
Complexity theory: Introduction

Evgenij Thorstensen

V18

Evgenij Thorstensen Complexity theory: Introduction V18 1 / 26

Course outline

We will cover chapters 7 and 8 from Sipser.

We will also cover some topics/theorems from chapters 9-10, depending
on time constraints.

Probably 9.1 and 9.2, but I will get back to that.

Evgenij Thorstensen Complexity theory: Introduction V18 2 / 26

What is complexity theory?

So far, you’ve studied models of computation and their expressive
power.

Complexity theory deals with measuring the amount of resources
required for computational problems.

A typical problem is “deciding a language L”.

This idea raises many questions:

What resources are we interested in?

What model of computation to use for “algorithm”?

How do we measure this?

Evgenij Thorstensen Complexity theory: Introduction V18 3 / 26

Resources and measuring

Assume a model of computation, e.g. single-tape DTM.

Two very obvious resources of interest: Time and space.

Time: Number of DTM transitions needed.

Space: Number of tape cells needed.

Given a DTM M that decides a language L, and a string w, it now
makes sense to talk about the time and space needed.

Evgenij Thorstensen Complexity theory: Introduction V18 4 / 26

Generalizing measuring

Given a string w and a DTM M for L, there is a number of transitions
n that M needs to accept or reject w.

This number depends on w and on M.

We can generalize by defining functions to measure this over all w and
even all M.

Let fM(w) be the number of transitions M uses for w. We expect this
number to depend on |w|.

Define Wk = {fM(w) | |w| = k}, and tM(k) = max(Wk).

Evgenij Thorstensen Complexity theory: Introduction V18 5 / 26

Generalizing measuring

Given a string w and a DTM M for L, there is a number of transitions
n that M needs to accept or reject w.

This number depends on w and on M.

We can generalize by defining functions to measure this over all w and
even all M.

Let fM(w) be the number of transitions M uses for w. We expect this
number to depend on |w|.

Define Wk = {fM(w) | |w| = k}, and tM(k) = max(Wk).

Evgenij Thorstensen Complexity theory: Introduction V18 5 / 26

Time as a function of input size

With tM(k) = max(Wk), we get tM : N → N. tM(k) is the running
time of M (Def. 7.1).

This is the worst-case running time.

Allows us to compare different languages using different encodings!

Let M1 and M2 be deciders for L1 and L2. Say we have

tM1
(k) = 2k3

and

tM2
(k) = 2k

Evgenij Thorstensen Complexity theory: Introduction V18 6 / 26

Time as a function of input size

With tM(k) = max(Wk), we get tM : N → N. tM(k) is the running
time of M (Def. 7.1).

This is the worst-case running time.

Allows us to compare different languages using different encodings!

Let M1 and M2 be deciders for L1 and L2. Say we have

tM1
(k) = 2k3

and

tM2
(k) = 2k

Evgenij Thorstensen Complexity theory: Introduction V18 6 / 26

Time as a function of a language

Let L be a language. We can define the set

{tM | M decides L}

We would like to speak about the time needed to decide L (by the
fastest DTM, usually).

Need to compare functions of n.

Evgenij Thorstensen Complexity theory: Introduction V18 7 / 26

Comparing functions

The primary way of comparing functions is by growth rate.

Definition (Big-O, Def 7.2)
Let f and g be functions f, g : N → R+. We say that f(n) = O(g(n)) if
there exists

a threshold n0 ∈ N and

a constant c ∈ N
such that for every n > n0,

f(n) 6 c · g(n)

Evgenij Thorstensen Complexity theory: Introduction V18 8 / 26

Big-Oh, graphically
∃n0, c such that ∀n > n0 we have f(n) 6 c · g(n):

Evgenij Thorstensen Complexity theory: Introduction V18 9 / 26

Big-Oh, properties

We get to choose c: Constants are ignored.
300n3 = O(n3) = O(100n3)

We get to choose n0: Small-number behaviour is ignored.

Logarithms: Base doesn’t matter. logb n = log2 n
log2 b

, so
logb n = O(logd n) for any b, d.

Notational abuse: Technically, O(g(n)) is a set, so it ought to be
f ∈ O(g).

Expressions like 2O(n), 2O(1), and even (arrgh) 2O(logn) happen.

Evgenij Thorstensen Complexity theory: Introduction V18 10 / 26

More on arithmetic with O

Expressions like 2O(n), 2O(1), and even (arrgh) 2O(logn) happen.

2O(logn) = 2c logn for some c.

Since n = 2log2 n, nc = 2c log2 n. Therefore 2O(logn) = nc = nO(1).

Evgenij Thorstensen Complexity theory: Introduction V18 11 / 26

Sum rule

Sum rule: If f1(n) ∈ O(g1(n)) and f2(n) ∈ O(g2(n)), then
f1(n) + f2(n) ∈ O(max(g1(n), g2(n))).

The sum grows with the fastest term; others can be discarded.

Proof: Assume f1(n) 6 c1g1(n) from n1, and f2 6 c2g2(n) from n2.

Apply sums: f1(n) + f2(n) 6 c1g1(n) + c2g2(n) from max(n1, n2).

It follows that f1(n) + f2(n) 6 2 ·max(c1, c2) ·max(g1(n), g2(n)) from
max(n1, n2).

n3 + n6 ∈ O(n6), since 2n6 is greater than the sum.

Evgenij Thorstensen Complexity theory: Introduction V18 12 / 26

Product rule

Product rule: If f1(n) ∈ O(g1(n)) and f2(n) ∈ O(g2(n)), then
f1(n)× f2(n) ∈ O(g1(n)× g2(n)).

Product of bounds is a bound on the product.

Proof: Exercise.

Evgenij Thorstensen Complexity theory: Introduction V18 13 / 26

Complexity of languages

Using O, we can classify languages rather than TMs.

Let TIME(f(n)) be the set of languages L such that there exists a DTM
M deciding it with tM(n) = O(f(n)).

TIME is inclusive: If f ∈ O(g), then TIME(f) ⊆ TIME(g).

“Easy” to show that L ∈ TIME(f(n)), if true; “hard” to show that
L 6∈ TIME(g(n)).

Evgenij Thorstensen Complexity theory: Introduction V18 14 / 26

Computational models

So far, DTMs. What about multitape DTMs, and NTMs?

We will define interesting classes on NTMs too.

However, MDTMs and NTMs both reduce to DTMs.

The reductions, however, produce machines that have very different
worst-case running times.

Evgenij Thorstensen Complexity theory: Introduction V18 15 / 26

Simulating MDTMs, complexity

Theorem (Thm. 7.8)
Let t(n) be a function such that t(n) > n. For every MDTM with
running time t(n) there exists an equivalent DTM with running
time in O(t(n)2).

The proof is by analyzing the reduction you’ve already seen.

All the tapes of the MDTM are stored sequentially, with delimiters.

Evgenij Thorstensen Complexity theory: Introduction V18 16 / 26

Estimating running time

What does our DTM do to simulate one step of the MDTM?

Read whole tape to find symbols under heads (ReadScan)

Scan and update whole tape (WriteScan)

If necessary, shift entire tape to the right (Shift)

We need two things: Bound on the scans, and bound on the shifts.

Scan cost: t(n)× k, t(n) for each of k tapes of the MDTM.

Shift cost: t(n)× k per shift.

Total: t(n)× k+ t(n)× k× k for each step. k constant, t(n) steps, so
O(t(n)2) bound holds.

Evgenij Thorstensen Complexity theory: Introduction V18 17 / 26

Estimating running time

What does our DTM do to simulate one step of the MDTM?

Read whole tape to find symbols under heads (ReadScan)

Scan and update whole tape (WriteScan)

If necessary, shift entire tape to the right (Shift)

We need two things: Bound on the scans, and bound on the shifts.

Scan cost: t(n)× k, t(n) for each of k tapes of the MDTM.

Shift cost: t(n)× k per shift.

Total: t(n)× k+ t(n)× k× k for each step. k constant, t(n) steps, so
O(t(n)2) bound holds.

Evgenij Thorstensen Complexity theory: Introduction V18 17 / 26

NTMs, running time

Need worst-case running time definition.

NTMs accept if some branch accepts. If we sum the running time of all
branches, not so interesting.

Instead, let the running time be the max number of steps used in any
branch.

Evgenij Thorstensen Complexity theory: Introduction V18 18 / 26

Simulating NTMs, complexity

Theorem (Thm 7.11)
Let t(n) > n be a function. For ever NTM with running time t(n)

there exists an equivalent DTM with running time 2O(t(n)).

The reduction is high-level.

We simulate every branch, record result somewhere on tape (1 bit).

Evgenij Thorstensen Complexity theory: Introduction V18 19 / 26

Estimating NTM simulation running time

Length of branch times number of them.

Length at most t(n). Number of branches?

Let b be the number of transitions in the definition of the NTM.

Then number of branches at most bt(n). This gives O(t(n)× bt(n))

running time. b is a constant.

We need 2O(t(n)) = 2ct(n) for some c. t(n), bt(n) ∈ O(bt(n)), so we
have O(b2t(n)). Take log2(b) into the exponent to get a power of two.

Evgenij Thorstensen Complexity theory: Introduction V18 20 / 26

Estimating NTM simulation running time

Length of branch times number of them.

Length at most t(n). Number of branches?

Let b be the number of transitions in the definition of the NTM.

Then number of branches at most bt(n). This gives O(t(n)× bt(n))

running time. b is a constant.

We need 2O(t(n)) = 2ct(n) for some c. t(n), bt(n) ∈ O(bt(n)), so we
have O(b2t(n)). Take log2(b) into the exponent to get a power of two.

Evgenij Thorstensen Complexity theory: Introduction V18 20 / 26

Computational models, summary

DTMs and MDTMs are polynomial-time equivalent.

For NTMs, we needed an exponential amount of time.

No algorithm is known to do better.

The fact that we end up with only an exponential amount of time is
not a coincidence.

Evgenij Thorstensen Complexity theory: Introduction V18 21 / 26

Polynomial time equivalence

We want to abstract away details of machines.

We generally consider all models that are polynomial-time equivalent
to DTMs to be equivalent for complexity theory.

Since we are interested in problems, we also abstract away the details
of input encoding.

Care must be taken with numbers: The input size of the number is not
the value of the number.

Evgenij Thorstensen Complexity theory: Introduction V18 22 / 26

Summing up

We measure worst-case time complexity of an algorithm or problem:

as a function of input size

disregarding constants and lower-order terms

abstracting away encoding and using abstract TMs as model.

Using the notation TIME(f(n)), we can classify problems.

Evgenij Thorstensen Complexity theory: Introduction V18 23 / 26

Some deterministic classes

Logarithmic time: TIME(logn). Binary search is in this class.

Linear time: TIME(n). Boring class.

Polynomial time (P):
⋃
k∈N

TIME(nk).

Exponential time (EXPTIME):
⋃
k∈N

TIME(2n
k

).

Evgenij Thorstensen Complexity theory: Introduction V18 24 / 26

Some nondeterministic classes

All of the above can be done for NTMs. Let NTIME(f(n)) be the class
of languages L such that there exists an NTM M deciding L with
tM(n) = O(f(n)).

Nondeterministic polynomial time (NP):
⋃
k∈N

NTIME(nk).

Nondeterministic exponential time (NEXPTIME):
⋃
k∈N

NTIME(2n
k

).

Evgenij Thorstensen Complexity theory: Introduction V18 25 / 26

Extra: Can we speak of “the” complexity of a
language?

Recall the set Lt = {tM | M decides L}.

Tempting to look for the smallest function modulo O: f 6 g iff
f ∈ O(g).

Surprisingly, this does not always exist!

Blum’s speedup theorem (short version): There exists a decidable
language L such that if L is decidable in TIME(tM), it is also decidable
in TIME(O(log tM)).

Evgenij Thorstensen Complexity theory: Introduction V18 26 / 26

Extra: Can we speak of “the” complexity of a
language?

Recall the set Lt = {tM | M decides L}.

Tempting to look for the smallest function modulo O: f 6 g iff
f ∈ O(g).

Surprisingly, this does not always exist!

Blum’s speedup theorem (short version): There exists a decidable
language L such that if L is decidable in TIME(tM), it is also decidable
in TIME(O(log tM)).

Evgenij Thorstensen Complexity theory: Introduction V18 26 / 26

