INF2080 Context-Free Langugaes: Pushdown Automata

Daniel Lupp

Universitetet i Oslo

8th February 2018

University of Oslo • Defined context-free grammars (CFGs):

• Defined context-free grammars (CFGs): contain rules of the form $A \rightarrow X_1 X_2 \cdots X_n$ where A is a variable and X_i are variables or terminals

> S
> ightarrow 0S1S
> ightarrow arepsilon

$$egin{array}{lll} S
ightarrow 0S1 \ S
ightarrow arepsilon \end{array} & L = \{0^n 1^n \mid n \geq 0\} \end{array}$$

$$S \to 0S1$$

$$S \to \varepsilon$$

$$L = \{0^n 1^n \mid n \ge 0\}$$

• CFGs generate *context-free languages*

$$egin{array}{lll} S
ightarrow 0S1 \ S
ightarrow arepsilon \end{array} & L = \{0^n 1^n \mid n \geq 0\} \end{array}$$

- CFGs generate *context-free languages*
- We've seen {Regular Languages} \subseteq {Context-free Languages}

- \bullet We've seen {Regular Languages} \subsetneq {Context-free Languages}
- NFA/DFA/RE/GNFA were all equivalent computational models that describe/accept regular languages

- We've seen {Regular Languages} \subsetneq {Context-free Languages}
- NFA/DFA/RE/GNFA were all equivalent computational models that describe/accept regular languages
- What computational model accepts context-free languages?

- We've seen {Regular Languages} \subsetneq {Context-free Languages}
- NFA/DFA/RE/GNFA were all equivalent computational models that describe/accept regular languages
- \bullet What computational model accepts context-free languages? \rightarrow pushdown automata!

• DFA/NFA/RE/GNFA were all computational models with *finite* memory

- DFA/NFA/RE/GNFA were all computational models with *finite* memory
- we now add a (very limited) form of infinite memory: a stack (LIFO principle: last in, first out)

- DFA/NFA/RE/GNFA were all computational models with *finite* memory
- we now add a (very limited) form of infinite memory: a stack (LIFO principle: last in, first out)
- So, essentially, PDA's are NFA's with an additional stack

• NFA's transitioned from one state to another according to the current input

• NFA's transitioned from one state to another according to the current input

• NFA's transitioned from one state to another according to the current input

• PDA's can access a stack in addition to the input:

• NFA's transitioned from one state to another according to the current input

• PDA's can access a stack in addition to the input:

For notational ease, we sketch these transition as follows:

В

For notational ease, we sketch these transition as follows:

• $w, x \rightarrow y$: read input w, pop x from stack, push y on to stack

For notational ease, we sketch these transition as follows:

• $w, x \rightarrow y$: read input w, pop x from stack, push y on to stack

• $w, x \rightarrow \varepsilon$: read input w, pop x from stack

For notational ease, we sketch these transition as follows:

- $w, x \rightarrow y$: read input w, pop x from stack, push y on to stack
- $w, x \rightarrow \varepsilon$: read input w, pop x from stack
- $w, \varepsilon \rightarrow y$: read input w, push y on to stack

А

For notational ease, we sketch these transition as follows:

В

- $w, x \rightarrow y$: read input w, pop x from stack, push y on to stack
- $w, x \rightarrow \varepsilon$: read input w, pop x from stack

w, pop x, push y

- $w, \varepsilon \rightarrow y$: read input w, push y on to stack
- $\varepsilon, x \to y$: read no input, perform stack operations as described above (x and/or y may be ε)

• So what does the stack let us do?

- So what does the stack let us do?
- Counting?

- So what does the stack let us do?
- Counting?
- Storing read input?

- So what does the stack let us do?
- Counting?
- Storing read input?
- ...more?

Consider grammar:

S
ightarrow 0S1S
ightarrow arepsilon

• Generates all 0^*1^* words with equal number of 0's and 1's.

Consider grammar:

S
ightarrow 0S1S
ightarrow arepsilon

- \bullet Generates all 0^*1^* words with equal number of 0's and 1's.
- Can we define a PDA that accepts this language?

Consider grammar:

S
ightarrow 0S1S
ightarrow arepsilon

- \bullet Generates all 0^*1^* words with equal number of 0's and 1's.
- Can we define a PDA that accepts this language?
- vague idea: keep track of number of 0's using the stack, compare with number of 1's

- for each 0 read, push a 0 on to the stack.
- Then, for each 1 read, pop a 0 from the stack.
- If after reading the input the stack is empty, accept.

- for each 0 read, push a 0 on to the stack.
- Then, for each 1 read, pop a 0 from the stack.
- If after reading the input the stack is empty, accept.
- Only stack operations allowed are: pop/push! How to check if a stack is empty with these operations?

- for each 0 read, push a 0 on to the stack.
- Then, for each 1 read, pop a 0 from the stack.
- If after reading the input the stack is empty, accept.
- Only stack operations allowed are: pop/push! How to check if a stack is empty with these operations?
- before doing anything else, push a special symbol, \$, on to stack.

- for each 0 read, push a 0 on to the stack.
- Then, for each 1 read, pop a 0 from the stack.
- If after reading the input the stack is empty, accept.
- Only stack operations allowed are: pop/push! How to check if a stack is empty with these operations?
- before doing anything else, push a special symbol, \$, on to stack. If we ever read this symbol again, the stack is empty!

- for each 0 read, push a 0 on to the stack.
- Then, for each 1 read, pop a 0 from the stack.
- If after reading the input the stack is empty, accept.
- Only stack operations allowed are: pop/push! How to check if a stack is empty with these operations?
- before doing anything else, push a special symbol, \$, on to stack. If we ever read this symbol again, the stack is empty!

- for each 0 read, push a 0 on to the stack.
- Then, for each 1 read, pop a 0 from the stack.
- If after reading the input the stack is empty, accept.
- Only stack operations allowed are: pop/push! How to check if a stack is empty with these operations?
- before doing anything else, push a special symbol, \$, on to stack. If we ever read this symbol again, the stack is empty!

Slightly less vague idea:

- for each 0 read, push a 0 on to the stack.
- Then, for each 1 read, pop a 0 from the stack.
- If after reading the input the stack is empty, accept.
- Only stack operations allowed are: pop/push! How to check if a stack is empty with these operations?
- before doing anything else, push a special symbol, \$, on to stack. If we ever read this symbol again, the stack is empty!

Slightly less vague idea:

- for each 0 read, push a 0 on to the stack.
- Then, for each 1 read, pop a 0 from the stack.
- If after reading the input the stack is empty, accept.
- Only stack operations allowed are: pop/push! How to check if a stack is empty with these operations?
- before doing anything else, push a special symbol, \$, on to stack. If we ever read this symbol again, the stack is empty!

Slightly less vague idea:

- for each 0 read, push a 0 on to the stack.
- Then, for each 1 read, pop a 0 from the stack.
- If after reading the input the stack is empty, accept.
- Only stack operations allowed are: pop/push! How to check if a stack is empty with these operations?
- before doing anything else, push a special symbol, \$, on to stack. If we ever read this symbol again, the stack is empty!

w = 000111
Stack: \$ (leftmost item is on top of stack)

Stack: 0\$

0

0

 q_2

 q_3

 $1, 0 \rightarrow \varepsilon$

• so we can sort of count (compare numbers of 0's and 1's)

- so we can sort of count (compare numbers of 0's and 1's)
- What about tracking input?

- so we can sort of count (compare numbers of 0's and 1's)
- What about tracking input?
- Consider language $L_2 = \{ww^R \mid w \in \{0,1\}^*\}$
- $01011010 \in L_2$, $0110 \in L_2$.

- so we can sort of count (compare numbers of 0's and 1's)
- What about tracking input?
- Consider language $L_2 = \{ww^R \mid w \in \{0,1\}^*\}$
- $01011010 \in L_2$, $0110 \in L_2$. L_2 is the language of even length 0, 1 palindromes

- so we can sort of count (compare numbers of 0's and 1's)
- What about tracking input?
- Consider language $L_2 = \{ww^R \mid w \in \{0,1\}^*\}$
- $01011010 \in L_2$, $0110 \in L_2$. L_2 is the language of even length 0, 1 palindromes
- How to design a PDA that accepts L_2 ?

 Intuitively: to check if input is of the form ww^R, push input on to stack, then at some point compare the stack items to input and, if equal, pop.

- Intuitively: to check if input is of the form ww^R, push input on to stack, then at some point compare the stack items to input and, if equal, pop.
- As before, before we do anything else, add special symbol \$ to stack.

- Intuitively: to check if input is of the form ww^R, push input on to stack, then at some point compare the stack items to input and, if equal, pop.
- As before, before we do anything else, add special symbol \$ to stack.
- If we read a 0 push a 0, if we read a 1 push a 1.

- Intuitively: to check if input is of the form ww^R, push input on to stack, then at some point compare the stack items to input and, if equal, pop.
- As before, before we do anything else, add special symbol \$ to stack.
- If we read a 0 push a 0, if we read a 1 push a 1.
- Nondeterministically guess when w has been read and w^R begins

- Intuitively: to check if input is of the form ww^R, push input on to stack, then at some point compare the stack items to input and, if equal, pop.
- As before, before we do anything else, add special symbol \$ to stack.
- If we read a 0 push a 0, if we read a 1 push a 1.
- Nondeterministically guess when *w* has been read and *w*^{*R*} begins
- Then if we read a 0 pop 0, if we read a 1 pop 1.

- Intuitively: to check if input is of the form ww^R, push input on to stack, then at some point compare the stack items to input and, if equal, pop.
- As before, before we do anything else, add special symbol \$ to stack.
- If we read a 0 push a 0, if we read a 1 push a 1.
- Nondeterministically guess when *w* has been read and *w*^{*R*} begins
- Then if we read a 0 pop 0, if we read a 1 pop 1.
- if the stack is empty, accept.

- Intuitively: to check if input is of the form ww^R, push input on to stack, then at some point compare the stack items to input and, if equal, pop.
- As before, before we do anything else, add special symbol \$ to stack.
- If we read a 0 push a 0, if we read a 1 push a 1.
- Nondeterministically guess when *w* has been read and *w*^{*R*} begins
- Then if we read a 0 pop 0, if we read a 1 pop 1.
- if the stack is empty, accept.

- Intuitively: to check if input is of the form ww^R, push input on to stack, then at some point compare the stack items to input and, if equal, pop.
- As before, before we do anything else, add special symbol \$ to stack.
- If we read a 0 push a 0, if we read a 1 push a 1.
- Nondeterministically guess when *w* has been read and *w*^{*R*} begins
- Then if we read a 0 pop 0, if we read a 1 pop 1.
- if the stack is empty, accept.

- Intuitively: to check if input is of the form ww^R, push input on to stack, then at some point compare the stack items to input and, if equal, pop.
- As before, before we do anything else, add special symbol \$ to stack.
- If we read a 0 push a 0, if we read a 1 push a 1.
- Nondeterministically guess when w has been read and w^R begins
- Then if we read a 0 pop 0, if we read a 1 pop 1.
- if the stack is empty, accept.

- Intuitively: to check if input is of the form ww^R, push input on to stack, then at some point compare the stack items to input and, if equal, pop.
- As before, before we do anything else, add special symbol \$ to stack.
- If we read a 0 push a 0, if we read a 1 push a 1.
- Nondeterministically guess when w has been read and w^R begins
- Then if we read a 0 pop 0, if we read a 1 pop 1.
- if the stack is empty, accept.

- Intuitively: to check if input is of the form ww^R, push input on to stack, then at some point compare the stack items to input and, if equal, pop.
- As before, before we do anything else, add special symbol \$ to stack.
- If we read a 0 push a 0, if we read a 1 push a 1.
- Nondeterministically guess when w has been read and w^R begins
- Then if we read a 0 pop 0, if we read a 1 pop 1.
- if the stack is empty, accept.

Definition (PDA)

A PDA is a tuple $(Q, \Sigma, \Gamma, \delta, q_0, F)$ where Q, Σ, Γ, F are finite states and

- $\bigcirc \Sigma$ is the input alphabet,
- \odot Γ is the stack alphabet,
- $\ \, \bullet \ \, \delta: Q \times \Sigma_{\varepsilon} \times \mathsf{\Gamma}_{\varepsilon} \to \mathcal{P}(Q \times \mathsf{\Gamma}_{\varepsilon}) \ \, \text{is the transition function}$
- ${old 0} \ q_0 \in Q$ is the start state, and
- $F \subseteq Q$ is the set of accepting states.

We want to show:

Theorem

A language is context-free if and only if some pushdown automaton recognizes it.

We want to show:

Theorem

A language is context-free if and only if some pushdown automaton recognizes it.

Step by step.... first we show:

Lemma

If a language is context-free then there exists a pushdown automaton that recognizes it.

We want to show:

Theorem

A language is context-free if and only if some pushdown automaton recognizes it.

Step by step.... first we show:

Lemma

If a language is context-free then there exists a pushdown automaton that recognizes it.

In other words: given a CFG G, construct a PDA that recognizes L(G)!

If a language is context-free then there exists a pushdown automaton that recognizes it.

Proof idea:

• construct a PDA that for input *w* determines if it has a valid derivation.

If a language is context-free then there exists a pushdown automaton that recognizes it.

Proof idea:

- construct a PDA that for input *w* determines if it has a valid derivation.
- Use stack to store how far we've gotten in our derivation, i.e., the intermediate strings

 $S \rightsquigarrow aSb \rightsquigarrow aaSbb \rightsquigarrow aa\varepsilon bb \rightsquigarrow aabb$

If a language is context-free then there exists a pushdown automaton that recognizes it.

Proof idea:

- construct a PDA that for input *w* determines if it has a valid derivation.
- Use stack to store how far we've gotten in our derivation, i.e., the intermediate strings

 $S \rightsquigarrow aSb \rightsquigarrow aaSbb \rightsquigarrow aa\varepsilon bb \rightsquigarrow aabb$

• PDA needs to find variables in order to substitute them (recall: can only access top of stack) so if terminal is on top of stack, we compare to input

If a language is context-free then there exists a pushdown automaton that recognizes it.

Proof idea:

- construct a PDA that for input *w* determines if it has a valid derivation.
- Use stack to store how far we've gotten in our derivation, i.e., the intermediate strings

 $S \rightsquigarrow aSb \rightsquigarrow aaSbb \rightsquigarrow aa\varepsilon bb \rightsquigarrow aabb$

- PDA needs to find variables in order to substitute them (recall: can only access top of stack) so if terminal is on top of stack, we compare to input
- if top of stack is variable, we pop the variable and replace with the righthand side of a rule

If a language is context-free then there exists a pushdown automaton that recognizes it.

Proof idea: Intuitively, the PDA works as follows:

- Place special symbol \$ on stack
- Repeat the following:
Lemma

If a language is context-free then there exists a pushdown automaton that recognizes it.

Proof idea: Intuitively, the PDA works as follows:

- Place special symbol \$ on stack
- Repeat the following:
- if the top of stack is a variable A, nondeterministically choose a rule $A \rightarrow w$, pop A and push w

Lemma

If a language is context-free then there exists a pushdown automaton that recognizes it.

Proof idea: Intuitively, the PDA works as follows:

- Place special symbol \$ on stack
- Repeat the following:
- if the top of stack is a variable A, nondeterministically choose a rule $A \rightarrow w$, pop A and push w
- if top of stack is a terminal *a*, compare with next input symbol. If they match, pop *a* and repeat. If they do not, reject this branch.

Lemma

If a language is context-free then there exists a pushdown automaton that recognizes it.

Proof idea: Intuitively, the PDA works as follows:

- Place special symbol \$ on stack
- Repeat the following:
- if the top of stack is a variable A, nondeterministically choose a rule $A \rightarrow w$, pop A and push w
- if top of stack is a terminal *a*, compare with next input symbol. If they match, pop *a* and repeat. If they do not, reject this branch.
- If top of stack is \$, enter accept state.

$\mathsf{CFG} \rightarrow \mathsf{PDA}$

- Place special symbol \$ on stack, push start variable *S* on to stack.
- Repeat the following:
- if the top of stack is a variable A, nondeterministically choose a rule A → w, pop A and push w
- if top of stack is a terminal *a*, compare with next input symbol. If they match, pop *a* and repeat. If they do not, reject this branch.
- If top of stack is \$, enter accept state.

$\mathsf{CFG} \rightarrow \mathsf{PDA}$

- Place special symbol \$ on stack, push start variable *S* on to stack.
- Repeat the following:
- if the top of stack is a variable A, nondeterministically choose a rule A → w, pop A and push w
- if top of stack is a terminal *a*, compare with next input symbol. If they match, pop *a* and repeat. If they do not, reject this branch.
- If top of stack is \$, enter accept state.

- Place special symbol \$ on stack, push start variable *S* on to stack.
- Repeat the following:
- if the top of stack is a variable A, nondeterministically choose a rule A → w, pop A and push w
- if top of stack is a terminal *a*, compare with next input symbol. If they match, pop *a* and repeat. If they do not, reject this branch.
- If top of stack is \$, enter accept state.

- Place special symbol \$ on stack, push start variable *S* on to stack.
- Repeat the following:
- if the top of stack is a variable A, nondeterministically choose a rule A → w, pop A and push w
- if top of stack is a terminal *a*, compare with next input symbol. If they match, pop *a* and repeat. If they do not, reject this branch.
- If top of stack is \$, enter accept state.

$\mathsf{CFG} \rightarrow \mathsf{PDA}$

- Place special symbol \$ on stack, push start variable *S* on to stack.
- Repeat the following:
- if the top of stack is a variable A, nondeterministically choose a rule A → w, pop A and push w
- if top of stack is a terminal *a*, compare with next input symbol. If they match, pop *a* and repeat. If they do not, reject this branch.
- If top of stack is \$, enter accept state.

- Place special symbol \$ on stack, push start variable *S* on to stack.
- Repeat the following:
- if the top of stack is a variable A, nondeterministically choose a rule A → w, pop A and push w
- if top of stack is a terminal *a*, compare with next input symbol. If they match, pop *a* and repeat. If they do not, reject this branch.
- If top of stack is \$, enter accept state.

- Place special symbol \$ on stack, push start variable *S* on to stack.
- Repeat the following:
- if the top of stack is a variable A, nondeterministically choose a rule A → w, pop A and push w
- if top of stack is a terminal *a*, compare with next input symbol. If they match, pop *a* and repeat. If they do not, reject this branch.
- If top of stack is \$, enter accept state.

- Place special symbol \$ on stack, push start variable *S* on to stack.
- Repeat the following:
- if the top of stack is a variable A, nondeterministically choose a rule A → w, pop A and push w
- if top of stack is a terminal *a*, compare with next input symbol. If they match, pop *a* and repeat. If they do not, reject this branch.
- If top of stack is \$, enter accept state.

 $S \rightsquigarrow aSb \rightsquigarrow aaSbb \rightsquigarrow aa\varepsilon bb \rightsquigarrow aabb$

input: aabb Stack: \$ input: aabb Stack: S\$ input: abb Stack: aSb\$ input: aabb Stack: Sh\$ input: a^{*}_abb Stack: aSbb\$ input: aabb Stack: Sbb\$ input: aabb Stack: bb\$

- Place special symbol \$ on stack, push start variable *S* on to stack.
- Repeat the following:
- if the top of stack is a variable A, nondeterministically choose a rule A → w, pop A and push w
- if top of stack is a terminal *a*, compare with next input symbol. If they match, pop *a* and repeat. If they do not, reject this branch.
- If top of stack is \$, enter accept state.

 $S \rightsquigarrow aSb \rightsquigarrow aaSbb \rightsquigarrow aa\varepsilon bb \rightsquigarrow aabb$

input: aabb Stack: \$ input: aabb Stack: S\$ input: abb Stack: aSb\$ input: aabb Stack: Sh\$ input: a^{*}abb Stack: aSbb\$ input: aabb Stack: Sbb\$ input: aabb Stack: bb\$

compare all terminals in stack to input

Note how in the previous slide we added multiple symbols the stack in one step!

$$(q) \xrightarrow{\varepsilon, S \to aSb} (r)$$

We will use this shorthand notation during the proof.

Proof:

• Given CFG $G = (V, \Sigma, R, S)$, we want to construct a PDA $(Q, \Sigma, \Gamma, \delta, q_0, F)$ that accepts L(G).

Proof:

- Given CFG $G = (V, \Sigma, R, S)$, we want to construct a PDA $(Q, \Sigma, \Gamma, \delta, q_0, F)$ that accepts L(G).
- Let $Q = \{q_0, q_{loop}, q_{accept}\} \cup E$, where E is the set of help states needed for our shorthand notation (previous slide).

Proof:

- Given CFG $G = (V, \Sigma, R, S)$, we want to construct a PDA $(Q, \Sigma, \Gamma, \delta, q_0, F)$ that accepts L(G).
- Let $Q = \{q_0, q_{loop}, q_{accept}\} \cup E$, where E is the set of help states needed for our shorthand notation (previous slide).
- Before anything else, push \$ and start variable on to stack: $\delta(q_0, \varepsilon, \varepsilon) = \{(q_{\text{loop}}, S^{\text{s}})\}$.

- if the top of stack is a variable A, nondeterministically choose a rule
 A → w, pop A and push w
- if top of stack is a terminal *a*, compare with next input symbol. If they match, repeat. If they do not, reject this branch.
- If top of stack is \$, enter accept state.

- if the top of stack is a variable A, nondeterministically choose a rule
 A → w, pop A and push w
- if top of stack is a terminal *a*, compare with next input symbol. If they match, repeat. If they do not, reject this branch.
- If top of stack is \$, enter accept state.

•
$$\delta(q_{\text{loop}}, \varepsilon, A) = \{(q_{\text{loop}}, w) \mid A \rightarrow w \text{ is a rule in } R\}$$

- if the top of stack is a variable A, nondeterministically choose a rule
 A → w, pop A and push w
- if top of stack is a terminal *a*, compare with next input symbol. If they match, repeat. If they do not, reject this branch.
- If top of stack is \$, enter accept state.

• $\delta(q_{\text{loop}}, \varepsilon, A) = \{(q_{\text{loop}}, w) \mid A \rightarrow w \text{ is a rule in } R\}$

•
$$\delta(q_{\text{loop}}, a, a) = \{(q_{\text{loop}}, \varepsilon)\}$$

- if the top of stack is a variable A, nondeterministically choose a rule
 A → w, pop A and push w
- if top of stack is a terminal *a*, compare with next input symbol. If they match, repeat. If they do not, reject this branch.
- If top of stack is \$, enter accept state.

• $\delta(q_{\text{loop}}, \varepsilon, A) = \{(q_{\text{loop}}, w) \mid A \rightarrow w \text{ is a rule in } R\}$

•
$$\delta(q_{\text{loop}}, a, a) = \{(q_{\text{loop}}, \varepsilon)\}$$

•
$$\delta(q_{\mathsf{loop}}, \varepsilon, \$) = \{(q_{\mathsf{accept}}, \varepsilon)\}$$

$\mathsf{CFG} \to \mathsf{PDA}$

State diagram (without help states from shorthand notation):

The other direction is much more involved....

• It has a single accept state q_{accept}

• It has a single accept state q_{accept} (doable by creating a new accepting state with ε transitions from all previous accept states)

- It has a single accept state q_{accept} (doable by creating a new accepting state with ε transitions from all previous accept states)
- It empties its stack before accepting

- It has a single accept state q_{accept} (doable by creating a new accepting state with ε transitions from all previous accept states)
- It empties its stack before accepting (a loop on q_{accept} that empties the stack without reading an input)

- It has a single accept state q_{accept} (doable by creating a new accepting state with ε transitions from all previous accept states)
- It empties its stack before accepting (a loop on q_{accept} that empties the stack without reading an input)
- Each transition either pushes a symbol or pops a symbol, but does not do both at the same time.

Idea: Given, PDA $(Q, \Sigma, \Gamma, \delta, q_0, F)$ create grammar where variables are A_{pq} for states $p, q \in Q$.

Idea: Given, PDA $(Q, \Sigma, \Gamma, \delta, q_0, F)$ create grammar where variables are A_{pq} for states $p, q \in Q$.

The variable A_{pq} will generate all strings that take P from p to q with empty stacks.

Idea: Given, PDA $(Q, \Sigma, \Gamma, \delta, q_0, F)$ create grammar where variables are A_{pq} for states $p, q \in Q$.

The variable A_{pq} will generate all strings that take P from p to q with empty stacks. ...what does that mean?

Idea: Given, PDA $(Q, \Sigma, \Gamma, \delta, q_0, F)$ create grammar where variables are A_{pq} for states $p, q \in Q$. The variable A_{pq} will generate all strings that take P from p to q with empty stacks. ...what does that mean?

 \rightsquigarrow input s takes P from p to q with empty stacks if:

- starting in p with an empty stack, after parsing the input s the PDA P ends in state q.
- when P arrives at q, the stack is once again empty

Idea: Given, PDA $(Q, \Sigma, \Gamma, \delta, q_0, F)$ create grammar where variables are A_{pq} for states $p, q \in Q$. The variable A_{pq} will generate all strings that take P from p to q with empty stacks. ...what does that mean?

 \rightsquigarrow input s takes P from p to q with empty stacks if:

- starting in p with an empty stack, after parsing the input s the PDA P ends in state q.
- when P arrives at q, the stack is once again empty

Then $A_{q_0q_{\text{accept}}}$ will generate precisely the words the PDA accepts!

Example:

Example:

string x does not take P from q to r with empty stacks, since the stack ends with an extra x

Example:

- string x does not take P from q to r with empty stacks, since the stack ends with an extra x
- string *xy* takes *P* from *q* to *s* with empty stacks, since the *x* that was pushed gets popped in the last transition to *s*.

Input *abbb* takes P from q to v with empty stacks. Here the stack is never emptied in between.

Input *abbb* takes P from q to v with empty stacks. Here the stack is never emptied in between.

Input *abbb* takes P from q to v with empty stacks. Here the stack is emptied at state s.

Stack not emptied in between:

To address this case, add

$$A_{pq}
ightarrow aA_{rs}b$$

for every $p, q, r, s \in Q$, $u \in \Gamma$ and $a, b \in \Sigma_{\varepsilon}$ such that $\delta(p, a, \varepsilon)$ contains (r, u) and $\delta(s, b, u)$ contains (q, ε) .

Stack is emptied in between:

To address this case, add rule

$$A_{pq} \rightarrow A_{pr}A_{rq}$$

for all $p, q, r \in Q$

Finally, add rules $A_{pp} \rightarrow \varepsilon$ for all $p \in Q$.

Finally, add rules $A_{pp} \rightarrow \varepsilon$ for all $p \in Q$.

Summarized:

• $A_{pq} \rightarrow aA_{rs}b$ for every $p, q, r, s \in Q$, $u \in \Gamma$ and $a, b \in \Sigma_{\varepsilon}$ such that $\delta(p, a, \varepsilon)$ contains (r, u) and $\delta(s, b, u)$ contains (q, ε) ,

Finally, add rules $A_{pp} \rightarrow \varepsilon$ for all $p \in Q$.

Summarized:

- $A_{pq} \rightarrow aA_{rs}b$ for every $p, q, r, s \in Q$, $u \in \Gamma$ and $a, b \in \Sigma_{\varepsilon}$ such that $\delta(p, a, \varepsilon)$ contains (r, u) and $\delta(s, b, u)$ contains (q, ε) ,
- $A_{pq}
 ightarrow A_{pr} A_{rq}$ for every $p,q,r \in Q$,

Finally, add rules $A_{pp} \rightarrow \varepsilon$ for all $p \in Q$.

Summarized:

- $A_{pq} \rightarrow aA_{rs}b$ for every $p, q, r, s \in Q$, $u \in \Gamma$ and $a, b \in \Sigma_{\varepsilon}$ such that $\delta(p, a, \varepsilon)$ contains (r, u) and $\delta(s, b, u)$ contains (q, ε) ,
- $A_{pq}
 ightarrow A_{pr} A_{rq}$ for every $p,q,r \in Q$,
- $A_{pp} \rightarrow \varepsilon$ for all $p \in Q$
- start variable: $A_{q_0q_{\text{accept}}}$

We are done if we can show:

Lemma

If A_{pq} generates x then x brings P from p to q with empty stacks.

Lemma

If x can bring P from p to q with empty stacks, A_{pq} generates x.

- $A_{pq} \rightarrow aA_{rs}b$ for every $p, q, r, s \in Q, u \in \Gamma$ and $a, b \in \Sigma_{\varepsilon}$ such that $\delta(p, a, \varepsilon)$ contains (r, u) and $\delta(s, b, u)$ contains (q, ε) ,
- $A_{pq} \rightarrow A_{pr}A_{rq}$ for every $p, q, r \in Q$,
- $A_{pp} \to \varepsilon$ for all $p \in Q$
- start variable: Aq0 qaccept

Lemma

If A_{pq} generates x then x brings P from p to q with empty stacks.

Proof by induction over number of derivation steps: Base: Derivation has 1 step.

- A derivation with 1 step uses a rule with no variables on the righthand side.
- Only such rules are $A_{pp} \rightarrow \varepsilon$...

- $A_{pq} \rightarrow aA_{rs}b$ for every $p, q, r, s \in Q, u \in \Gamma$ and $a, b \in \Sigma_{\varepsilon}$ such that $\delta(p, a, \varepsilon)$ contains (r, u) and $\delta(s, b, u)$ contains (q, ε) ,
- $A_{pq} \rightarrow A_{pr}A_{rq}$ for every $p, q, r \in Q$,
- $A_{pp} \to \varepsilon$ for all $p \in Q$
- start variable: Aq0 qaccept

Lemma

If A_{pq} generates x then x brings P from p to q with empty stacks.

Proof by induction over number of derivation steps: Base: Derivation has 1 step.

- A derivation with 1 step uses a rule with no variables on the righthand side.
- Only such rules are $A_{pp} \rightarrow \varepsilon$... and ε takes P from p to p with empty stacks.

- $A_{pq} \rightarrow aA_{rs}b$ for every $p, q, r, s \in Q, u \in \Gamma$ and $a, b \in \Sigma_{\varepsilon}$ such that $\delta(p, a, \varepsilon)$ contains (r, u) and $\delta(s, b, u)$ contains (q, ε) ,
- $A_{pq} \rightarrow A_{pr}A_{rq}$ for every $p, q, r \in Q$,
- $A_{pp} \to \varepsilon$ for all $p \in Q$
- start variable: Aq0 qaccept

Lemma

If A_{pq} generates x then x brings P from p to q with empty stacks.

Proof by induction over number of derivation steps: Base: Derivation has 1 step.

- A derivation with 1 step uses a rule with no variables on the righthand side.
- Only such rules are $A_{pp} \rightarrow \varepsilon$... and ε takes P from p to p with empty stacks.

- $A_{pq} \rightarrow aA_{rs}b$ for every $p, q, r, s \in Q$, $u \in \Gamma$ and $a, b \in \Sigma_{\varepsilon}$ such that $\delta(p, a, \varepsilon)$ contains (r, u) and $\delta(s, b, u)$ contains (q, ε) ,
- $A_{pq} \rightarrow A_{pr}A_{rq}$ for every $p, q, r \in Q$,
- $A_{pp} \to \varepsilon$ for all $p \in Q$
- start variable: Aq0 gaccept

Lemma

If A_{pq} generates x then x brings P from p to q with empty stacks.

Proof by induction over number of derivation steps: Step: assume true for derivations of length at most $k \ge 1$.

- $A_{pq} \rightarrow aA_{rs}b$ for every $p, q, r, s \in Q$, $u \in \Gamma$ and $a, b \in \Sigma_{\varepsilon}$ such that $\delta(p, a, \varepsilon)$ contains (r, u) and $\delta(s, b, u)$ contains (q, ε) ,
- $A_{pq} \rightarrow A_{pr}A_{rq}$ for every $p, q, r \in Q$,
- $A_{pp} \to \varepsilon$ for all $p \in Q$
- start variable: Aq0 qaccept

Lemma

If A_{pq} generates x then x brings P from p to q with empty stacks.

Proof by induction over number of derivation steps:

Step: assume true for derivations of length at most $k \ge 1$.

• Assume A_{pq} derives x in k + 1 steps.

- $A_{pq} \rightarrow aA_{rs}b$ for every $p, q, r, s \in Q$, $u \in \Gamma$ and $a, b \in \Sigma_{\varepsilon}$ such that $\delta(p, a, \varepsilon)$ contains (r, u) and $\delta(s, b, u)$ contains (q, ε) ,
- $A_{pq} \rightarrow A_{pr}A_{rq}$ for every $p, q, r \in Q$,
- $A_{pp} \to \varepsilon$ for all $p \in Q$
- start variable: Aq0 qaccept

Lemma

If A_{pq} generates x then x brings P from p to q with empty stacks.

Proof by induction over number of derivation steps:

Step: assume true for derivations of length at most $k \ge 1$.

• Assume A_{pq} derives x in k + 1 steps. Then the first rule applications is either

$$A_{pq}
ightarrow aA_{rs}b$$
 or $A_{pq}
ightarrow A_{pr}A_{rq}$

- $A_{pq} \rightarrow aA_{rs}b$ for every $p, q, r, s \in Q$, $u \in \Gamma$ and $a, b \in \Sigma_{\varepsilon}$ such that $\delta(p, a, \varepsilon)$ contains (r, u) and $\delta(s, b, u)$ contains (q, ε) ,
- $A_{pq} \rightarrow A_{pr}A_{rq}$ for every $p, q, r \in Q$,
- $A_{pp} \to \varepsilon$ for all $p \in Q$
- start variable: Aq0 qaccept

Lemma

If A_{pq} generates x then x brings P from p to q with empty stacks.

Proof by induction over number of derivation steps:

- Assume A_{pq} derives \times in k + 1 steps. Then the first rule applications is either $A_{pq} \rightarrow aA_{rs}b$ or $A_{pq} \rightarrow A_{pr}A_{rq}$
- If $A_{pq} \rightarrow aA_{rs}b$ was used, let y be generated by A_{rs} such that x = ayb.

- $A_{pq} \rightarrow aA_{rs}b$ for every $p, q, r, s \in Q$, $u \in \Gamma$ and $a, b \in \Sigma_{\varepsilon}$ such that $\delta(p, a, \varepsilon)$ contains (r, u) and $\delta(s, b, u)$ contains (q, ε) ,
- $A_{pq} \rightarrow A_{pr}A_{rq}$ for every $p, q, r \in Q$,
- $A_{pp} \to \varepsilon$ for all $p \in Q$
- start variable: Aq0 qaccept

Lemma

If A_{pq} generates x then x brings P from p to q with empty stacks.

Proof by induction over number of derivation steps:

- Assume A_{pq} derives \times in k + 1 steps. Then the first rule applications is either $A_{pq} \rightarrow aA_{rs}b$ or $A_{pq} \rightarrow A_{pr}A_{rq}$
- If $A_{pq} \rightarrow aA_{rs}b$ was used, let y be generated by A_{rs} such that x = ayb.
- A_{rs} derives y in at most k steps, hence the induction hypothesis tells us that y takes P from r to s with empty stacks.

- $A_{pq} \rightarrow aA_{rs}b$ for every $p, q, r, s \in Q$, $u \in \Gamma$ and $a, b \in \Sigma_{\varepsilon}$ such that $\delta(p, a, \varepsilon)$ contains (r, u) and $\delta(s, b, u)$ contains (q, ε) ,
- $A_{pq} \rightarrow A_{pr}A_{rq}$ for every $p, q, r \in Q$,
- $A_{pp} \to \varepsilon$ for all $p \in Q$
- start variable: Aq0 qaccept

Lemma

If A_{pq} generates x then x brings P from p to q with empty stacks.

Proof by induction over number of derivation steps:

- Assume A_{pq} derives \times in k + 1 steps. Then the first rule applications is either $A_{pq} \rightarrow aA_{rs}b$ or $A_{pq} \rightarrow A_{pr}A_{rq}$
- If $A_{pq} \rightarrow aA_{rs}b$ was used, let y be generated by A_{rs} such that x = ayb.
- A_{rs} derives y in at most k steps, hence the induction hypothesis tells us that y takes P from r to s with empty stacks.
- \rightarrow a brings *P* from *p* to *r* by pushing *u*, *y* brings *P* from *r* to *s* on empty stacks, *b* brings *P*P from *s* to *q* by popping *u*.

- $A_{pq} \rightarrow aA_{rs}b$ for every $p, q, r, s \in Q$, $u \in \Gamma$ and $a, b \in \Sigma_{\varepsilon}$ such that $\delta(p, a, \varepsilon)$ contains (r, u) and $\delta(s, b, u)$ contains (q, ε) ,
- $A_{pq} \rightarrow A_{pr}A_{rq}$ for every $p, q, r \in Q$,
- $A_{pp} \to \varepsilon$ for all $p \in Q$
- start variable: Aq0 qaccept

Lemma

If A_{pq} generates x then x brings P from p to q with empty stacks.

Proof by induction over number of derivation steps:

Step: assume true for derivations of length at most $k \ge 1$.

- Assume A_{pq} derives \times in k + 1 steps. Then the first rule applications is either $A_{pq} \rightarrow aA_{rs}b$ or $A_{pq} \rightarrow A_{pr}A_{rq}$
- If $A_{pq} \rightarrow aA_{rs}b$ was used, let y be generated by A_{rs} such that x = ayb.
- A_{rs} derives y in at most k steps, hence the induction hypothesis tells us that y takes P from r to s with empty stacks.
- \rightarrow a brings *P* from *p* to *r* by pushing *u*, *y* brings *P* from *r* to *s* on empty stacks, *b* brings *P*P from *s* to *q* by popping *u*. \checkmark

Lecture :: 8th February

- $A_{pq} \rightarrow aA_{rs}b$ for every $p, q, r, s \in Q$, $u \in \Gamma$ and $a, b \in \Sigma_{\varepsilon}$ such that $\delta(p, a, \varepsilon)$ contains (r, u) and $\delta(s, b, u)$ contains (q, ε) ,
- $A_{pq} \rightarrow A_{pr}A_{rq}$ for every $p, q, r \in Q$,
- $A_{pp} \to \varepsilon$ for all $p \in Q$
- start variable: Aq0 qaccept

Lemma

If A_{pq} generates x then x brings P from p to q with empty stacks.

Proof by induction over number of derivation steps:

- Assume A_{pq} derives x in k + 1 steps. Then the first rule applications is either $A_{pq} \rightarrow aA_{rs}b$ or $A_{pq} \rightarrow A_{pr}A_{rq}$
- If $A_{pq} \rightarrow A_{pr}A_{rq}$ was used, let x = yz such that y is generated by A_{pr} and z is generated by A_{rq} .

- $A_{pq} \rightarrow aA_{rs}b$ for every $p, q, r, s \in Q$, $u \in \Gamma$ and $a, b \in \Sigma_{\varepsilon}$ such that $\delta(p, a, \varepsilon)$ contains (r, u) and $\delta(s, b, u)$ contains (q, ε) ,
- $A_{pq} \rightarrow A_{pr}A_{rq}$ for every $p, q, r \in Q$,
- $A_{pp} \to \varepsilon$ for all $p \in Q$
- start variable: Aq0 qaccept

Lemma

If A_{pq} generates x then x brings P from p to q with empty stacks.

Proof by induction over number of derivation steps:

- Assume A_{pq} derives x in k + 1 steps. Then the first rule applications is either $A_{pq} \rightarrow aA_{rs}b$ or $A_{pq} \rightarrow A_{pr}A_{rq}$
- If $A_{pq} \rightarrow A_{pr}A_{rq}$ was used, let x = yz such that y is generated by A_{pr} and z is generated by A_{rq} .
- A_{pr} (resp. A_{rq}) generates y (resp. z) in at most k steps.

- $A_{pq} \rightarrow aA_{rs}b$ for every $p, q, r, s \in Q$, $u \in \Gamma$ and $a, b \in \Sigma_{\varepsilon}$ such that $\delta(p, a, \varepsilon)$ contains (r, u) and $\delta(s, b, u)$ contains (q, ε) ,
- $A_{pq} \rightarrow A_{pr}A_{rq}$ for every $p, q, r \in Q$,
- $A_{pp} \to \varepsilon$ for all $p \in Q$
- start variable: Aq0 qaccept

Lemma

If A_{pq} generates x then x brings P from p to q with empty stacks.

Proof by induction over number of derivation steps:

- Assume A_{pq} derives x in k + 1 steps. Then the first rule applications is either $A_{pq} \rightarrow aA_{rs}b$ or $A_{pq} \rightarrow A_{pr}A_{rq}$
- If $A_{pq} \rightarrow A_{pr}A_{rq}$ was used, let x = yz such that y is generated by A_{pr} and z is generated by A_{rq} .
- A_{pr} (resp. A_{rq}) generates y (resp. z) in at most k steps.
- Induction hypothesis tells us that y takes P from p to r with empty stacks, and z takes P from r to q with empty stacks.

- $A_{pq} \rightarrow aA_{rs}b$ for every $p, q, r, s \in Q$, $u \in \Gamma$ and $a, b \in \Sigma_{\varepsilon}$ such that $\delta(p, a, \varepsilon)$ contains (r, u) and $\delta(s, b, u)$ contains (q, ε) ,
- $A_{pq} \rightarrow A_{pr}A_{rq}$ for every $p, q, r \in Q$,
- $A_{pp} \to \varepsilon$ for all $p \in Q$
- start variable: Aq0 qaccept

Lemma

If A_{pq} generates x then x brings P from p to q with empty stacks.

Proof by induction over number of derivation steps:

- Assume A_{pq} derives x in k + 1 steps. Then the first rule applications is either $A_{pq} \rightarrow aA_{rs}b$ or $A_{pq} \rightarrow A_{pr}A_{rq}$
- If $A_{pq} \rightarrow A_{pr}A_{rq}$ was used, let x = yz such that y is generated by A_{pr} and z is generated by A_{rq} .
- A_{pr} (resp. A_{rq}) generates y (resp. z) in at most k steps.
- Induction hypothesis tells us that y takes P from p to r with empty stacks, and z takes P from r to q with empty stacks. √

- $A_{pq} \rightarrow aA_{rs}b$ for every $p, q, r, s \in Q, u \in \Gamma$ and $a, b \in \Sigma_{\varepsilon}$ such that $\delta(p, a, \varepsilon)$ contains (r, u) and $\delta(s, b, u)$ contains (q, ε) ,
- $A_{pq} \rightarrow A_{pr}A_{rq}$ for every $p, q, r \in Q$,
- $A_{pp} \rightarrow \varepsilon$ for all $p \in Q$
- start variable: Aq0 qaccept

Lemma

If x can bring P from p to q with empty stacks, A_{pq} generates x.

- $A_{pq} \rightarrow aA_{rs}b$ for every $p, q, r, s \in Q, u \in \Gamma$ and $a, b \in \Sigma_{\varepsilon}$ such that $\delta(p, a, \varepsilon)$ contains (r, u) and $\delta(s, b, u)$ contains (q, ε) ,
- $A_{pq} \rightarrow A_{pr}A_{rq}$ for every $p, q, r \in Q$,
- $A_{pp} \rightarrow \varepsilon$ for all $p \in Q$
- start variable: Aq0 qaccept

Lemma

If x can bring P from p to q with empty stacks, A_{pq} generates x.

Proof by induction over computation steps: Base: computation has 0 steps.

- $A_{pq} \rightarrow aA_{rs}b$ for every $p, q, r, s \in Q, u \in \Gamma$ and $a, b \in \Sigma_{\varepsilon}$ such that $\delta(p, a, \varepsilon)$ contains (r, u) and $\delta(s, b, u)$ contains (q, ε) ,
- $A_{pq} \rightarrow A_{pr}A_{rq}$ for every $p, q, r \in Q$,
- $A_{pp} \rightarrow \varepsilon$ for all $p \in Q$
- start variable: Aq0 gaccept

Lemma

If x can bring P from p to q with empty stacks, A_{pq} generates x.

Proof by induction over computation steps: Base: computation has 0 steps.

• A computation with 0 steps stays in the same state p and cannot read any input. Since $A_{pp} \rightarrow \varepsilon$ is a rule in G, base is proved.

- $A_{pq} \rightarrow aA_{rs}b$ for every $p, q, r, s \in Q, u \in \Gamma$ and $a, b \in \Sigma_{\varepsilon}$ such that $\delta(p, a, \varepsilon)$ contains (r, u) and $\delta(s, b, u)$ contains (q, ε) ,
- $A_{pq} \rightarrow A_{pr}A_{rq}$ for every $p, q, r \in Q$,
- $A_{pp} \rightarrow \varepsilon$ for all $p \in Q$
- start variable: Aq0 gaccept

Lemma

If x can bring P from p to q with empty stacks, A_{pq} generates x.

Proof by induction over computation steps: Base: computation has 0 steps.

• A computation with 0 steps stays in the same state p and cannot read any input. Since $A_{pp} \rightarrow \varepsilon$ is a rule in G, base is proved. \checkmark

- $A_{pq} \rightarrow aA_{rs}b$ for every $p, q, r, s \in Q, u \in \Gamma$ and $a, b \in \Sigma_{\varepsilon}$ such that $\delta(p, a, \varepsilon)$ contains (r, u) and $\delta(s, b, u)$ contains (q, ε) ,
- $A_{pq} \rightarrow A_{pr}A_{rq}$ for every $p, q, r \in Q$,
- $A_{pp} \to \varepsilon$ for all $p \in Q$
- start variable: Aq0 qaccept

Lemma

If x can bring P from p to q with empty stacks, A_{pq} generates x.

Proof by induction over computation steps:

Step: Assume true for computations of length at most k.
- $A_{pq} \rightarrow aA_{rs}b$ for every $p, q, r, s \in Q$, $u \in \Gamma$ and $a, b \in \Sigma_{\varepsilon}$ such that $\delta(p, a, \varepsilon)$ contains (r, u) and $\delta(s, b, u)$ contains (q, ε) ,
- $A_{pq} \rightarrow A_{pr}A_{rq}$ for every $p, q, r \in Q$,
- $A_{pp} \rightarrow \varepsilon$ for all $p \in Q$
- start variable: Aq0 gaccept

Lemma

If x can bring P from p to q with empty stacks, A_{pq} generates x.

Proof by induction over computation steps:

Step: Assume true for computations of length at most k.

• Assume *P* has a computation where input *x* takes it from state *p* to *q* with empty stacks that takes *k* + 1 steps.

- $A_{pq} \rightarrow aA_{rs}b$ for every $p, q, r, s \in Q, u \in \Gamma$ and $a, b \in \Sigma_{\varepsilon}$ such that $\delta(p, a, \varepsilon)$ contains (r, u) and $\delta(s, b, u)$ contains (q, ε) ,
- $A_{pq} \rightarrow A_{pr}A_{rq}$ for every $p, q, r \in Q$,
- $A_{pp} \rightarrow \varepsilon$ for all $p \in Q$
- start variable: Aq0 gaccept

Lemma

If x can bring P from p to q with empty stacks, A_{pq} generates x.

Proof by induction over computation steps:

Step: Assume true for computations of length at most k.

- Assume P has a computation where input x takes it from state p to q with empty stacks that takes k + 1 steps.
- Two cases: either the stack is only empty at the beginning and end, or it is emptied in betwen.

- $A_{pq} \rightarrow aA_{rs}b$ for every $p, q, r, s \in Q, u \in \Gamma$ and $a, b \in \Sigma_{\varepsilon}$ such that $\delta(p, a, \varepsilon)$ contains (r, u) and $\delta(s, b, u)$ contains (q, ε) ,
- $A_{pq} \rightarrow A_{pr}A_{rq}$ for every $p, q, r \in Q$,
- $A_{pp} \rightarrow \varepsilon$ for all $p \in Q$
- start variable: Aq0 qaccept

Lemma

- First case (empty only at beginning and end):
- Symbol u pushed in the first step must be the same symbol popped in the last step

- $A_{pq} \rightarrow aA_{rs}b$ for every $p, q, r, s \in Q, u \in \Gamma$ and $a, b \in \Sigma_{\varepsilon}$ such that $\delta(p, a, \varepsilon)$ contains (r, u) and $\delta(s, b, u)$ contains (q, ε) ,
- $A_{pq} \rightarrow A_{pr}A_{rq}$ for every $p, q, r \in Q$,
- $A_{pp} \rightarrow \varepsilon$ for all $p \in Q$
- start variable: Aq0 qaccept

Lemma

- First case (empty only at beginning and end):
- Symbol *u* pushed in the first step must be the same symbol popped in the last step
- Let a denote the input read in step 1, b the input in the last step, r the state after the first move, s the state before the last move.

- $A_{pq} \rightarrow aA_{rs}b$ for every $p, q, r, s \in Q, u \in \Gamma$ and $a, b \in \Sigma_{\varepsilon}$ such that $\delta(p, a, \varepsilon)$ contains (r, u) and $\delta(s, b, u)$ contains (q, ε) ,
- $A_{pq} \rightarrow A_{pr}A_{rq}$ for every $p, q, r \in Q$,
- $A_{pp} \rightarrow \varepsilon$ for all $p \in Q$
- start variable: Aq0 qaccept

Lemma

- First case (empty only at beginning and end):
- Symbol *u* pushed in the first step must be the same symbol popped in the last step
- Let a denote the input read in step 1, b the input in the last step, r the state after the first move, s the state before the last move.
- Then $A_{pq} \rightarrow aA_{rs}b$ is in G.

- $A_{pq} \rightarrow aA_{rs}b$ for every $p, q, r, s \in Q, u \in \Gamma$ and $a, b \in \Sigma_{\varepsilon}$ such that $\delta(p, a, \varepsilon)$ contains (r, u) and $\delta(s, b, u)$ contains (q, ε) ,
- $A_{pq} \rightarrow A_{pr}A_{rq}$ for every $p, q, r \in Q$,
- $A_{pp} \rightarrow \varepsilon$ for all $p \in Q$
- start variable: Aq0 qaccept

Lemma

- First case (empty only at beginning and end):
- Symbol *u* pushed in the first step must be the same symbol popped in the last step
- Let a denote the input read in step 1, b the input in the last step, r the state after the first move, s the state before the last move.
- Then $A_{pq} \rightarrow aA_{rs}b$ is in G.
- Let x = ayb. y takes P from r to s with empty stacks in k 1 steps

- $A_{pq} \rightarrow aA_{rs}b$ for every $p, q, r, s \in Q, u \in \Gamma$ and $a, b \in \Sigma_{\varepsilon}$ such that $\delta(p, a, \varepsilon)$ contains (r, u) and $\delta(s, b, u)$ contains (q, ε) ,
- $A_{pq} \rightarrow A_{pr}A_{rq}$ for every $p, q, r \in Q$,
- $A_{pp} \to \varepsilon$ for all $p \in Q$
- start variable: Aq0 qaccept

Lemma

- First case (empty only at beginning and end):
- Symbol *u* pushed in the first step must be the same symbol popped in the last step
- Let a denote the input read in step 1, b the input in the last step, r the state after the first move, s the state before the last move.
- Then $A_{pq} \rightarrow aA_{rs}b$ is in G.
- Let x = ayb. y takes P from r to s with empty stacks in k 1 steps
- induction hypothesis $\Rightarrow A_{rs}$ generates y.

- $A_{pq} \rightarrow aA_{rs}b$ for every $p, q, r, s \in Q, u \in \Gamma$ and $a, b \in \Sigma_{\varepsilon}$ such that $\delta(p, a, \varepsilon)$ contains (r, u) and $\delta(s, b, u)$ contains (q, ε) ,
- $A_{pq} \rightarrow A_{pr}A_{rq}$ for every $p, q, r \in Q$,
- $A_{pp} \to \varepsilon$ for all $p \in Q$
- start variable: Aq0 qaccept

Lemma

- First case (empty only at beginning and end):
- Symbol *u* pushed in the first step must be the same symbol popped in the last step
- Let a denote the input read in step 1, b the input in the last step, r the state after the first move, s the state before the last move.
- Then $A_{pq} \rightarrow aA_{rs}b$ is in G.
- Let x = ayb. y takes P from r to s with empty stacks in k 1 steps
- induction hypothesis $\Rightarrow A_{rs}$ generates y.
- $\Rightarrow A_{pq}$ generates x.

- $A_{pq} \rightarrow aA_{rs}b$ for every $p, q, r, s \in Q, u \in \Gamma$ and $a, b \in \Sigma_{\varepsilon}$ such that $\delta(p, a, \varepsilon)$ contains (r, u) and $\delta(s, b, u)$ contains (q, ε) ,
- $A_{pq} \rightarrow A_{pr}A_{rq}$ for every $p, q, r \in Q$,
- $A_{pp} \to \varepsilon$ for all $p \in Q$
- start variable: Aq0 gaccept

Lemma

If x can bring P from p to q with empty stacks, A_{pq} generates x.

• Second case (empty inbetween):

- $A_{pq} \rightarrow aA_{rs}b$ for every $p, q, r, s \in Q, u \in \Gamma$ and $a, b \in \Sigma_{\varepsilon}$ such that $\delta(p, a, \varepsilon)$ contains (r, u) and $\delta(s, b, u)$ contains (q, ε) ,
- $A_{pq} \rightarrow A_{pr}A_{rq}$ for every $p, q, r \in Q$,
- $A_{pp} \to \varepsilon$ for all $p \in Q$
- start variable: Aq0 gaccept

Lemma

- Second case (empty inbetween):
- Let *r* be a state where the stack empties other than at the beginning and end of the computation of *x*.

- $A_{pq} \rightarrow aA_{rs}b$ for every $p, q, r, s \in Q, u \in \Gamma$ and $a, b \in \Sigma_{\varepsilon}$ such that $\delta(p, a, \varepsilon)$ contains (r, u) and $\delta(s, b, u)$ contains (q, ε) ,
- $A_{pq} \rightarrow A_{pr}A_{rq}$ for every $p, q, r \in Q$,
- $A_{pp} \to \varepsilon$ for all $p \in Q$
- start variable: Aq0 gaccept

Lemma

- Second case (empty inbetween):
- Let *r* be a state where the stack empties other than at the beginning and end of the computation of *x*.
- Then the computations from p to r (call its parsed input y) and from r to q (call its parsed input z) contain at most k steps.

- $A_{pq} \rightarrow aA_{rs}b$ for every $p, q, r, s \in Q$, $u \in \Gamma$ and $a, b \in \Sigma_{\varepsilon}$ such that $\delta(p, a, \varepsilon)$ contains (r, u) and $\delta(s, b, u)$ contains (q, ε) ,
- $A_{pq} \rightarrow A_{pr}A_{rq}$ for every $p, q, r \in Q$,
- $A_{pp} \to \varepsilon$ for all $p \in Q$
- start variable: Aq0 gaccept

Lemma

- Second case (empty inbetween):
- Let *r* be a state where the stack empties other than at the beginning and end of the computation of *x*.
- Then the computations from p to r (call its parsed input y) and from r to q (call its parsed input z) contain at most k steps.
- induction hypothesis $\Rightarrow A_{pr}$ (resp. A_{rq}) generates y (resp. z)

- $A_{pq} \rightarrow aA_{rs}b$ for every $p, q, r, s \in Q$, $u \in \Gamma$ and $a, b \in \Sigma_{\varepsilon}$ such that $\delta(p, a, \varepsilon)$ contains (r, u) and $\delta(s, b, u)$ contains (q, ε) ,
- $A_{pq} \rightarrow A_{pr}A_{rq}$ for every $p, q, r \in Q$,
- $A_{pp} \to \varepsilon$ for all $p \in Q$
- start variable: Aq0 gaccept

Lemma

- Second case (empty inbetween):
- Let *r* be a state where the stack empties other than at the beginning and end of the computation of *x*.
- Then the computations from p to r (call its parsed input y) and from r to q (call its parsed input z) contain at most k steps.
- induction hypothesis $\Rightarrow A_{pr}$ (resp. A_{rq}) generates y (resp. z)
- Then A_{pq} generates x = yz.