marked.
4. If the start variable is not marked, accept. otherwise, reject.
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-
Equality problem - CFLs

@ So what about EQcrg = {(G,H) | G and H are CFGs and L(G) = L(H)}? Is it
decidable?

@ Before we used the symmetric difference (L(A) N L(B)) U (L(A) N L(B)) to use the
emptiness decider.
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Equality problem - CFLs

@ So what about EQcrg = {(G,H) | G and H are CFGs and L(G) = L(H)}? Is it
decidable?

@ Before we used the symmetric difference (L(A) N L(B)) U (L(A) N L(B)) to use the
emptiness decider.

@ But context-free languages are not closed under complementation or intersection!
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-
Equality problem - CFLs

@ So what about EQcrg = {(G,H) | G and H are CFGs and L(G) = L(H)}? Is it
decidable?

@ Before we used the symmetric difference (L(A) N L(B)) U (L(A) N L(B)) to use the
emptiness decider.

@ But context-free languages are not closed under complementation or intersection!

@ in fact, EQcr¢ is not decidable. Tomorrow we'll see techniques to show this.
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Summary- CFLs

@ the acceptance and emptiness decision problems are decidable for context-free languages
@ hence, each context-free language is decidable.

@ checking equivalence of two grammars (in the sense of languages generated) is not
decidable!
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-
Acceptance problems - TMs

@ What about Turing-recognizable languages? Are they also decidable?
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-
Acceptance problems - TMs

@ What about Turing-recognizable languages? Are they also decidable?

@ If they were, every Turing machine could be converted into an equivalent TM that is
guaranteed to halt on every input!
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-
Acceptance problem - TMs

First things first...

Theorem
The language Aty = {{M,w) | M is a TM that accepts w} is Turing-recognizable. J
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Acceptance problem - TMs

First things first...

Theorem
The language Aty = {{M,w) | M is a TM that accepts w} is Turing-recognizable. J

Proof:

U = On input (M, w)
1. Simulate M on w.

2. If M ever enters its accept state, accept; if M ever enters its reject state, reject.
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-
Acceptance problem - TMs

First things first...

Theorem
The language Aty = {{M,w) | M is a TM that accepts w} is Turing-recognizable. J

Proof:

U = On input (M, w)
1. Simulate M on w.

2. If M ever enters its accept state, accept; if M ever enters its reject state, reject.

U is an example of a universal Turing machine!
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Acceptance problem - TMs

@ So what about decidability?
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-
Acceptance problem - TMs

@ So what about decidability?

@ Let's assume there exists a decider H for Ay, i.e., H((M, w)) = accept if M accepts w,
and H((M, w)) = reject if M does not accept w.
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-
Acceptance problem - TMs

@ So what about decidability?

@ Let's assume there exists a decider H for Ay, i.e., H((M,w)) = accept if M accepts w,
and H((M, w)) = reject if M does not accept w.

@ We are going to use a standard mathematical trick in order to create a contradiction
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Diagonalization method

Let's write all Turing machines into the following table:

(M) (M)  (Ms)

My
Mo
M3

accept accept
accept
accept accept accept

@ Each cell (i,/) represents whether M; accepts the string (M) (the string representation of

machine M;).

@ accept means that it accepts, blank means it loops or rejects.
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Diagonalization method

Let's write all Turing machines into the following table:

(M) (M) (Ms)

M | accept accept
M, accept
Ms | accept accept accept

@ Each cell (i,/) represents whether M; accepts the string (M) (the string representation of
machine M;).

@ accept means that it accepts, blank means it loops or rejects.

@ The decider H let's us fill out the blank cells with reject.

34 /43
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______________________________________________________________________________
Diagonalization method

Result of H with input M;, (M):

(M) (Ma)  (Ms)

My | accept reject  accept
M, | reject  reject accept
Ms; | accept accept accept

e Each cell (i,)) represents H((M;, (M;)))
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______________________________________________________________________________
Diagonalization method

Result of H with input M;, (M):

(M) (Mz)  (Ms)

My | accept reject accept
M, | reject  reject accept
Ms; | accept accept accept

e Each cell (7,/) represents H((M;, (M;)))

@ We create a new decider D that considers the diagonal
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______________________________________________________________________________
Diagonalization method

Result of H with input M;, (M):

(M) (Mz)  (Ms)

My | accept reject accept
M, | reject  reject accept
Ms; | accept accept accept

e Each cell (7,/) represents H((M;, (M;)))
@ We create a new decider D that considers the diagonal
e takes (M;) as input, checks result of H((M;, (M;))) and flips the result

INF2080 Lecture :: 1st March 36 / 43



______________________________________________________________________________
Diagonalization method

Result of H with input M;, (M):

(M) (Mz)  (Ms)

My | reject  reject accept
M, | reject accept accept
Ms | accept accept reject

e Each cell (7,/) represents H((M;, (M;)))
@ We create a new decider D that considers the diagonal
e takes (M;) as input, checks result of H((M;, (M;))) and flips the result
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______________________________________________________________________________
Diagonalization method

But D must occure in the table too!

(M) (M)  (M3) ... (D)
My | accept reject  accept

M, | reject  reject  accept

Mz | accept accept accept

e What does D do with input (D)?
e if D((D)) = accept, H({D, (D))) = reject.
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______________________________________________________________________________
Diagonalization method

But D must occure in the table too!

(M) (M)  (M3) ... (D)
My | accept reject  accept

M, | reject  reject  accept

Mz | accept accept accept

e What does D do with input (D)?
e if D((D)) = accept, H({D, (D))) = reject. This means D does not accept D((D)), i.e.,
D((D)) = reject.
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______________________________________________________________________________
Diagonalization method

But D must occure in the table too!

(M) (Mz) (Ms) ... (D)
My | reject  reject accept

M, | reject accept accept

Ms | accept accept reject

e What does D do with input (D)?

e if D((D)) = accept, H({D, (D))) = reject. This means D does not accept D((D)), i.e.,
D((D)) = reject.

e if D((D) = reject, H({D, (D))) = accept.
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Diagonalization method

But D must occure in the table too!

(M) (Mz) (Ms) ... (D)
My | reject  reject accept

M, | reject accept accept

Ms | accept accept reject

e What does D do with input (D)?

e if D((D)) = accept, H({D, (D))) = reject. This means D does not accept D((D)), i.e.,
D((D)) = reject.

e if D((D) = reject, H({D, (D))) = accept. This means D does accept D((D)), i.e.,
D((D)) = accept.
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-
Acceptance problem - TMs

Let's formalize this:

Theorem
The language Atp is not decidable. J
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Acceptance problem - TMs

Let's formalize this:

Theorem
The language Atp is not decidable. J

Proof:
@ Assume it is decidable. Then there exists a decider H that decides A1y. So
H({M,w)) = accept iff M accepts w and H({M, w)) = reject iff M fails to accept w.

INF2080 Lecture :: 1st March 38 /43



-
Acceptance problem - TMs

Let's formalize this:

Theorem
The language Atp is not decidable. J

Proof:
@ Assume it is decidable. Then there exists a decider H that decides A1y. So
H({M,w)) = accept iff M accepts w and H({M, w)) = reject iff M fails to accept w.
e We define a decider D that on input (M) flips the result of H({M, (M))).
D = On input (M)
1. Simulate H on (M, (M)).
2. If H accepts, reject; if H rejects, accept.
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-
Acceptance problem - TMs

Let's formalize this:

Theorem
The language Atp is not decidable. J

Proof:
@ Assume it is decidable. Then there exists a decider H that decides A1y. So
H({M,w)) = accept iff M accepts w and H({M, w)) = reject iff M fails to accept w.
e We define a decider D that on input (M) flips the result of H({M, (M))).
D = On input (M)
1. Simulate H on (M, (M)).
2. If H accepts, reject; if H rejects, accept.

@ if H accepts, D rejects and if H rejects, D accepts.
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Acceptance problem - TMs

Theorem
The language Aty is not decidable. J

Proof:
D = On input (M)
1. Simulate H on (M, (M)).
2. If H accepts, reject; if H rejects, accept.
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-
Acceptance problem - TMs

Theorem
The language Aty is not decidable. J

Proof:
D = On input (M)
1. Simulate H on (M, (M)).
2. If H accepts, reject; if H rejects, accept.

@ So what is the result of D((D))?
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-
Acceptance problem - TMs

Theorem
The language Aty is not decidable. J

Proof:
D = On input (M)
1. Simulate H on (M, (M)).
2. If H accepts, reject; if H rejects, accept.

@ So what is the result of D((D))? Remember, H((M, w)) accepts iff M(w) = accept.
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-
Acceptance problem - TMs

Theorem
The language Aty is not decidable. J

Proof:
D = On input (M)
1. Simulate H on (M, (M)).
2. If H accepts, reject; if H rejects, accept.

@ So what is the result of D((D))? Remember, H((M, w)) accepts iff M(w) = accept.
e If D((D)) = reject, then H((D, (D))) = accept, i.e., D({D)) = accept. Contradiction!
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-
Acceptance problem - TMs

Theorem
The language Aty is not decidable. J

Proof:
D = On input (M)
1. Simulate H on (M, (M)).
2. If H accepts, reject; if H rejects, accept.

@ So what is the result of D((D))? Remember, H((M, w)) accepts iff M(w) = accept.
e If D((D)) = reject, then H((D, (D))) = accept, i.e., D({D)) = accept. Contradiction!
e If D((D)) = accept, then H((D, (D))) = reject, i.e., D({D)) = reject. Contradiction!
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-
Acceptance problem - TMs

Theorem
The language Aty is not decidable. J

Proof:
D = On input (M)
1. Simulate H on (M, (M)).
2. If H accepts, reject; if H rejects, accept.

@ So what is the result of D((D))? Remember, H((M, w)) accepts iff M(w) = accept.
e If D((D)) = reject, then H((D, (D))) = accept, i.e., D({D)) = accept. Contradiction!
e If D((D)) = accept, then H((D, (D))) = reject, i.e., D({D)) = reject. Contradiction!
@ Hence neither D nor H can exist! — Aty is undecidable!
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______________________________________________________________________________
Turing unrecognizability

@ So we've seen there exists an undecidable language: Aty

@ Do there exist non-Turing-recognizable languages?
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______________________________________________________________________________
Turing unrecognizability

Theorem

A language A is decidable iff it is Turing-recognizable and co-Turing-recognizable, i.e., if A and
its complement A are Turing-recognizable.
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Turing unrecognizability

Theorem

A language A is decidable iff it is Turing-recognizable and co-Turing-recognizable, i.e., if A and
its complement A are Turing-recognizable.

Proof:

o If Ais decidable, then it is Turing-recognizable. Since decidable langauges are closed under
complementation, this means A is decidable, in particular Turing-recognizable.
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Turing unrecognizability

Theorem

A language A is decidable iff it is Turing-recognizable and co- Turing-recognizable, i.e., if A and
its complement A are Turing-recognizable.

Proof:

@ Now assume A and A are Turing recognizable. Then there exist recognizers M4 and Mz
that accept w if it is in A or A, respectively.
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Turing unrecognizability

Theorem

A language A is decidable iff it is Turing-recognizable and co- Turing-recognizable, i.e., if A and
its complement A are Turing-recognizable.

Proof:

@ Now assume A and A are Turing recognizable. Then there exist recognizers M4 and Mz
that accept w if it is in A or A, respectively.

@ we combine these to a machine M:
M = On input w

1. Run both M4 and My in parallel on input w

2. If Mp accepts, accept; if M5 accepts, reject.
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Turing-unrecongizability

Theorem
A language A is decidable iff it is Turing-recognizable and co-Turing-recognizable, i.e., if A and
its complement A are Turing-recognizable.

We can use this result to show that Aty is not Turing-recognizable:
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Turing-unrecongizability

Theorem
A language A is decidable iff it is Turing-recognizable and co-Turing-recognizable, i.e., if A and
its complement A are Turing-recognizable.

We can use this result to show that Aty is not Turing-recognizable:

@ At is Turing-recognizable
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Turing-unrecongizability

Theorem
A language A is decidable iff it is Turing-recognizable and co-Turing-recognizable, i.e., if A and
its complement A are Turing-recognizable.

We can use this result to show that A1y is not Turing-recognizable:
@ At is Turing-recognizable
o If Aty were Turing-recognizable, then by the last theorem A1y must be decidable
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Turing-unrecongizability

Theorem

A language A is decidable iff it is Turing-recognizable and co-Turing-recognizable, i.e., if A and
its complement A are Turing-recognizable.

We can use this result to show that A7y, is not Turing-recognizable:
@ At is Turing-recognizable
e If Aty were Turing-recognizable, then by the last theorem A7y, must be decidable
@ But we just saw that Ay is undecidable.

@ Hence A1y must be Turing-unrecognizable
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