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Short Recap

We have looked at Turing machines as a computational model

a finite state machine with an infinite tape, upon which a head can move, read, and write
have looked at Turing machine variants, seen that they are equivalent:
the LRS Turing machine (the head can move left, right, or stay put)
the multitape Turing machine (multiple tapes, multiple heads)
the nondeterministic Turing machine
the enumerator
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Church Turing Thesis

So, all variants of Turing machines we’ve seen are equivalent in expressivity.

This is no coincidence: all can perform finite work in a single step, all have unlimited
access to infinite memory.
In fact, Turing machines capture all such computational models

INF2080 Lecture :: 1st March 3 / 43



Church Turing Thesis

So, all variants of Turing machines we’ve seen are equivalent in expressivity.
This is no coincidence: all can perform finite work in a single step, all have unlimited
access to infinite memory.

In fact, Turing machines capture all such computational models

INF2080 Lecture :: 1st March 3 / 43



Church Turing Thesis

So, all variants of Turing machines we’ve seen are equivalent in expressivity.
This is no coincidence: all can perform finite work in a single step, all have unlimited
access to infinite memory.
In fact, Turing machines capture all such computational models

INF2080 Lecture :: 1st March 3 / 43



Church-Turing Thesis

the notion of algorithm is not new

yet a formal description of what an algorithm is, or what is solvable using algorithms, did
not appear until the 20th century.
Many mathematicians assumed that one needed only to find the right “method”, did not
even consider something might be unsolvable.
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Church-Turing Thesis

Church and Turing independently formalized the notion of algorithm

Previous, intuitive notion: a method according to which after a finite number of
operations an answer is given (paraphrased, many formulations)
Formal: an algorithm is a decidable Turing machine (deciders)
Church Turing thesis: each intuitive definition of algorithms can be described by decidable
Turing machines
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Decidability

Definition
A language L is decidable if a Turing machine ML exists that decides it, that is, if ML either
accepts or rejects any input w .

This week we will discuss the decidability of various problems related to the classes of
languages we have seen so far: regular, context-free, and Turing-recognizable.
Acceptance problem: Given a DFA/NFA/CFG/PDA/TM/... and an input w , does the
machine/grammar accept w?
Emptiness problem: Given a DFA/NFA/CFG/PDA/TM/..., is its generated language
empty?
Equality problem: Given two DFA/NFA/CFG/PDA/TM/..., are the two generated
languages equal?
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Notation

For an object O (graph, automaton, Turing machine, etc.), let 〈O〉 represent its string
representation. For example:

1

2

3

can be represented as the string
{1, 2, 3, (1, 2), (1, 3)}
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Acceptance problem - DFA

Let ADFA = {〈B,w〉 | B is a DFA that accepts input string w}

Acceptance problem “Given B and w , does B accept w?” ⇔ “〈B,w〉 ∈ ADFA”?

Theorem
ADFA is a decidable language.

Proof idea: We create a Turing machine that simulates B on w :

MDFA = On input 〈B,w〉
1. Simulate B on w .

2. If the simulation ends in an accept state, accept,
if it ends in a nonaccepting state, reject.
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Acceptance problem - DFA

Corollary
The class of regular languages is decidable.

Proof:
For a given regular language L, we need to construct a decider ML that accepts all w ∈ L
and rejects all s 6∈ L.

we can encode its DFA B into a decider for L:

ML = On input w
1. Simulate MDFA on 〈B,w〉.
2. If MDFA accepts, accept,

if it rejects, reject.
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Acceptance problem - NFA/RE

What about NFAs and REs?

We have seen that they have equivalent expressive power to DFAs
So are the languages ANFA and ARE decidable?
We can use the known procedures to convert NFA→DFA and RE→NFA!

ANFA = {〈B,w〉 | B is an NFA that accepts w}

Theorem
The language ANFA is decidable.

Proof:

MNFA = On input 〈B,w〉
1. Convert B to an equivalent DFA C .

2. Simulate MDFA on input 〈B,w〉
if it accepts, accept; if it rejects, reject.
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Acceptance problem - NFA/RE

ARE = {〈R,w〉 | B is a regular expression that generates w}

Theorem
The language ARE is decidable.

Proof: Similar to before, however now we reduce to NFA case:

MRE = On input 〈R,w〉
1. Convert R to an equivalent NFA B.

2. Simulate MNFA on input 〈B,w〉
if it accepts, accept; if it rejects, reject.
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Acceptance problem - Regular languages

So we see that it is does not matter which computational model we use to represent the
regular language; this has no effect on decidabillity

Recall the Church-Turing thesis: intuitive notion of algorithm/procedure ⇔ Turing
machine algorithm
Our “procedures” of converting NFA→DFA, RE→NFA, CFG↔PDA can be formally
described using a decidable TM!
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Emptiness problem - Regular languages

Next “decision problem:” Given a DFA A, is the language generated by A empty?

⇔ 〈A〉 ∈ EDFA = {〈A〉 | A is a DFA and L(A) = ∅}?
When does a DFA accept a string w? When it reaches an accept state!
So all the TM has to do is check whether an accept state is reachable from the start state.
We use the “marking” technique we have previously seen to keep track of the DFA’s states
that have been reached.
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Emptiness problem - Regular languages

Theorem
The language EDFA is decidable.

Proof:

NDFA = On input 〈A〉
1. Mark the start state of A.
2. Repeat 3. until no new states are marked:
3. Mark any state with an incoming transition from a marked state.
4. If no accept state is reached,accept; else, reject.
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Equality problem - Regular languages

What if we have two regular languages, accepted by DFAs A and B , and want to check
whether they are equal?

⇔ 〈A,B〉 ∈ EQDFA = {〈A,B〉 | A and B are DFAs and L(A) = L(B)}?
Now we use the set theoretic notion of symmetric difference to help us!
The symmetric difference of two languages L(A) and L(B) is defined as

(L(A) ∩ L(B)) ∪ (L(A) ∩ L(B))

L(B)L(A)

Two sets are equal if and only if their symmetric difference is empty!→ emptiness problem!
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Equality problem - Regular languages

(L(A) ∩ L(B)) ∪ (L(A) ∩ L(B))

Recall closure properties of regular languages:
closed under union, intersection, and complement (among other things)

have seen procedures for constructing the DFA for unions/intersections/complements of
regular languages.
Using these, we can construct a DFA that accepts the symmetric difference of two regular
languages.
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Equality problem - Regular languages

Theorem
The language EQDFA is decidable.

Proof:

SDFA = On input 〈A,B〉
1. Construct C , the DFA of the symmetric difference of L(A) and L(B).
2. Run NDFA on C . (checks whether L(C ) is empty)
3. If NDFA accepts, accept; if NDFA rejects, reject.
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Summary - Regular languages

Regular languages are decidable:

the acceptance problem (does A accept w?) is decidable, independent of the
computational model in which we chose to describe regular languages;
the emptiness problem (is L(A) empty?) is decidable;
the equality problem (are L(A) and L(B) equal?) is decidable.
in each case: we reduced the question to checking membership in a language.
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Decision problems - CFLs

What about the decision problems for context-free languages?

Are the languages

ACFG ={〈G ,w〉 | G is a CFG that generates w}
ECFG ={〈G 〉 | G is a CFG and L(G ) = ∅}

EQCFG ={〈G ,H〉 | G and H are CFGs and L(G ) = L(H)}

decidable?
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Acceptance problem - CFLs

Theorem
The language ACFG is decidable.

Proof:

We cannot do the proof analogously to the DFA case: PDAs do not necessarily always
terminate (they can endlessly loop, writing on to the stack).
Instead, we use the fact that every CFG can be converted to a grammar in Chomsky
Normal Form.
One can show (Problem 2.38 in Sipser) that if a grammar is CNF, then every derivation of
w has length 2n − 1, where n is the length of w .
That way we only need to check all derivations of length 2n− 1 to see if any generates w !
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Acceptance problem - CFLs

Theorem
The language ACFG is decidable.

Proof:

MCFG = On input 〈G ,w〉
1. Convert G to a CFG in Chomsky Normal Form.
2. If n = 0, where n is the length of w , list all derivations with 1 step.

Else, list all derivations with 2n − 1 steps.
3. If any of the derivations generate w accept; otherwise, reject.
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Decidability of CFLs

As in the regular language case, we can use this last result to show:

Corollary
Every context-free language is decidable.

Proof: completely analogous to the DFA/regular case:

ML = On input w
1. Simulate MCFG on 〈B,w〉.
2. If MCFG accepts, accept,

if it rejects, reject.
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Emptiness problem - CFLs

Theorem
The language ECFG = {〈G 〉 | G is a CFG and L(G ) = ∅} is decidable.

Proof idea:
In the DFA case, we checked reachability of accept states from the start state through a
marking procedure.

Can we do the same here?
Yes! but slightly differently.
Consider the grammar consisting of only S → S . If we were to start with S and iteratively
generate all derivations, we would never terminate.
We’re interested in finding out whether a string of terminals can be generated from S . So
why not first mark terminals, then mark a variable A if there is a rule A→ s where s
consists of marked symbols?→ go through derivations “backwards”. If S is marked, then a
string of terminals can be generated.
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Emptiness problem - CFLs

Theorem
The language ECFG = {〈G 〉 | G is a CFG and L(G ) = ∅} is decidable.

Example: Grammar

S → ARB

A→ a

B → b

R → aRb | ε
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Emptiness problem - CFLs

Theorem
The language ECFG = {〈G 〉 | G is a CFG and L(G ) = ∅} is decidable.

Example: Grammar

S → ȦṘḂ

Ȧ→ ȧ

Ḃ → ḃ

Ṙ → ȧṘ ḃ | ε̇
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Emptiness problem - CFLs

Theorem
The language ECFG = {〈G 〉 | G is a CFG and L(G ) = ∅} is decidable.

Example: Grammar

Ṡ → ȦṘḂ

Ȧ→ ȧ

Ḃ → ḃ

Ṙ → ȧṘ ḃ | ε̇

→ S is marked, so language is not empty!
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Emptiness problem - CFLs

Theorem
The language ECFG = {〈G 〉 | G is a CFG and L(G ) = ∅} is decidable.

Proof:

NCFG = On input 〈G 〉
1. Mark all terminal symbols in G .
2. Repeat 3. until no new variables are marked:
3. Mark any variable A where G has a rule A→ U1 . . .Uk

and each symbol Ui has been marked.
4. If the start variable is not marked, accept. otherwise, reject.
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Equality problem - CFLs

So what about EQCFG = {〈G ,H〉 | G and H are CFGs and L(G ) = L(H)}? Is it
decidable?
Before we used the symmetric difference (L(A) ∩ L(B)) ∪ (L(A) ∩ L(B)) to use the
emptiness decider.

But context-free languages are not closed under complementation or intersection!
in fact, EQCFG is not decidable. Tomorrow we’ll see techniques to show this.
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Summary- CFLs

the acceptance and emptiness decision problems are decidable for context-free languages
hence, each context-free language is decidable.
checking equivalence of two grammars (in the sense of languages generated) is not
decidable!
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Acceptance problems - TMs

What about Turing-recognizable languages? Are they also decidable?

If they were, every Turing machine could be converted into an equivalent TM that is
guaranteed to halt on every input!
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Acceptance problem - TMs

First things first...

Theorem
The language ATM = {〈M,w〉 | M is a TM that accepts w} is Turing-recognizable.

Proof:

U = On input 〈M,w〉
1. Simulate M on w .
2. If M ever enters its accept state, accept; if M ever enters its reject state, reject.

U is an example of a universal Turing machine!
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Acceptance problem - TMs

So what about decidability?

Let’s assume there exists a decider H for ATM , i.e., H(〈M,w〉) = accept if M accepts w ,
and H(〈M,w〉) = reject if M does not accept w .
We are going to use a standard mathematical trick in order to create a contradiction
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Diagonalization method

Let’s write all Turing machines into the following table:

〈M1〉 〈M2〉 〈M3〉 . . .

M1 accept accept
M2 accept
M3 accept accept accept
...

Each cell (i , j) represents whether Mi accepts the string 〈Mj〉 (the string representation of
machine Mj).
accept means that it accepts, blank means it loops or rejects.

The decider H let’s us fill out the blank cells with reject.
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Diagonalization method

Result of H with input Mi , 〈Mj〉:

〈M1〉 〈M2〉 〈M3〉 . . .

M1 accept reject accept
M2 reject reject accept
M3 accept accept accept
...

Each cell (i , j) represents H(〈Mi , 〈Mj〉〉)
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Diagonalization method

Result of H with input Mi , 〈Mj〉:

〈M1〉 〈M2〉 〈M3〉 . . .

M1 accept reject accept
M2 reject reject accept
M3 accept accept accept
...

Each cell (i , j) represents H(〈Mi , 〈Mj〉〉)
We create a new decider D that considers the diagonal

takes 〈Mi 〉 as input, checks result of H(〈Mi , 〈Mi 〉〉) and flips the result

INF2080 Lecture :: 1st March 36 / 43



Diagonalization method

Result of H with input Mi , 〈Mj〉:

〈M1〉 〈M2〉 〈M3〉 . . .

M1 accept reject accept
M2 reject reject accept
M3 accept accept accept
...

Each cell (i , j) represents H(〈Mi , 〈Mj〉〉)
We create a new decider D that considers the diagonal
takes 〈Mi 〉 as input, checks result of H(〈Mi , 〈Mi 〉〉) and flips the result

INF2080 Lecture :: 1st March 36 / 43
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Result of H with input Mi , 〈Mj〉:

〈M1〉 〈M2〉 〈M3〉 . . .

M1 reject reject accept
M2 reject accept accept
M3 accept accept reject
...

Each cell (i , j) represents H(〈Mi , 〈Mj〉〉)
We create a new decider D that considers the diagonal
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Diagonalization method

But D must occure in the table too!
〈M1〉 〈M2〉 〈M3〉 . . . 〈D〉 . . .

M1 accept reject accept
M2 reject reject accept
M3 accept accept accept
...
D ?
...

What does D do with input 〈D〉?
if D(〈D〉) = accept, H(〈D, 〈D〉〉) = reject.

This means D does not accept D(〈D〉), i.e.,
D(〈D〉) = reject.
if D(〈D) = reject, H(〈D, 〈D〉〉) = accept. This means D does accept D(〈D〉), i.e.,
D(〈D〉) = accept.
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Acceptance problem - TMs

Let’s formalize this:

Theorem
The language ATM is not decidable.

Proof:
Assume it is decidable. Then there exists a decider H that decides ATM . So
H(〈M,w〉) = accept iff M accepts w and H(〈M,w〉) = reject iff M fails to accept w .
We define a decider D that on input 〈M〉 flips the result of H(〈M, 〈M〉〉).

D = On input 〈M〉
1. Simulate H on 〈M, 〈M〉〉.
2. If H accepts, reject; if H rejects, accept.

if H accepts, D rejects and if H rejects, D accepts.
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Acceptance problem - TMs

Theorem
The language ATM is not decidable.

Proof:

D = On input 〈M〉
1. Simulate H on 〈M, 〈M〉〉.
2. If H accepts, reject; if H rejects, accept.

So what is the result of D(〈D〉)? Remember, H(〈M,w〉) accepts iff M(w) = accept.
If D(〈D〉) = reject, then H(〈D, 〈D〉〉) = accept, i.e., D(〈D〉) = accept. Contradiction!
If D(〈D〉) = accept, then H(〈D, 〈D〉〉) = reject, i.e., D(〈D〉) = reject. Contradiction!
Hence neither D nor H can exist! → ATM is undecidable!

INF2080 Lecture :: 1st March 39 / 43



Acceptance problem - TMs

Theorem
The language ATM is not decidable.

Proof:

D = On input 〈M〉
1. Simulate H on 〈M, 〈M〉〉.
2. If H accepts, reject; if H rejects, accept.

So what is the result of D(〈D〉)?

Remember, H(〈M,w〉) accepts iff M(w) = accept.
If D(〈D〉) = reject, then H(〈D, 〈D〉〉) = accept, i.e., D(〈D〉) = accept. Contradiction!
If D(〈D〉) = accept, then H(〈D, 〈D〉〉) = reject, i.e., D(〈D〉) = reject. Contradiction!
Hence neither D nor H can exist! → ATM is undecidable!

INF2080 Lecture :: 1st March 39 / 43



Acceptance problem - TMs

Theorem
The language ATM is not decidable.

Proof:

D = On input 〈M〉
1. Simulate H on 〈M, 〈M〉〉.
2. If H accepts, reject; if H rejects, accept.

So what is the result of D(〈D〉)? Remember, H(〈M,w〉) accepts iff M(w) = accept.

If D(〈D〉) = reject, then H(〈D, 〈D〉〉) = accept, i.e., D(〈D〉) = accept. Contradiction!
If D(〈D〉) = accept, then H(〈D, 〈D〉〉) = reject, i.e., D(〈D〉) = reject. Contradiction!
Hence neither D nor H can exist! → ATM is undecidable!

INF2080 Lecture :: 1st March 39 / 43



Acceptance problem - TMs

Theorem
The language ATM is not decidable.

Proof:

D = On input 〈M〉
1. Simulate H on 〈M, 〈M〉〉.
2. If H accepts, reject; if H rejects, accept.

So what is the result of D(〈D〉)? Remember, H(〈M,w〉) accepts iff M(w) = accept.
If D(〈D〉) = reject, then H(〈D, 〈D〉〉) = accept, i.e., D(〈D〉) = accept. Contradiction!

If D(〈D〉) = accept, then H(〈D, 〈D〉〉) = reject, i.e., D(〈D〉) = reject. Contradiction!
Hence neither D nor H can exist! → ATM is undecidable!

INF2080 Lecture :: 1st March 39 / 43



Acceptance problem - TMs

Theorem
The language ATM is not decidable.

Proof:

D = On input 〈M〉
1. Simulate H on 〈M, 〈M〉〉.
2. If H accepts, reject; if H rejects, accept.

So what is the result of D(〈D〉)? Remember, H(〈M,w〉) accepts iff M(w) = accept.
If D(〈D〉) = reject, then H(〈D, 〈D〉〉) = accept, i.e., D(〈D〉) = accept. Contradiction!
If D(〈D〉) = accept, then H(〈D, 〈D〉〉) = reject, i.e., D(〈D〉) = reject. Contradiction!

Hence neither D nor H can exist! → ATM is undecidable!

INF2080 Lecture :: 1st March 39 / 43



Acceptance problem - TMs

Theorem
The language ATM is not decidable.

Proof:

D = On input 〈M〉
1. Simulate H on 〈M, 〈M〉〉.
2. If H accepts, reject; if H rejects, accept.

So what is the result of D(〈D〉)? Remember, H(〈M,w〉) accepts iff M(w) = accept.
If D(〈D〉) = reject, then H(〈D, 〈D〉〉) = accept, i.e., D(〈D〉) = accept. Contradiction!
If D(〈D〉) = accept, then H(〈D, 〈D〉〉) = reject, i.e., D(〈D〉) = reject. Contradiction!
Hence neither D nor H can exist! → ATM is undecidable!

INF2080 Lecture :: 1st March 39 / 43



Turing unrecognizability

So we’ve seen there exists an undecidable language: ATM

Do there exist non-Turing-recognizable languages?
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Turing unrecognizability

Theorem
A language A is decidable iff it is Turing-recognizable and co-Turing-recognizable, i.e., if A and
its complement A are Turing-recognizable.

Proof:
If A is decidable, then it is Turing-recognizable. Since decidable langauges are closed under
complementation, this means A is decidable, in particular Turing-recognizable.
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Turing unrecognizability

Theorem
A language A is decidable iff it is Turing-recognizable and co-Turing-recognizable, i.e., if A and
its complement A are Turing-recognizable.

Proof:
Now assume A and A are Turing recognizable. Then there exist recognizers MA and MA
that accept w if it is in A or A, respectively.

we combine these to a machine M:

M = On input w
1. Run both MA and MA in parallel on input w
2. If MA accepts, accept; if MA accepts, reject.
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Turing-unrecongizability

Theorem
A language A is decidable iff it is Turing-recognizable and co-Turing-recognizable, i.e., if A and
its complement A are Turing-recognizable.

We can use this result to show that ATM is not Turing-recognizable:

ATM is Turing-recognizable
If ATM were Turing-recognizable, then by the last theorem ATM must be decidable
But we just saw that ATM is undecidable.
Hence ATM must be Turing-unrecognizable
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