
Complexity relative to an oracle

Evgenij Thorstensen

V18

Evgenij Thorstensen Complexity relative to an oracle V18 1 / 21

Oracles

“Our world can be characterized by the cruel fact that no computation
whatsoever is free.”

But what if some problems could be solved for free?

This subject is known as relative computation, that is, relative to the
problem solvable for free.

Evgenij Thorstensen Complexity relative to an oracle V18 2 / 21

Oracle machines

An oracle is a special black box that can solve any instance of a given
problem in one step (decide w ∈ L in one step for any w).

A DTM or NTM with an oracle has a special transition that solves an
appropriate problem on the tape.

For example, oracle for SAT, or for TQBF.

Can extend to oracle for a class: An oracle for P can solve any problem
in P in one step.

Evgenij Thorstensen Complexity relative to an oracle V18 3 / 21

Oracle machines, properly

An oracle TM (DTM or NTM) MA has an extra read/write query
tape, and three special states qA, qY , and qN.

Machine works as usual, except for the state qA.

When the machine enters qA, it moves to qY or qN depending on
whether the string w on the query tape is in A or not — in one step.

Time complexity measured as usual; space complexity has multiple
definitions.

Evgenij Thorstensen Complexity relative to an oracle V18 4 / 21

The power of oracles

Given an oracle, complexity classes are defined as usual. PSAT is the
class of problems

decidable in polynomial time

on a DTM with a SAT oracle.

Likewise NPSAT , or even PNP, or NPNP.

Observation: PSAT = PNP

Evgenij Thorstensen Complexity relative to an oracle V18 5 / 21

Some observations

PP = P, but NPNP ⊇ NP.

This property is being self-low: A class A is low for itself if AA = A.

Self-low classes can use their problems as subroutines.

For PP, can simulate oracle queries in polynomial time.

However, coNP ⊆ NPNP — can query the oracle, use answer!

Evgenij Thorstensen Complexity relative to an oracle V18 6 / 21

Some observations

PP = P, but NPNP ⊇ NP.

This property is being self-low: A class A is low for itself if AA = A.

Self-low classes can use their problems as subroutines.

For PP, can simulate oracle queries in polynomial time.

However, coNP ⊆ NPNP — can query the oracle, use answer!

Evgenij Thorstensen Complexity relative to an oracle V18 6 / 21

Polynomial hierarchy

Recall TQBF with bounded quantifier alteration: we are only allowed
a fixed number of quantifier changes.

Consider the formula ∀X∃Yφ(X, Y).

Such formulas belong to coNPNP.

Guess assignment to X, for each assignment call oracle about
satisfiability of ∃Yφ.

If formula is not true, exists a certificate (assignment to X), hence this
is coNP with an NP oracle.

Evgenij Thorstensen Complexity relative to an oracle V18 7 / 21

Polynomial hierarchy
We define ∆0 = Σ0 = Π0 = P.

∆i+1 = PΣi

Σi+1 = NPΣi

Πi+1 = coNPΣi

Could define them using Π instead of Σ — oracles for NP and coNP are
equivalent.

Easy to see that all of these are under PSPACE, and that P = NP
collapses them all to P.

PH =
⋃
k∈N

Σi ∪ ∆i ∪ Πi

Evgenij Thorstensen Complexity relative to an oracle V18 8 / 21

Polynomial hierarchy, a picture
Courtesy of wikipedia. Arrows are inclusions.

Figure: Polynomial hierarchy

Evgenij Thorstensen Complexity relative to an oracle V18 9 / 21

PH gives a reason for NP 6= coNP

If NP = coNP, then PH = NP = Σ1.

Generalizes to PH = Σi whenever Σi = Πi.

Σ2 is a practically interesting class.

Occurs in NP problems with minimality requirements over all solutions
rather than some.

Evgenij Thorstensen Complexity relative to an oracle V18 10 / 21

Even more oracles

How about a DTM MH with a halting oracle?

MH can solve the original halting problem: Given M,w, does M(w)

halt?

However, DTMs with a halting oracle have their own halting problem.

This problem they cannot solve — original proof goes through
completely.

Assume a decider, feed it to itself, output wrong answer.

Evgenij Thorstensen Complexity relative to an oracle V18 11 / 21

Relativization

The proof of the undecidability of the halting problem relativizes — it
works relative to any oracle whatsoever.

Proof is based on a diagonalization argument.

There are other arguments that also relativize.

A problem, like P = NP, relativizes if PA = NPA for any A.

Some problems, however, very much do not relativize.

Evgenij Thorstensen Complexity relative to an oracle V18 12 / 21

A summary of results

Theorem (Baker, Gill, Solovay, 1975)

There exist oracles A and B such that PA = NPA and PB 6= NPB.

In fact, there are oracles for all possible configurations of P, NP, and
coNP.

Another interesting theorem, due to Sipser (yes, our Sipser), is that
there are oracles for which NP ∩ coNP has complete problems and
oracles for which it does not.

Oracle for which NP ∩ coNP has complete problems is the one for
which P = NP.

Evgenij Thorstensen Complexity relative to an oracle V18 13 / 21

Proving the BGS theorem

Finding the oracle A such that PA = NPA is not too difficult.

Need something powerful that does not benefit from nondeterminism.

We know of such classes — PSPACE is such a class.

Let’s try that one.

Evgenij Thorstensen Complexity relative to an oracle V18 14 / 21

P and NP relative to PSPACE

Let A = PSPACE. We will show

PSPACE ⊆ PA ⊆ NPA ⊆ NPSPACE = PSPACE

NPA ⊆ NPSPACE since we can simulate each oracle query in
polynomial space.

The NP machine uses at most polynomial space, and oracle queries can
be computed in polynomial space too.

Evgenij Thorstensen Complexity relative to an oracle V18 15 / 21

The other oracle

Hard part: Finding the other oracle. In fact, we will construct it.

We will construct a language LA given an oracle.

Then we construct an oracle such that this language can’t be done in
polynomial time.

This we do, of course, by diagonalization.

Let LA = {w | A(x) = 1, |x| = |w|}

Evgenij Thorstensen Complexity relative to an oracle V18 16 / 21

Enumeration

Let M?
1,M

?
2, . . . be an enumeration of oracle DTMs that run in

polynomial time.

Since oracle machines query their oracle as a black box, can plug in
any oracle.

Sipser: Assume for simplicity that M?
i has running time ni.

We will build an oracle A so that none of these machines can decide
LA.

Evgenij Thorstensen Complexity relative to an oracle V18 17 / 21

The construction

Inductive construction. We start with nothing, and at each stage we
declare a finite set of strings to be in the language of A or out of it.

Goal: At stage i, make sure that L(MA
i) and LA disagree on some

string.

How do we do this? Well, LA is all strings of same length as A accepts.

For a DTM to determine if w ∈ LA, it will need to ask A about all
strings of this length.

If we pick a large enough string, MA
i won’t have time to do this.

Evgenij Thorstensen Complexity relative to an oracle V18 18 / 21

Stage i

Let MA
i have running time ni. Choose n larger than any string

declared for A, such that 2n > ni.

We are going to run MA
i on 1n. When MA

i queries A with q, we

Answer correctly if q has been declared,

and answer NO otherwise.

If MA
i accepts 1n, we declare all strings of length n to be NO-strings.

Then A has no YES-string of length n, and 1n 6∈ LA.

If MA
i rejects 1n, we find a string of length n that MA

i did not query.
This exists, since 2n > ni. Declare this string to be YES.

Finally, declare all undeclared strings of length up to n arbitrarily.

Evgenij Thorstensen Complexity relative to an oracle V18 19 / 21

Stage 1, example

In stage 1, nothing has been declared yet.

We look at MA
1 , with running time n1. We need 2n > n1, 1 suffices,

but pick 4.

Run MA
1 on the string 1111. Since nothing has been declared yet,

answer NO to all queries.

If accept, then declare all strings of lenght 4 to be NO-strings.

If reject, MA
1 made 4 queries. Find a string among all of length 4 that

has not been declared, declare it to be YES.

Evgenij Thorstensen Complexity relative to an oracle V18 20 / 21

Finishing the proof

Our oracle is built to make the language LA not decided by any DTM
MA with polynomial running time.

The oracle is well-defined — all strings accounted for.

However, LA can easily be decided using an NTM with oracle A.

Hence, LA ∈ NPA and LA 6∈ PA, as desired.

Evgenij Thorstensen Complexity relative to an oracle V18 21 / 21

