INF2080

 Context-Free Langugaes: Pushdown Automata

 Context-Free Langugaes: Pushdown Automata}

Daniel Lupp

Universitetet i Oslo
8th February 2018

University of Oslo

Repetition

- Defined context-free grammars (CFGs):

Repetition

- Defined context-free grammars (CFGs):
contain rules of the form $A \rightarrow X_{1} X_{2} \cdots X_{n}$ where A is a variable and X_{i} are variables or terminals

Repetition

- Defined context-free grammars (CFGs):
contain rules of the form $A \rightarrow X_{1} X_{2} \cdots X_{n}$ where A is a variable and X_{i} are variables or terminals
Example:

$$
\begin{aligned}
& S \rightarrow 0 S 1 \\
& S \rightarrow \varepsilon
\end{aligned}
$$

Repetition

- Defined context-free grammars (CFGs):
contain rules of the form $A \rightarrow X_{1} X_{2} \cdots X_{n}$ where A is a variable and X_{i} are variables or terminals
Example:

$$
\begin{aligned}
& S \rightarrow 0 S 1 \\
& S \rightarrow \varepsilon
\end{aligned}
$$

$$
L=\left\{0^{n} 1^{n} \mid n \geq 0\right\}
$$

Repetition

- Defined context-free grammars (CFGs):
contain rules of the form $A \rightarrow X_{1} X_{2} \cdots X_{n}$ where A is a variable and X_{i} are variables or terminals
Example:

$$
\begin{aligned}
& S \rightarrow 0 S 1 \\
& S \rightarrow \varepsilon
\end{aligned}
$$

$$
L=\left\{0^{n} 1^{n} \mid n \geq 0\right\}
$$

- CFGs generate context-free languages

Repetition

- Defined context-free grammars (CFGs):
contain rules of the form $A \rightarrow X_{1} X_{2} \cdots X_{n}$ where A is a variable and X_{i} are variables or terminals
Example:

$$
\begin{aligned}
& S \rightarrow 0 S 1 \\
& S \rightarrow \varepsilon
\end{aligned}
$$

$$
L=\left\{0^{n} 1^{n} \mid n \geq 0\right\}
$$

- CFGs generate context-free languages
- We've seen \{Regular Languages\}ๆ \{Context-free Languages\}

Computational Models

- We've seen \{Regular Languages\}¢ \{Context-free Languages\}
- NFA/DFA/RE/GNFA were all equivalent computational models that describe/accept regular languages

Computational Models

- We've seen \{Regular Languages\}¢ \{Context-free Languages\}
- NFA/DFA/RE/GNFA were all equivalent computational models that describe/accept regular languages
- What computational model accepts context-free languages?

Computational Models

- We've seen \{Regular Languages\}¢ \{Context-free Languages\}
- NFA/DFA/RE/GNFA were all equivalent computational models that describe/accept regular languages
- What computational model accepts context-free languages? \rightarrow pushdown automata!

Pushdown Automata (PDA)

- DFA/NFA/RE/GNFA were all computational models with finite memory

Pushdown Automata (PDA)

- DFA/NFA/RE/GNFA were all computational models with finite memory
- we now add a (very limited) form of infinite memory: a stack (LIFO principle: last in, first out)

Pushdown Automata (PDA)

- DFA/NFA/RE/GNFA were all computational models with finite memory
- we now add a (very limited) form of infinite memory: a stack (LIFO principle: last in, first out)
- So, essentially, PDA's are NFA's with an additional stack

Pushdown Automata (PDA)

- NFA's transitioned from one state to another according to the current input

Pushdown Automata (PDA)

- NFA's transitioned from one state to another according to the current input

Pushdown Automata (PDA)

- NFA's transitioned from one state to another according to the current input

- PDA's can access a stack in addition to the input:

Pushdown Automata (PDA)

- NFA's transitioned from one state to another according to the current input

- PDA's can access a stack in addition to the input:

Transitions:

Pushdown Automata (PDA)

For notational ease, we sketch these transition as follows:

Pushdown Automata (PDA)

For notational ease, we sketch these transition as follows:

- $w, x \rightarrow y$: read input w, pop x from stack, push y on to stack

Pushdown Automata (PDA)

For notational ease, we sketch these transition as follows:

- $w, x \rightarrow y$: read input w, pop x from stack, push y on to stack
- $w, x \rightarrow \varepsilon$: read input w, pop x from stack

Pushdown Automata (PDA)

For notational ease, we sketch these transition as follows:

- $w, x \rightarrow y$: read input w, pop x from stack, push y on to stack
- $w, x \rightarrow \varepsilon$: read input w, pop x from stack
- $w, \varepsilon \rightarrow y$: read input w, push y on to stack

Pushdown Automata (PDA)

For notational ease, we sketch these transition as follows:

- $w, x \rightarrow y$: read input w, pop x from stack, push y on to stack
- $w, x \rightarrow \varepsilon$: read input w, pop x from stack
- $w, \varepsilon \rightarrow y$: read input w, push y on to stack
- $\varepsilon, x \rightarrow y$: read no input, perform stack operations as described above (x and/or y may be $\varepsilon)$

Pushdown Automata (PDA)

- So what does the stack let us do?

Pushdown Automata (PDA)

- So what does the stack let us do?
- Counting?

Pushdown Automata (PDA)

- So what does the stack let us do?
- Counting?
- Storing read input?

Pushdown Automata (PDA)

- So what does the stack let us do?
- Counting?
- Storing read input?
- ...more?

Pushdown Automata (PDA)

Consider grammar:

$$
\begin{aligned}
& S \rightarrow 0 S 1 \\
& S \rightarrow \varepsilon
\end{aligned}
$$

- Generates all $0^{*} 1^{*}$ words with equal number of 0 's and 1's.

Pushdown Automata (PDA)

Consider grammar:

$$
\begin{aligned}
& S \rightarrow 0 S 1 \\
& S \rightarrow \varepsilon
\end{aligned}
$$

- Generates all $0^{*} 1^{*}$ words with equal number of 0 's and 1 's.
- Can we define a PDA that accepts this language?

Pushdown Automata (PDA)

Consider grammar:

$$
\begin{aligned}
& S \rightarrow 0 S 1 \\
& S \rightarrow \varepsilon
\end{aligned}
$$

- Generates all $0^{*} 1^{*}$ words with equal number of 0 's and 1 's.
- Can we define a PDA that accepts this language?
- vague idea: keep track of number of 0's using the stack, compare with number of 1's

Pushdown Automata (PDA)

Slightly less vague idea:

Pushdown Automata (PDA)

Slightly less vague idea:

- for each 0 read, push a 0 on to the stack.
- Then, for each 1 read, pop a 0 from the stack.
- If after reading the input the stack is empty, accept.

Pushdown Automata (PDA)

Slightly less vague idea:

- for each 0 read, push a 0 on to the stack.
- Then, for each 1 read, pop a 0 from the stack.
- If after reading the input the stack is empty, accept.
- Only stack operations allowed are: pop/push! How to check if a stack is empty with these operations?

Pushdown Automata (PDA)

Slightly less vague idea:

- for each 0 read, push a 0 on to the stack.
- Then, for each 1 read, pop a 0 from the stack.
- If after reading the input the stack is empty, accept.
- Only stack operations allowed are: pop/push! How to check if a stack is empty with these operations?
- before doing anything else, push a special symbol, $\$$, on to stack.

Pushdown Automata (PDA)

Slightly less vague idea:

- for each 0 read, push a 0 on to the stack.
- Then, for each 1 read, pop a 0 from the stack.
- If after reading the input the stack is empty, accept.
- Only stack operations allowed are: pop/push! How to check if a stack is empty with these operations?
- before doing anything else, push a special symbol, $\$$, on to stack. If we ever read this symbol again, the stack is empty!

Pushdown Automata (PDA)

Slightly less vague idea:

- for each 0 read, push a 0 on to the stack.
- Then, for each 1 read, pop a 0 from the stack.
- If after reading the input the stack is empty, accept.
- Only stack operations allowed are: pop/push! How to check if a stack is empty with these operations?
- before doing anything else, push a special symbol, $\$$, on to stack. If we ever read this symbol again, the stack is empty!

Pushdown Automata (PDA)

Slightly less vague idea:

- for each 0 read, push a 0 on to the stack.
- Then, for each 1 read, pop a 0 from the stack.
- If after reading the input the stack is empty, accept.
- Only stack operations allowed are: pop/push! How to check if a stack is empty with these operations?
- before doing anything else, push a special symbol, $\$$, on to stack. If we ever read this symbol again, the stack is empty!

Pushdown Automata (PDA)

Slightly less vague idea:

- for each 0 read, push a 0 on to the stack.
- Then, for each 1 read, pop a 0 from the stack.
- If after reading the input the stack is empty, accept.
- Only stack operations allowed are: pop/push! How to check if a stack is empty with these operations?
- before doing anything else, push a special
 symbol, $\$$, on to stack. If we ever read this symbol again, the stack is empty!

Pushdown Automata (PDA)

Slightly less vague idea:

- for each 0 read, push a 0 on to the stack.
- Then, for each 1 read, pop a 0 from the stack.
- If after reading the input the stack is empty, accept.
- Only stack operations allowed are: pop/push! How to check if a stack is empty with these operations?
- before doing anything else, push a special symbol, $\$$, on to stack. If we ever read this symbol again, the stack is empty!

Pushdown Automata (PDA)

Slightly less vague idea:

- for each 0 read, push a 0 on to the stack.
- Then, for each 1 read, pop a 0 from the stack.
- If after reading the input the stack is empty, accept.
- Only stack operations allowed are: pop/push! How to check if a stack is empty with these operations?
- before doing anything else, push a special symbol, $\$$, on to stack. If we ever read this symbol again, the stack is empty!

Pushdown Automata (PDA)

(1) $w=000111$

Stack: \$ (leftmost item is on top of stack)

Pushdown Automata (PDA)

(1) $w=000111$

Stack: \$ (leftmost item is on top of stack)
(2) $w=\frac{\downarrow}{0} 00111$ Stack: 0\$

Pushdown Automata (PDA)

(1) $w=000111$

Stack: \$ (leftmost item is on top of stack)
(2) $w=\stackrel{\downarrow}{0} 00111$

Stack: $0 \$$
(3) $w=0{ }^{\downarrow} 0111$

Stack: 00\$

Pushdown Automata (PDA)

(1) $w=000111$

Stack: \$ (leftmost item is on top of stack)
(2) $w=\stackrel{\downarrow}{0} 00111$ Stack: $0 \$$
(3) $w=0$ oón111 Stack: 00\$
(4) $w=000{ }^{\downarrow} 111$ Stack: 000\$

Pushdown Automata (PDA)

(1) $w=000111$

Stack: \$ (leftmost item is on top of stack)
(2) $w=\stackrel{\downarrow}{0} 00111$ Stack: $0 \$$
(3) $w=0$ oón111 Stack: 00\$
(4) $w=000{ }^{\downarrow} 111$ Stack: 000\$
(5) $w=000111$ Stack: 00\$

Pushdown Automata (PDA)

(1) $w=000111$

Stack: \$ (leftmost item is on top of stack)
(2) $w=\stackrel{\downarrow}{0} 00111$ Stack: $0 \$$
(3) $w=0{ }^{\downarrow} 0111$ Stack: 00\$
(4) $w=000{ }^{\downarrow} 111$ Stack: 000\$
(5) $w=0001^{\downarrow} 11$ Stack: 00\$
(6) $w=0001 \frac{\downarrow}{1} 1$ Stack: $0 \$$

Pushdown Automata (PDA)

(1) $w=000111$

Stack: \$ (leftmost item is on top of stack)
(2) $w=\stackrel{\downarrow}{0} 00111$ Stack: $0 \$$
(3) $w=0{ }^{\downarrow} 0111$ Stack: 00\$
(4) $w=000{ }^{\downarrow} 111$ Stack: 000\$
(5) $w=0001^{\downarrow} 11$ Stack: 00\$
(6) $w=00011_{1}^{\downarrow}$ Stack: $0 \$$
(7) $w=00011 \frac{1}{1}$ Stack: \$

Pushdown Automata (PDA)

(1) $w=000111$

Stack: \$ (leftmost item is on top of stack)
(2) $w=\stackrel{\downarrow}{0} 00111$ Stack: $0 \$$
(3) $w=0$ oón111 Stack: 00\$
(4) $w=000{ }^{\downarrow} 111$ Stack: 000\$
(5) $w=000{ }^{\downarrow} 11$ Stack: 00\$
(6) $w=00011_{1}^{\downarrow}$ Stack: $0 \$$
(7) $w=00011{ }^{\frac{\downarrow}{1}}$ Stack: \$
(8) $w=000111$ Stack:

Pushdown Automata (PDA)

- so we can sort of count (compare numbers of 0's and 1's)

Pushdown Automata (PDA)

- so we can sort of count (compare numbers of 0's and 1's)
- What about tracking input?

Pushdown Automata (PDA)

- so we can sort of count (compare numbers of 0's and 1's)
- What about tracking input?
- Consider language $L_{2}=\left\{w w^{R} \mid w \in\{0,1\}^{*}\right\}$
- $01011010 \in L_{2}, 0110 \in L_{2}$.

Pushdown Automata (PDA)

- so we can sort of count (compare numbers of 0's and 1's)
- What about tracking input?
- Consider language $L_{2}=\left\{w w^{R} \mid w \in\{0,1\}^{*}\right\}$
- $01011010 \in L_{2}, 0110 \in L_{2}$. L_{2} is the language of even length 0,1 palindromes

Pushdown Automata (PDA)

- so we can sort of count (compare numbers of 0's and 1's)
- What about tracking input?
- Consider language $L_{2}=\left\{w w^{R} \mid w \in\{0,1\}^{*}\right\}$
- $01011010 \in L_{2}, 0110 \in L_{2}$. L_{2} is the language of even length 0,1 palindromes
- How to design a PDA that accepts L_{2} ?

Pushdown Automata (PDA)

- Intuitively: to check if input is of the form $w w^{R}$, push input on to stack, then at some point compare the stack items to input and, if equal, pop.

Pushdown Automata (PDA)

- Intuitively: to check if input is of the form $w w^{R}$, push input on to stack, then at some point compare the stack items to input and, if equal, pop.
- As before, before we do anything else, add special symbol $\$$ to stack.

Pushdown Automata (PDA)

- Intuitively: to check if input is of the form $w w^{R}$, push input on to stack, then at some point compare the stack items to input and, if equal, pop.
- As before, before we do anything else, add special symbol $\$$ to stack.
- If we read a 0 push a 0 , if we read a 1 push a 1.

Pushdown Automata (PDA)

- Intuitively: to check if input is of the form $w w^{R}$, push input on to stack, then at some point compare the stack items to input and, if equal, pop.
- As before, before we do anything else, add special symbol $\$$ to stack.
- If we read a 0 push a 0 , if we read a 1 push a 1.
- Nondeterministically guess when w has been read and w^{R} begins

Pushdown Automata (PDA)

- Intuitively: to check if input is of the form $w w^{R}$, push input on to stack, then at some point compare the stack items to input and, if equal, pop.
- As before, before we do anything else, add special symbol $\$$ to stack.
- If we read a 0 push a 0 , if we read a 1 push a 1.
- Nondeterministically guess when w has been read and w^{R} begins
- Then if we read a 0 pop 0 , if we read a 1 pop 1.

Pushdown Automata (PDA)

- Intuitively: to check if input is of the form $w w^{R}$, push input on to stack, then at some point compare the stack items to input and, if equal, pop.
- As before, before we do anything else, add special symbol $\$$ to stack.
- If we read a 0 push a 0 , if we read a 1 push a 1.
- Nondeterministically guess when w has been read and w^{R} begins
- Then if we read a 0 pop 0 , if we read a 1 pop 1.
- if the stack is empty, accept.

Pushdown Automata (PDA)

- Intuitively: to check if input is of the form $w w^{R}$, push input on to stack, then at some point compare the stack items to input and, if equal, pop.
- As before, before we do anything else,
 add special symbol $\$$ to stack.
- If we read a 0 push a 0 , if we read a 1 push a 1.
- Nondeterministically guess when w has been read and w^{R} begins
- Then if we read a 0 pop 0 , if we read a 1 pop 1.
- if the stack is empty, accept.

Pushdown Automata (PDA)

- Intuitively: to check if input is of the form $w w^{R}$, push input on to stack, then at some point compare the stack items to input and, if equal, pop.
- As before, before we do anything else, add special symbol $\$$ to stack.
- If we read a 0 push a 0 , if we read a 1 push a 1.
- Nondeterministically guess when w has been read and w^{R} begins
- Then if we read a 0 pop 0 , if we read a 1 pop 1.
- if the stack is empty, accept.

Pushdown Automata (PDA)

- Intuitively: to check if input is of the form $w w^{R}$, push input on to stack, then at some point compare the stack items to input and, if equal, pop.
- As before, before we do anything else, add special symbol $\$$ to stack.
- If we read a 0 push a 0 , if we read a 1 push a 1.
- Nondeterministically guess when w has been read and w^{R} begins

- Then if we read a 0 pop 0 , if we read a 1 pop 1.
- if the stack is empty, accept.

Pushdown Automata (PDA)

- Intuitively: to check if input is of the form $w w^{R}$, push input on to stack, then at some point compare the stack items to input and, if equal, pop.
- As before, before we do anything else, add special symbol $\$$ to stack.
- If we read a 0 push a 0 , if we read a 1 push a 1.
- Nondeterministically guess when w has been read and w^{R} begins
- Then if we read a 0 pop 0 , if we read a 1
 pop 1.
- if the stack is empty, accept.

Pushdown Automata (PDA)

- Intuitively: to check if input is of the form $w w^{R}$, push input on to stack, then at some point compare the stack items to input and, if equal, pop.
- As before, before we do anything else, add special symbol $\$$ to stack.
- If we read a 0 push a 0 , if we read a 1 push a 1.
- Nondeterministically guess when w has been read and w^{R} begins
- Then if we read a 0 pop 0 , if we read a 1
 pop 1.
- if the stack is empty, accept.

PDA

Definition (PDA)

A PDA is a tuple $\left(Q, \Sigma, \Gamma, \delta, q_{0}, F\right)$ where Q, Σ, Γ, F are finite states and
(1) Q is a set of states,
(2) Σ is the input alphabet,
(3) Γ is the stack alphabet,
(9) $\delta: Q \times \Sigma_{\varepsilon} \times \Gamma_{\varepsilon} \rightarrow \mathcal{P}\left(Q \times \Gamma_{\varepsilon}\right)$ is the transition function
(5) $q_{0} \in Q$ is the start state, and
(6) $F \subseteq Q$ is the set of accepting states.

This lecture

We want to show:

Theorem

A language is context-free if and only if some pushdown automaton recognizes it.

This lecture

We want to show:

Theorem

A language is context-free if and only if some pushdown automaton recognizes it.
Step by step.... first we show:

Lemma

If a language is context-free then there exists a pushdown automaton that recognizes it.

This lecture

We want to show:

Theorem

A language is context-free if and only if some pushdown automaton recognizes it.
Step by step.... first we show:

Lemma

If a language is context-free then there exists a pushdown automaton that recognizes it.
In other words: given a CFG G, construct a PDA that recognizes $L(G)$!

CFG->PDA

Lemma

If a language is context-free then there exists a pushdown automaton that recognizes it.
Proof idea:

- construct a PDA that for input w determines if it has a valid derivation.

CFG->PDA

Lemma

If a language is context-free then there exists a pushdown automaton that recognizes it.
Proof idea:

- construct a PDA that for input w determines if it has a valid derivation.
- Use stack to store how far we've gotten in our derivation, i.e., the intermediate strings

$$
S \rightsquigarrow a S b \rightsquigarrow a a S b b \rightsquigarrow a a \varepsilon b b \rightsquigarrow a a b b
$$

CFG->PDA

Lemma

If a language is context-free then there exists a pushdown automaton that recognizes it.
Proof idea:

- construct a PDA that for input w determines if it has a valid derivation.
- Use stack to store how far we've gotten in our derivation, i.e., the intermediate strings

$$
S \rightsquigarrow a S b \rightsquigarrow a a S b b \rightsquigarrow a a \varepsilon b b \rightsquigarrow a a b b
$$

- PDA needs to find variables in order to substitute them (recall: can only access top of stack) so if terminal is on top of stack, we compare to input

CFG->PDA

Lemma

If a language is context-free then there exists a pushdown automaton that recognizes it.
Proof idea:

- construct a PDA that for input w determines if it has a valid derivation.
- Use stack to store how far we've gotten in our derivation, i.e., the intermediate strings

$$
S \rightsquigarrow a S b \rightsquigarrow a a S b b \rightsquigarrow a a \varepsilon b b \rightsquigarrow a a b b
$$

- PDA needs to find variables in order to substitute them (recall: can only access top of stack) so if terminal is on top of stack, we compare to input
- if top of stack is variable, we pop the variable and replace with the righthand side of a rule

$\mathrm{CFG} \rightarrow \mathrm{PDA}$

Lemma

If a language is context-free then there exists a pushdown automaton that recognizes it.
Proof idea: Intuitively, the PDA works as follows:

- Place special symbol \$ on stack
- Repeat the following:

$\mathrm{CFG} \rightarrow \mathrm{PDA}$

Lemma

If a language is context-free then there exists a pushdown automaton that recognizes it.
Proof idea: Intuitively, the PDA works as follows:

- Place special symbol $\$$ on stack
- Repeat the following:
- if the top of stack is a variable A, nondeterministically choose a rule $A \rightarrow w$, pop A and push w

$\mathrm{CFG} \rightarrow \mathrm{PDA}$

Lemma

If a language is context-free then there exists a pushdown automaton that recognizes it.
Proof idea: Intuitively, the PDA works as follows:

- Place special symbol $\$$ on stack
- Repeat the following:
- if the top of stack is a variable A, nondeterministically choose a rule $A \rightarrow w$, pop A and push w
- if top of stack is a terminal a, compare with next input symbol. If they match, pop a and repeat. If they do not, reject this branch.

$\mathrm{CFG} \rightarrow \mathrm{PDA}$

Lemma

If a language is context-free then there exists a pushdown automaton that recognizes it.
Proof idea: Intuitively, the PDA works as follows:

- Place special symbol $\$$ on stack
- Repeat the following:
- if the top of stack is a variable A, nondeterministically choose a rule $A \rightarrow w$, pop A and push w
- if top of stack is a terminal a, compare with next input symbol. If they match, pop a and repeat. If they do not, reject this branch.
- If top of stack is $\$$, enter accept state.

$\mathrm{CFG} \rightarrow \mathrm{PDA}$

- Place special symbol $\$$ on stack, push

$$
S \rightsquigarrow a S b \rightsquigarrow a a S b b \rightsquigarrow a a \varepsilon b b \rightsquigarrow a a b b
$$ start variable S on to stack.

- Repeat the following:
- if the top of stack is a variable A, nondeterministically choose a rule $A \rightarrow w$, pop A and push w
- if top of stack is a terminal a, compare with next input symbol. If they match, pop a and repeat. If they do not, reject this branch.
- If top of stack is $\$$, enter accept state.

$\mathrm{CFG} \rightarrow \mathrm{PDA}$

- Place special symbol $\$$ on stack, push start variable S on to stack.
- Repeat the following:
- if the top of stack is a variable A, nondeterministically choose a rule $A \rightarrow w$, pop A and push w
- if top of stack is a terminal a, compare with next input symbol. If they match, pop a and repeat. If they do not, reject this branch.
- If top of stack is $\$$, enter accept state.

$$
S \rightsquigarrow a S b \rightsquigarrow a a S b b \rightsquigarrow a a \varepsilon b b \rightsquigarrow a a b b
$$

(1) input: $a a b b$

Stack: \$

$\mathrm{CFG} \rightarrow \mathrm{PDA}$

- Place special symbol $\$$ on stack, push start variable S on to stack.
- Repeat the following:
- if the top of stack is a variable A, nondeterministically choose a rule $A \rightarrow w$, pop A and push w
- if top of stack is a terminal a, compare with next input symbol. If they match, pop a and repeat. If they do not, reject this branch.
- If top of stack is $\$$, enter accept state.

$$
S \rightsquigarrow a S b \rightsquigarrow a a S b b \rightsquigarrow a a \varepsilon b b \rightsquigarrow a a b b
$$

(1) input: $a a b b$

Stack: \$
(2) input: $a a b b$

Stack: $\$ \$$

$\mathrm{CFG} \rightarrow \mathrm{PDA}$

- Place special symbol $\$$ on stack, push start variable S on to stack.
- Repeat the following:
- if the top of stack is a variable A, nondeterministically choose a rule $A \rightarrow w$, pop A and push w
- if top of stack is a terminal a, compare with next input symbol. If they match, pop a and repeat. If they do not, reject this branch.
- If top of stack is $\$$, enter accept state.

$$
S \rightsquigarrow a S b \rightsquigarrow a a S b b \rightsquigarrow a a \varepsilon b b \rightsquigarrow a a b b
$$

(1) input: $a a b b$ Stack: \$
(2) input: $a a b b$

Stack: S\$
(3) input: $\stackrel{\downarrow}{a} a b b$ Stack: aSb\$

$\mathrm{CFG} \rightarrow \mathrm{PDA}$

- Place special symbol $\$$ on stack, push start variable S on to stack.
- Repeat the following:
- if the top of stack is a variable A, nondeterministically choose a rule $A \rightarrow w$, pop A and push w
- if top of stack is a terminal a, compare with next input symbol. If they match, pop a and repeat. If they do not, reject this branch.
- If top of stack is $\$$, enter accept state.

$$
S \rightsquigarrow a S b \rightsquigarrow a a S b b \rightsquigarrow a a \varepsilon b b \rightsquigarrow a a b b
$$

(1) input: $a a b b$ Stack: \$
(2) input: $a a b b$

Stack: S\$
(3) input: $\stackrel{\downarrow}{a} a b b$ Stack: $a S b \$$
(4) input: $a a b b$

Stack: Sb\$

$\mathrm{CFG} \rightarrow \mathrm{PDA}$

- Place special symbol $\$$ on stack, push start variable S on to stack.
- Repeat the following:
- if the top of stack is a variable A, nondeterministically choose a rule $A \rightarrow w$, pop A and push w
- if top of stack is a terminal a, compare with next input symbol. If they match, pop a and repeat. If they do not, reject this branch.
- If top of stack is $\$$, enter accept state.

$$
S \rightsquigarrow a S b \rightsquigarrow a a S b b \rightsquigarrow a a \varepsilon b b \rightsquigarrow a a b b
$$

(1) input: $a a b b$ Stack: \$
(2) input: $a a b b$

Stack: S\$
(3) input: $\stackrel{\downarrow}{a} a b b$ Stack: $a S b \$$
(4) input: $a a b b$

Stack: Sb\$
(5) input: a abb

Stack: aSbb\$

$\mathrm{CFG} \rightarrow \mathrm{PDA}$

- Place special symbol $\$$ on stack, push start variable S on to stack.
- Repeat the following:
- if the top of stack is a variable A, nondeterministically choose a rule $A \rightarrow w$, pop A and push w
- if top of stack is a terminal a, compare with next input symbol. If they match, pop a and repeat. If they do not, reject this branch.
- If top of stack is $\$$, enter accept state.

$$
S \rightsquigarrow a S b \rightsquigarrow a a S b b \rightsquigarrow a a \varepsilon b b \rightsquigarrow a a b b
$$

(1) input: $a a b b$ Stack: \$
(2) input: $a a b b$

Stack: S\$
(3) input: $\stackrel{\downarrow}{a} a b b$ Stack: $a S b \$$
(4) input: $a a b b$

Stack: Sb\$
(5) input: a abb

Stack: aSbb\$
(6) input: $a a b b$

Stack: Sbb\$

$\mathrm{CFG} \rightarrow \mathrm{PDA}$

- Place special symbol $\$$ on stack, push start variable S on to stack.
- Repeat the following:
- if the top of stack is a variable A, nondeterministically choose a rule $A \rightarrow w$, pop A and push w
- if top of stack is a terminal a, compare with next input symbol. If they match, pop a and repeat. If they do not, reject this branch.
- If top of stack is $\$$, enter accept state.

$$
S \rightsquigarrow a S b \rightsquigarrow a a S b b \rightsquigarrow a a \varepsilon b b \rightsquigarrow a a b b
$$

(1) input: $a a b b$ Stack: \$
(2) input: $a a b b$

Stack: S\$
(3) input: $\stackrel{\downarrow}{a} a b b$ Stack: $a S b \$$
(4) input: $a a b b$

Stack: Sb\$
(5) input: $a a b b$

Stack: aSbb\$
(6) input: $a a b b$

Stack: Sbb\$
(1) input: a $a b$ Stack: bb\$

$\mathrm{CFG} \rightarrow \mathrm{PDA}$

- Place special symbol \$ on stack, push start variable S on to stack.
- Repeat the following:
- if the top of stack is a variable A, nondeterministically choose a rule $A \rightarrow w$, pop A and push w
- if top of stack is a terminal a, compare with next input symbol. If they match, pop a and repeat. If they do not, reject this branch.
- If top of stack is $\$$, enter accept state.
$S \rightsquigarrow a S b \rightsquigarrow a a S b b \rightsquigarrow a a \varepsilon b b \rightsquigarrow a a b b$
(1) input: $a a b b$

Stack: \$
(2) input: aabb

Stack: S\$
(3) input: $\stackrel{\downarrow}{a b b}$

Stack: $a S b \$$
(4) input: $a a b b$

Stack: Sb\$
(5) input: a abb

Stack: aSbb\$
(6) input: $a a b b$

Stack: Sbb\$
(7) input: $a a_{b} \stackrel{\downarrow}{b}$

Stack: bb\$
(8) compare all terminals in stack to input

$\mathrm{CFG} \rightarrow \mathrm{PDA}$

Note how in the previous slide we added multiple symbols the stack in one step!

$\mathrm{CFG} \rightarrow \mathrm{PDA}$

Note how in the previous slide we added multiple symbols the stack in one step! We popped S, and pushed $a S b$.

$\mathrm{CFG} \rightarrow \mathrm{PDA}$

Note how in the previous slide we added multiple symbols the stack in one step! We popped S, and pushed $a S b$.

$\mathrm{CFG} \rightarrow \mathrm{PDA}$

Note how in the previous slide we added multiple symbols the stack in one step! We popped S, and pushed $a S b$.

$\mathrm{CFG} \rightarrow \mathrm{PDA}$

Note how in the previous slide we added multiple symbols the stack in one step! We popped S, and pushed $a S b$.

We will use this shorthand notation during the proof.

CFG \rightarrow PDA: Proof

Proof:

- Given CFG $G=(V, \Sigma, R, S)$, we want to construct a $\operatorname{PDA}\left(Q, \Sigma, \Gamma, \delta, q_{0}, F\right)$ that accepts $L(G)$.

CFG \rightarrow PDA: Proof

Proof:

- Given CFG $G=(V, \Sigma, R, S)$, we want to construct a $\operatorname{PDA}\left(Q, \Sigma, \Gamma, \delta, q_{0}, F\right)$ that accepts $L(G)$.
- Let $Q=\left\{q_{0}, q_{\text {loop }}, q_{\text {accept }}\right\} \cup E$, where E is the set of help states needed for our shorthand notation (previous slide).

CFG \rightarrow PDA: Proof

Proof:

- Given CFG $G=(V, \Sigma, R, S)$, we want to construct a $\operatorname{PDA}\left(Q, \Sigma, \Gamma, \delta, q_{0}, F\right)$ that accepts $L(G)$.
- Let $Q=\left\{q_{0}, q_{\text {loop }}, q_{\text {accept }}\right\} \cup E$, where E is the set of help states needed for our shorthand notation (previous slide).
- Before anything else, push $\$$ and start variable on to stack: $\delta\left(q_{0}, \varepsilon, \varepsilon\right)=\left\{\left(q_{\text {loop }}, S \$\right)\right\}$.

CFG \rightarrow PDA: Proof

Recall intuition:

- if the top of stack is a variable A, nondeterministically choose a rule $A \rightarrow w$, pop A and push w
- if top of stack is a terminal a, compare with next input symbol. If they match, repeat. If they do not, reject this branch.
- If top of stack is $\$$, enter accept state.

CFG \rightarrow PDA: Proof

Recall intuition:

- if the top of stack is a variable A, nondeterministically choose a rule $A \rightarrow w$, pop A and push w
- $\delta\left(q_{\text {loop }}, \varepsilon, A\right)=\left\{\left(q_{\text {loop }}, w\right) \mid A \rightarrow\right.$ w is a rule in $R\}$
- if top of stack is a terminal a, compare with next input symbol. If they match, repeat. If they do not, reject this branch.
- If top of stack is $\$$, enter accept state.

CFG \rightarrow PDA: Proof

Recall intuition:

- if the top of stack is a variable A, nondeterministically choose a rule $A \rightarrow w$, pop A and push w
- if top of stack is a terminal a, compare
- $\delta\left(q_{\text {loop }}, \varepsilon, A\right)=\left\{\left(q_{\text {loop }}, w\right) \mid A \rightarrow\right.$ w is a rule in $R\}$
- $\delta\left(q_{\text {loop }}, a, a\right)=\left\{\left(q_{\text {loop }}, \varepsilon\right)\right\}$ with next input symbol. If they match, repeat. If they do not, reject this branch.
- If top of stack is $\$$, enter accept state.

CFG \rightarrow PDA: Proof

Recall intuition:

- if the top of stack is a variable A, nondeterministically choose a rule $A \rightarrow w$, pop A and push w
- if top of stack is a terminal a, compare with next input symbol. If they match,
- $\delta\left(q_{\text {loop }}, \varepsilon, A\right)=\left\{\left(q_{\text {loop }}, w\right) \mid A \rightarrow\right.$ w is a rule in $R\}$
- $\delta\left(q_{\text {loop }}, a, a\right)=\left\{\left(q_{\text {loop }}, \varepsilon\right)\right\}$
- $\delta\left(q_{\text {loop }}, \varepsilon, \$\right)=\left\{\left(q_{\text {accept }}, \varepsilon\right)\right\}$ repeat. If they do not, reject this branch.
- If top of stack is $\$$, enter accept state.

$C F G \rightarrow P D A$

State diagram (without help states from shorthand notation):

PDA \rightarrow CFG

The other direction is much more involved....

PDA \rightarrow CFG

The other direction is much more involved....For convenience, we assume our PDA has the following properties

PDA \rightarrow CFG

The other direction is much more involved....For convenience, we assume our PDA has the following properties

- It has a single accept state $q_{\text {accept }}$

PDA \rightarrow CFG

The other direction is much more involved....For convenience, we assume our PDA has the following properties

- It has a single accept state $q_{\text {accept }}$ (doable by creating a new accepting state with ε transitions from all previous accept states)

PDA \rightarrow CFG

The other direction is much more involved....For convenience, we assume our PDA has the following properties

- It has a single accept state $q_{\text {accept }}$ (doable by creating a new accepting state with ε transitions from all previous accept states)
- It empties its stack before accepting

PDA \rightarrow CFG

The other direction is much more involved....For convenience, we assume our PDA has the following properties

- It has a single accept state $q_{\text {accept }}$ (doable by creating a new accepting state with ε transitions from all previous accept states)
- It empties its stack before accepting (a loop on $q_{\text {accept }}$ that empties the stack without reading an input)

PDA \rightarrow CFG

The other direction is much more involved....For convenience, we assume our PDA has the following properties

- It has a single accept state $q_{\text {accept }}$ (doable by creating a new accepting state with ε transitions from all previous accept states)
- It empties its stack before accepting (a loop on $q_{\text {accept }}$ that empties the stack without reading an input)
- Each transition either pushes a symbol or pops a symbol, but does not do both at the same time.

PDA \rightarrow CFG

- Each transition either pushes a symbol or pops a symbol, but does not do both at the same time.

PDA \rightarrow CFG

- Each transition either pushes a symbol or pops a symbol, but does not do both at the same time.

PDA \rightarrow CFG

- Each transition either pushes a symbol or pops a symbol, but does not do both at the same time.

PDA \rightarrow CFG

- Each transition either pushes a symbol or pops a symbol, but does not do both at the same time.

PDA \rightarrow CFG

Idea: Given, PDA $\left(Q, \Sigma, \Gamma, \delta, q_{0}, F\right)$ create grammar where variables are $A_{p q}$ for states $p, q \in Q$.

PDA \rightarrow CFG

Idea: Given, PDA $\left(Q, \Sigma, \Gamma, \delta, q_{0}, F\right)$ create grammar where variables are $A_{p q}$ for states $p, q \in Q$.
The variable $A_{p q}$ will generate all strings that take P from p to q with empty stacks.

PDA \rightarrow CFG

Idea: Given, PDA $\left(Q, \Sigma, \Gamma, \delta, q_{0}, F\right)$ create grammar where variables are $A_{p q}$ for states $p, q \in Q$.
The variable $A_{p q}$ will generate all strings that take P from p to q with empty stacks. ...what does that mean?

PDA \rightarrow CFG

Idea: Given, PDA $\left(Q, \Sigma, \Gamma, \delta, q_{0}, F\right)$ create grammar where variables are $A_{p q}$ for states $p, q \in Q$.
The variable $A_{p q}$ will generate all strings that take P from p to q with empty stacks. ...what does that mean?
\rightsquigarrow input s takes P from p to q with empty stacks if:

- starting in p with an empty stack, after parsing the input s the PDA P ends in state q.
- when P arrives at q, the stack is once again empty

PDA \rightarrow CFG

Idea: Given, PDA $\left(Q, \Sigma, \Gamma, \delta, q_{0}, F\right)$ create grammar where variables are $A_{p q}$ for states $p, q \in Q$.
The variable $A_{p q}$ will generate all strings that take P from p to q with empty stacks. ...what does that mean?
\rightsquigarrow input s takes P from p to q with empty stacks if:

- starting in p with an empty stack, after parsing the input s the PDA P ends in state q.
- when P arrives at q, the stack is once again empty

Then $A_{q_{0} q_{\text {accept }}}$ will generate precisely the words the PDA accepts!

PDA \rightarrow CFG

Example:

PDA \rightarrow CFG

Example:

- string x does not take P from q to r with empty stacks, since the stack ends with an extra x

PDA \rightarrow CFG

Example:

- string x does not take P from q to r with empty stacks, since the stack ends with an extra x
- string $x y$ takes P from q to s with empty stacks, since the x that was pushed gets popped in the last transition to s.

PDA \rightarrow CFG

Two possibilities:

Input $a b b b$ takes P from q to v with empty stacks. Here the stack is never emptied in between.

PDA \rightarrow CFG

Two possibilities:

Input $a b b b$ takes P from q to v with empty stacks. Here the stack is never emptied in between.

Input $a b b b$ takes P from q to v with empty stacks. Here the stack is emptied at state s.

PDA \rightarrow CFG

Stack not emptied in between:

To address this case, add

$$
A_{p q} \rightarrow a A_{r s} b
$$

for every $p, q, r, s \in Q, u \in \Gamma$ and $a, b \in \Sigma_{\varepsilon}$ such that $\delta(p, a, \varepsilon)$ contains (r, u) and $\delta(s, b, u)$ contains (q, ε).

PDA \rightarrow CFG

Stack is emptied in between:

To address this case, add rule

$$
A_{p q} \rightarrow A_{p r} A_{r q}
$$

for all $p, q, r \in Q$

PDA \rightarrow CFG

Finally, add rules $A_{p p} \rightarrow \varepsilon$ for all $p \in Q$.

PDA \rightarrow CFG

Finally, add rules $A_{p p} \rightarrow \varepsilon$ for all $p \in Q$.

Summarized:

- $A_{p q} \rightarrow a A_{r s} b$ for every $p, q, r, s \in Q, u \in \Gamma$ and $a, b \in \Sigma_{\varepsilon}$ such that $\delta(p, a, \varepsilon)$ contains (r, u) and $\delta(s, b, u)$ contains (q, ε),

PDA \rightarrow CFG

Finally, add rules $A_{p p} \rightarrow \varepsilon$ for all $p \in Q$.

Summarized:

- $A_{p q} \rightarrow a A_{r s} b$ for every $p, q, r, s \in Q, u \in \Gamma$ and $a, b \in \Sigma_{\varepsilon}$ such that $\delta(p, a, \varepsilon)$ contains (r, u) and $\delta(s, b, u)$ contains (q, ε),
- $A_{p q} \rightarrow A_{p r} A_{r q}$ for every $p, q, r \in Q$,

PDA \rightarrow CFG

Finally, add rules $A_{p p} \rightarrow \varepsilon$ for all $p \in Q$.

Summarized:

- $A_{p q} \rightarrow a A_{r s} b$ for every $p, q, r, s \in Q, u \in \Gamma$ and $a, b \in \Sigma_{\varepsilon}$ such that $\delta(p, a, \varepsilon)$ contains (r, u) and $\delta(s, b, u)$ contains (q, ε),
- $A_{p q} \rightarrow A_{p r} A_{r q}$ for every $p, q, r \in Q$,
- $A_{p p} \rightarrow \varepsilon$ for all $p \in Q$
- start variable: $A_{q_{0} q_{\text {accept }}}$

PDA \rightarrow CFG

We are done if we can show:

Lemma

If $A_{p q}$ generates x then x brings P from p to q with empty stacks.

Lemma

If x can bring P from p to q with empty stacks, $A_{p q}$ generates x.

PDA \rightarrow CFG

- $A_{p q} \rightarrow a A_{r s} b$ for every $p, q, r, s \in Q, u \in \Gamma$ and $a, b \in \Sigma_{\varepsilon}$ such that $\delta(p, a, \varepsilon)$ contains (r, u) and $\delta(s, b, u)$ contains (q, ε),
- $A_{p q} \rightarrow A_{p r} A_{r q}$ for every $p, q, r \in Q$,
- $A_{p p} \rightarrow \varepsilon$ for all $p \in Q$
- start variable: $A_{q_{0} q_{\text {accept }}}$

Lemma

If $A_{p q}$ generates \times then x brings P from p to q with empty stacks.
Proof by induction over number of derivation steps:
Base: Derivation has 1 step.

- A derivation with 1 step uses a rule with no variables on the righthand side.
- Only such rules are $A_{p p} \rightarrow \varepsilon \ldots$

PDA \rightarrow CFG

- $A_{p q} \rightarrow a A_{r s} b$ for every $p, q, r, s \in Q, u \in \Gamma$ and $a, b \in \Sigma_{\varepsilon}$ such that $\delta(p, a, \varepsilon)$ contains (r, u) and $\delta(s, b, u)$ contains (q, ε),
- $A_{p q} \rightarrow A_{p r} A_{r q}$ for every $p, q, r \in Q$,
- $A_{p p} \rightarrow \varepsilon$ for all $p \in Q$
- start variable: $A_{q_{0} q_{\text {accept }}}$

Lemma

If $A_{p q}$ generates x then x brings P from p to q with empty stacks.
Proof by induction over number of derivation steps:
Base: Derivation has 1 step.

- A derivation with 1 step uses a rule with no variables on the righthand side.
- Only such rules are $A_{p p} \rightarrow \varepsilon \ldots$ and ε takes P from p to p with empty stacks.

PDA \rightarrow CFG

- $A_{p q} \rightarrow a A_{r s} b$ for every $p, q, r, s \in Q, u \in \Gamma$ and $a, b \in \Sigma_{\varepsilon}$ such that $\delta(p, a, \varepsilon)$ contains (r, u) and $\delta(s, b, u)$ contains (q, ε),
- $A_{p q} \rightarrow A_{p r} A_{r q}$ for every $p, q, r \in Q$,
- $A_{p p} \rightarrow \varepsilon$ for all $p \in Q$
- start variable: $A_{q_{0} q_{\text {accept }}}$

Lemma

If $A_{p q}$ generates x then x brings P from p to q with empty stacks.
Proof by induction over number of derivation steps:
Base: Derivation has 1 step.

- A derivation with 1 step uses a rule with no variables on the righthand side.
- Only such rules are $A_{p p} \rightarrow \varepsilon \ldots$ and ε takes P from p to p with empty stacks. \checkmark

PDA \rightarrow CFG

- $A_{p q} \rightarrow a A_{r s} b$ for every $p, q, r, s \in Q, u \in \Gamma$ and $a, b \in \Sigma_{\varepsilon}$ such that $\delta(p, a, \varepsilon)$ contains (r, u) and $\delta(s, b, u)$ contains (q, ε),
- $A_{p q} \rightarrow A_{p r} A_{r q}$ for every $p, q, r \in Q$,
- $A_{p p} \rightarrow \varepsilon$ for all $p \in Q$
- start variable: $A_{q_{0} q_{\text {accept }}}$

Lemma

If $A_{p q}$ generates x then x brings P from p to q with empty stacks.
Proof by induction over number of derivation steps:
Step: assume true for derivations of length at most $k \geq 1$.

PDA \rightarrow CFG

- $A_{p q} \rightarrow a A_{r s} b$ for every $p, q, r, s \in Q, u \in \Gamma$ and $a, b \in \Sigma_{\varepsilon}$ such that $\delta(p, a, \varepsilon)$ contains (r, u) and $\delta(s, b, u)$ contains (q, ε),
- $A_{p q} \rightarrow A_{p r} A_{r q}$ for every $p, q, r \in Q$,
- $A_{p p} \rightarrow \varepsilon$ for all $p \in Q$
- start variable: $A_{q 0}$ qaccept

Lemma

If $A_{p q}$ generates x then x brings P from p to q with empty stacks.
Proof by induction over number of derivation steps:
Step: assume true for derivations of length at most $k \geq 1$.

- Assume $A_{p q}$ derives x in $k+1$ steps.

PDA \rightarrow CFG

- $A_{p q} \rightarrow a A_{r s} b$ for every $p, q, r, s \in Q, u \in \Gamma$ and $a, b \in \Sigma_{\varepsilon}$ such that $\delta(p, a, \varepsilon)$ contains (r, u) and $\delta(s, b, u)$ contains (q, ε),
- $A_{p q} \rightarrow A_{p r} A_{r q}$ for every $p, q, r \in Q$,
- $A_{p p} \rightarrow \varepsilon$ for all $p \in Q$
- start variable: $A_{\text {qo qaccept }}$

Lemma

If $A_{p q}$ generates x then x brings P from p to q with empty stacks.
Proof by induction over number of derivation steps:
Step: assume true for derivations of length at most $k \geq 1$.

- Assume $A_{p q}$ derives x in $k+1$ steps. Then the first rule applications is either

$$
A_{p q} \rightarrow a A_{r s} b \text { or } A_{p q} \rightarrow A_{p r} A_{r q}
$$

PDA \rightarrow CFG

- $A_{p q} \rightarrow a A_{r s} b$ for every $p, q, r, s \in Q, u \in \Gamma$ and $a, b \in \Sigma_{\varepsilon}$ such that $\delta(p, a, \varepsilon)$ contains (r, u) and $\delta(s, b, u)$ contains (q, ε),
- $A_{p q} \rightarrow A_{p r} A_{r q}$ for every $p, q, r \in Q$,
- $A_{p p} \rightarrow \varepsilon$ for all $p \in Q$
- start variable: $A_{\text {qo qaccept }}$

Lemma

If $A_{p q}$ generates x then x brings P from p to q with empty stacks.
Proof by induction over number of derivation steps:
Step: assume true for derivations of length at most $k \geq 1$.

- Assume $A_{p q}$ derives x in $k+1$ steps. Then the first rule applications is either $A_{p q} \rightarrow a A_{r s} b$ or $A_{p q} \rightarrow A_{p r} A_{r q}$
- If $A_{p q} \rightarrow a A_{r s} b$ was used, let y be generated by $A_{r s}$ such that $x=a y b$.

PDA \rightarrow CFG

- $A_{p q} \rightarrow a A_{r s} b$ for every $p, q, r, s \in Q, u \in \Gamma$ and $a, b \in \Sigma_{\varepsilon}$ such that $\delta(p, a, \varepsilon)$ contains (r, u) and $\delta(s, b, u)$ contains (q, ε),
- $A_{p q} \rightarrow A_{p r} A_{r q}$ for every $p, q, r \in Q$,
- $A_{p p} \rightarrow \varepsilon$ for all $p \in Q$
- start variable: $A_{q 0} q_{\text {accept }}$

Lemma

If $A_{p q}$ generates x then x brings P from p to q with empty stacks.
Proof by induction over number of derivation steps:
Step: assume true for derivations of length at most $k \geq 1$.

- Assume $A_{p q}$ derives x in $k+1$ steps. Then the first rule applications is either

$$
A_{p q} \rightarrow a A_{r s} b \text { or } A_{p q} \rightarrow A_{p r} A_{r q}
$$

- If $A_{p q} \rightarrow a A_{r s} b$ was used, let y be generated by $A_{r s}$ such that $x=a y b$.
- $A_{r s}$ derives y in at most k steps, hence the induction hypothesis tells us that y takes P from r to s with empty stacks.

PDA \rightarrow CFG

- $A_{p q} \rightarrow a A_{r s} b$ for every $p, q, r, s \in Q, u \in \Gamma$ and $a, b \in \Sigma_{\varepsilon}$ such that $\delta(p, a, \varepsilon)$ contains (r, u) and $\delta(s, b, u)$ contains (q, ε),
- $A_{p q} \rightarrow A_{p r} A_{r q}$ for every $p, q, r \in Q$,
- $A_{p p} \rightarrow \varepsilon$ for all $p \in Q$
- start variable: $A_{\text {qo qaccept }}$

Lemma

If $A_{p q}$ generates x then x brings P from p to q with empty stacks.
Proof by induction over number of derivation steps:
Step: assume true for derivations of length at most $k \geq 1$.

- Assume $A_{p q}$ derives x in $k+1$ steps. Then the first rule applications is either

$$
A_{p q} \rightarrow a A_{r s} b \text { or } A_{p q} \rightarrow A_{p r} A_{r q}
$$

- If $A_{p q} \rightarrow a A_{r s} b$ was used, let y be generated by $A_{r s}$ such that $x=a y b$.
- $A_{r s}$ derives y in at most k steps, hence the induction hypothesis tells us that y takes P from r to s with empty stacks.
- $\rightarrow a$ brings P from p to r by pushing u, y brings P from r to s on empty stacks, b brings $P \mathrm{P}$ from s to q by popping u.

PDA \rightarrow CFG

- $A_{p q} \rightarrow a A_{r s} b$ for every $p, q, r, s \in Q, u \in \Gamma$ and $a, b \in \Sigma_{\varepsilon}$ such that $\delta(p, a, \varepsilon)$ contains (r, u) and $\delta(s, b, u)$ contains (q, ε),
- $A_{p q} \rightarrow A_{p r} A_{r q}$ for every $p, q, r \in Q$,
- $A_{p p} \rightarrow \varepsilon$ for all $p \in Q$
- start variable: $A_{\text {qo qaccept }}$

Lemma

If $A_{p q}$ generates x then x brings P from p to q with empty stacks.
Proof by induction over number of derivation steps:
Step: assume true for derivations of length at most $k \geq 1$.

- Assume $A_{p q}$ derives x in $k+1$ steps. Then the first rule applications is either

$$
A_{p q} \rightarrow a A_{r s} b \text { or } A_{p q} \rightarrow A_{p r} A_{r q}
$$

- If $A_{p q} \rightarrow a A_{r s} b$ was used, let y be generated by $A_{r s}$ such that $x=a y b$.
- $A_{r s}$ derives y in at most k steps, hence the induction hypothesis tells us that y takes P from r to s with empty stacks.
- \rightarrow a brings P from p to r by pushing u, y brings P from r to s on empty stacks, b brings $P P$ from s to q by popping u. \checkmark

PDA \rightarrow CFG

- $A_{p q} \rightarrow a A_{r s} b$ for every $p, q, r, s \in Q, u \in \Gamma$ and $a, b \in \Sigma_{\varepsilon}$ such that $\delta(p, a, \varepsilon)$ contains (r, u) and $\delta(s, b, u)$ contains (q, ε),
- $A_{p q} \rightarrow A_{p r} A_{r q}$ for every $p, q, r \in Q$,
- $A_{p p} \rightarrow \varepsilon$ for all $p \in Q$
- start variable: $A_{\text {qo qaccept }}$

Lemma

If $A_{p q}$ generates x then x brings P from p to q with empty stacks.
Proof by induction over number of derivation steps:
Step: assume true for derivations of length at most $k \geq 1$.

- Assume $A_{p q}$ derives x in $k+1$ steps. Then the first rule applications is either $A_{p q} \rightarrow a A_{r s} b$ or $A_{p q} \rightarrow A_{p r} A_{r q}$
- If $A_{p q} \rightarrow A_{p r} A_{r q}$ was used, let $x=y z$ such that y is generated by $A_{p r}$ and z is generated by $A_{r q}$.

PDA \rightarrow CFG

- $A_{p q} \rightarrow a A_{r s} b$ for every $p, q, r, s \in Q, u \in \Gamma$ and $a, b \in \Sigma_{\varepsilon}$ such that $\delta(p, a, \varepsilon)$ contains (r, u) and $\delta(s, b, u)$ contains (q, ε),
- $A_{p q} \rightarrow A_{p r} A_{r q}$ for every $p, q, r \in Q$,
- $A_{p p} \rightarrow \varepsilon$ for all $p \in Q$
- start variable: $A_{\text {qo qaccept }}$

Lemma

If $A_{p q}$ generates x then x brings P from p to q with empty stacks.
Proof by induction over number of derivation steps:
Step: assume true for derivations of length at most $k \geq 1$.

- Assume $A_{p q}$ derives x in $k+1$ steps. Then the first rule applications is either

$$
A_{p q} \rightarrow a A_{r s} b \text { or } A_{p q} \rightarrow A_{p r} A_{r q}
$$

- If $A_{p q} \rightarrow A_{p r} A_{r q}$ was used, let $x=y z$ such that y is generated by $A_{p r}$ and z is generated by $A_{r q}$.
- $A_{p r}\left(\right.$ resp. $\left.A_{r q}\right)$ generates $y(r e s p . ~ z)$ in at most k steps.

PDA \rightarrow CFG

- $A_{p q} \rightarrow a A_{r s} b$ for every $p, q, r, s \in Q, u \in \Gamma$ and $a, b \in \Sigma_{\varepsilon}$ such that $\delta(p, a, \varepsilon)$ contains (r, u) and $\delta(s, b, u)$ contains (q, ε),
- $A_{p q} \rightarrow A_{p r} A_{r q}$ for every $p, q, r \in Q$,
- $A_{p p} \rightarrow \varepsilon$ for all $p \in Q$
- start variable: $A_{\text {qo qaccept }}$

Lemma

If $A_{p q}$ generates x then x brings P from p to q with empty stacks.
Proof by induction over number of derivation steps:
Step: assume true for derivations of length at most $k \geq 1$.

- Assume $A_{p q}$ derives x in $k+1$ steps. Then the first rule applications is either

$$
A_{p q} \rightarrow a A_{r s} b \text { or } A_{p q} \rightarrow A_{p r} A_{r q}
$$

- If $A_{p q} \rightarrow A_{p r} A_{r q}$ was used, let $x=y z$ such that y is generated by $A_{p r}$ and z is generated by $A_{r q}$.
- $A_{p r}\left(\right.$ resp. $\left.A_{r q}\right)$ generates $y(r e s p . ~ z) ~ i n ~ a t ~ m o s t ~ k ~ s t e p s . ~$
- Induction hypothesis tells us that y takes P from p to r with empty stacks, and z takes P from r to q with empty stacks.

PDA \rightarrow CFG

- $A_{p q} \rightarrow a A_{r s} b$ for every $p, q, r, s \in Q, u \in \Gamma$ and $a, b \in \Sigma_{\varepsilon}$ such that $\delta(p, a, \varepsilon)$ contains (r, u) and $\delta(s, b, u)$ contains (q, ε),
- $A_{p q} \rightarrow A_{p r} A_{r q}$ for every $p, q, r \in Q$,
- $A_{p p} \rightarrow \varepsilon$ for all $p \in Q$
- start variable: $A_{\text {qo qaccept }}$

Lemma

If $A_{p q}$ generates x then x brings P from p to q with empty stacks.
Proof by induction over number of derivation steps:
Step: assume true for derivations of length at most $k \geq 1$.

- Assume $A_{p q}$ derives x in $k+1$ steps. Then the first rule applications is either

$$
A_{p q} \rightarrow a A_{r s} b \text { or } A_{p q} \rightarrow A_{p r} A_{r q}
$$

- If $A_{p q} \rightarrow A_{p r} A_{r q}$ was used, let $x=y z$ such that y is generated by $A_{p r}$ and z is generated by $A_{r q}$.
- $A_{p r}\left(\right.$ resp. $\left.A_{r q}\right)$ generates $y(r e s p . ~ z) ~ i n ~ a t ~ m o s t ~ k ~ s t e p s . ~$
- Induction hypothesis tells us that y takes P from p to r with empty stacks, and z takes P from r to q with empty stacks.

PDA \rightarrow CFG

- $A_{p q} \rightarrow a A_{r s} b$ for every $p, q, r, s \in Q, u \in \Gamma$ and $a, b \in \Sigma_{\varepsilon}$ such that $\delta(p, a, \varepsilon)$ contains (r, u) and $\delta(s, b, u)$ contains (q, ε),
- $A_{p q} \rightarrow A_{p r} A_{r q}$ for every $p, q, r \in Q$,
- $A_{p p} \rightarrow \varepsilon$ for all $p \in Q$
- start variable: $A_{q_{0}} q_{\text {accept }}$

Lemma

If x can bring P from p to q with empty stacks, $A_{p q}$ generates x.

PDA \rightarrow CFG

- $A_{p q} \rightarrow a A_{r s} b$ for every $p, q, r, s \in Q, u \in \Gamma$ and $a, b \in \Sigma_{\varepsilon}$ such that $\delta(p, a, \varepsilon)$ contains (r, u) and $\delta(s, b, u)$ contains (q, ε),
- $A_{p q} \rightarrow A_{p r} A_{r q}$ for every $p, q, r \in Q$,
- $A_{p p} \rightarrow \varepsilon$ for all $p \in Q$
- start variable: $A_{q_{0} \text { qaccept }}$

Lemma

If x can bring P from p to q with empty stacks, $A_{p q}$ generates x.
Proof by induction over computation steps:
Base: computation has 0 steps.

PDA \rightarrow CFG

- $A_{p q} \rightarrow a A_{r s} b$ for every $p, q, r, s \in Q, u \in \Gamma$ and $a, b \in \Sigma_{\varepsilon}$ such that $\delta(p, a, \varepsilon)$ contains (r, u) and $\delta(s, b, u)$ contains (q, ε),
- $A_{p q} \rightarrow A_{p r} A_{r q}$ for every $p, q, r \in Q$,
- $A_{p p} \rightarrow \varepsilon$ for all $p \in Q$
- start variable: $A_{q_{0} q_{\text {accept }}}$

Lemma

If x can bring P from p to q with empty stacks, $A_{p q}$ generates x.
Proof by induction over computation steps:
Base: computation has 0 steps.

- A computation with 0 steps stays in the same state p and cannot read any input. Since $A_{p p} \rightarrow \varepsilon$ is a rule in G, base is proved.

PDA \rightarrow CFG

- $A_{p q} \rightarrow a A_{r s} b$ for every $p, q, r, s \in Q, u \in \Gamma$ and $a, b \in \Sigma_{\varepsilon}$ such that $\delta(p, a, \varepsilon)$ contains (r, u) and $\delta(s, b, u)$ contains (q, ε),
- $A_{p q} \rightarrow A_{p r} A_{r q}$ for every $p, q, r \in Q$,
- $A_{p p} \rightarrow \varepsilon$ for all $p \in Q$
- start variable: $A_{q_{0} q_{\text {accept }}}$

Lemma

If x can bring P from p to q with empty stacks, $A_{p q}$ generates x.
Proof by induction over computation steps:
Base: computation has 0 steps.

- A computation with 0 steps stays in the same state p and cannot read any input. Since $A_{p p} \rightarrow \varepsilon$ is a rule in G, base is proved. \checkmark

PDA \rightarrow CFG

- $A_{p q} \rightarrow a A_{r s} b$ for every $p, q, r, s \in Q, u \in \Gamma$ and $a, b \in \Sigma_{\varepsilon}$ such that $\delta(p, a, \varepsilon)$ contains (r, u) and $\delta(s, b, u)$ contains ($\left.q, \varepsilon\right)$,
- $A_{p q} \rightarrow A_{p r} A_{r q}$ for every $p, q, r \in Q$,
- $A_{p p} \rightarrow \varepsilon$ for all $p \in Q$
- start variable: $A_{q_{0} q_{\text {accept }}}$

Lemma

If x can bring P from p to q with empty stacks, $A_{p q}$ generates x.

Proof by induction over computation steps:

Step: Assume true for computations of length at most k.

PDA \rightarrow CFG

- $A_{p q} \rightarrow a A_{r s} b$ for every $p, q, r, s \in Q, u \in \Gamma$ and $a, b \in \Sigma_{\varepsilon}$ such that $\delta(p, a, \varepsilon)$ contains (r, u) and $\delta(s, b, u)$ contains ($\left.q, \varepsilon\right)$,
- $A_{p q} \rightarrow A_{p r} A_{r q}$ for every $p, q, r \in Q$,
- $A_{p p} \rightarrow \varepsilon$ for all $p \in Q$
- start variable: $A_{q_{0} q_{\text {accept }}}$

Lemma

If x can bring P from p to q with empty stacks, $A_{p q}$ generates x.
Proof by induction over computation steps:
Step: Assume true for computations of length at most k.

- Assume P has a computation where input x takes it from state p to q with empty stacks that takes $k+1$ steps.

PDA \rightarrow CFG

- $A_{p q} \rightarrow a A_{r s} b$ for every $p, q, r, s \in Q, u \in \Gamma$ and $a, b \in \Sigma_{\varepsilon}$ such that $\delta(p, a, \varepsilon)$ contains (r, u) and $\delta(s, b, u)$ contains ($\left.q, \varepsilon\right)$,
- $A_{p q} \rightarrow A_{p r} A_{r q}$ for every $p, q, r \in Q$,
- $A_{p p} \rightarrow \varepsilon$ for all $p \in Q$
- start variable: $A_{q_{0}} q_{\text {accept }}$

Lemma

If x can bring P from p to q with empty stacks, $A_{p q}$ generates x.
Proof by induction over computation steps:
Step: Assume true for computations of length at most k.

- Assume P has a computation where input x takes it from state p to q with empty stacks that takes $k+1$ steps.
- Two cases: either the stack is only empty at the beginning and end, or it is emptied in betwen.

PDA \rightarrow CFG

- $A_{p q} \rightarrow a A_{r s} b$ for every $p, q, r, s \in Q, u \in \Gamma$ and $a, b \in \Sigma_{\varepsilon}$ such that $\delta(p, a, \varepsilon)$ contains (r, u) and $\delta(s, b, u)$ contains (q, ε),
- $A_{p q} \rightarrow A_{p r} A_{r q}$ for every $p, q, r \in Q$,
- $A_{p p} \rightarrow \varepsilon$ for all $p \in Q$
- start variable: $A_{q_{0}} q_{\text {accept }}$

Lemma

If x can bring P from p to q with empty stacks, $A_{p q}$ generates x.

- First case (empty only at beginning and end):
- Symbol u pushed in the first step must be the same symbol popped in the last step

PDA \rightarrow CFG

- $A_{p q} \rightarrow a A_{r s} b$ for every $p, q, r, s \in Q, u \in \Gamma$ and $a, b \in \Sigma_{\varepsilon}$ such that $\delta(p, a, \varepsilon)$ contains (r, u) and $\delta(s, b, u)$ contains (q, ε),
- $A_{p q} \rightarrow A_{p r} A_{r q}$ for every $p, q, r \in Q$,
- $A_{p p} \rightarrow \varepsilon$ for all $p \in Q$
- start variable: $A_{q_{0} \text { qaccept }}$

Lemma

If x can bring P from p to q with empty stacks, $A_{p q}$ generates x.

- First case (empty only at beginning and end):
- Symbol u pushed in the first step must be the same symbol popped in the last step
- Let a denote the input read in step $1, b$ the input in the last step, r the state after the first move, s the state before the last move.

PDA \rightarrow CFG

- $A_{p q} \rightarrow a A_{r s} b$ for every $p, q, r, s \in Q, u \in \Gamma$ and $a, b \in \Sigma_{\varepsilon}$ such that $\delta(p, a, \varepsilon)$ contains (r, u) and $\delta(s, b, u)$ contains (q, ε),
- $A_{p q} \rightarrow A_{p r} A_{r q}$ for every $p, q, r \in Q$,
- $A_{p p} \rightarrow \varepsilon$ for all $p \in Q$
- start variable: $A_{q_{0} q_{\text {accept }}}$

Lemma

If x can bring P from p to q with empty stacks, $A_{p q}$ generates x.

- First case (empty only at beginning and end):
- Symbol u pushed in the first step must be the same symbol popped in the last step
- Let a denote the input read in step $1, b$ the input in the last step, r the state after the first move, s the state before the last move.
- Then $A_{p q} \rightarrow a A_{r s} b$ is in G.

PDA \rightarrow CFG

- $A_{p q} \rightarrow a A_{r s} b$ for every $p, q, r, s \in Q, u \in \Gamma$ and $a, b \in \Sigma_{\varepsilon}$ such that $\delta(p, a, \varepsilon)$ contains (r, u) and $\delta(s, b, u)$ contains (q, ε),
- $A_{p q} \rightarrow A_{p r} A_{r q}$ for every $p, q, r \in Q$,
- $A_{p p} \rightarrow \varepsilon$ for all $p \in Q$
- start variable: $A_{q_{0} \text { qaccept }}$

Lemma

If x can bring P from p to q with empty stacks, $A_{p q}$ generates x.

- First case (empty only at beginning and end):
- Symbol u pushed in the first step must be the same symbol popped in the last step
- Let a denote the input read in step $1, b$ the input in the last step, r the state after the first move, s the state before the last move.
- Then $A_{p q} \rightarrow a A_{r s} b$ is in G.
- Let $x=a y b$. y takes P from r to s with empty stacks in $k-1$ steps

PDA \rightarrow CFG

- $A_{p q} \rightarrow a A_{r s} b$ for every $p, q, r, s \in Q, u \in \Gamma$ and $a, b \in \Sigma_{\varepsilon}$ such that $\delta(p, a, \varepsilon)$ contains (r, u) and $\delta(s, b, u)$ contains (q, ε),
- $A_{p q} \rightarrow A_{p r} A_{r q}$ for every $p, q, r \in Q$,
- $A_{p p} \rightarrow \varepsilon$ for all $p \in Q$
- start variable: $A_{q_{0} q_{\text {accept }}}$

Lemma

If x can bring P from p to q with empty stacks, $A_{p q}$ generates x.

- First case (empty only at beginning and end):
- Symbol u pushed in the first step must be the same symbol popped in the last step
- Let a denote the input read in step $1, b$ the input in the last step, r the state after the first move, s the state before the last move.
- Then $A_{p q} \rightarrow a A_{r s} b$ is in G.
- Let $x=a y b$. y takes P from r to s with empty stacks in $k-1$ steps
- induction hypothesis $\Rightarrow A_{r s}$ generates y.

PDA \rightarrow CFG

- $A_{p q} \rightarrow a A_{r s} b$ for every $p, q, r, s \in Q, u \in \Gamma$ and $a, b \in \Sigma_{\varepsilon}$ such that $\delta(p, a, \varepsilon)$ contains (r, u) and $\delta(s, b, u)$ contains (q, ε),
- $A_{p q} \rightarrow A_{p r} A_{r q}$ for every $p, q, r \in Q$,
- $A_{p p} \rightarrow \varepsilon$ for all $p \in Q$
- start variable: $A_{q_{0} \text { qaccept }}$

Lemma

If x can bring P from p to q with empty stacks, $A_{p q}$ generates x.

- First case (empty only at beginning and end):
- Symbol u pushed in the first step must be the same symbol popped in the last step
- Let a denote the input read in step $1, b$ the input in the last step, r the state after the first move, s the state before the last move.
- Then $A_{p q} \rightarrow a A_{r s} b$ is in G.
- Let $x=a y b$. y takes P from r to s with empty stacks in $k-1$ steps
- induction hypothesis $\Rightarrow A_{r s}$ generates y.
- $\Rightarrow A_{p q}$ generates x.

PDA \rightarrow CFG

- $A_{p q} \rightarrow a A_{r s} b$ for every $p, q, r, s \in Q, u \in \Gamma$ and $a, b \in \Sigma_{\varepsilon}$ such that $\delta(p, a, \varepsilon)$ contains (r, u) and $\delta(s, b, u)$ contains ($\left.q, \varepsilon\right)$,
- $A_{p q} \rightarrow A_{p r} A_{r q}$ for every $p, q, r \in Q$,
- $A_{p p} \rightarrow \varepsilon$ for all $p \in Q$
- start variable: $A_{q_{0} q_{\text {accept }}}$

Lemma

If x can bring P from p to q with empty stacks, $A_{p q}$ generates x.

- Second case (empty inbetween):

PDA \rightarrow CFG

- $A_{p q} \rightarrow a A_{r s} b$ for every $p, q, r, s \in Q, u \in \Gamma$ and $a, b \in \Sigma_{\varepsilon}$ such that $\delta(p, a, \varepsilon)$ contains (r, u) and $\delta(s, b, u)$ contains ($\left.q, \varepsilon\right)$,
- $A_{p q} \rightarrow A_{p r} A_{r q}$ for every $p, q, r \in Q$,
- $A_{p p} \rightarrow \varepsilon$ for all $p \in Q$
- start variable: $A_{q_{0}} q_{\text {accept }}$

Lemma

If x can bring P from p to q with empty stacks, $A_{p q}$ generates x.

- Second case (empty inbetween):
- Let r be a state where the stack empties other than at the beginning and end of the computation of x.

PDA \rightarrow CFG

- $A_{p q} \rightarrow a A_{r s} b$ for every $p, q, r, s \in Q, u \in \Gamma$ and $a, b \in \Sigma_{\varepsilon}$ such that $\delta(p, a, \varepsilon)$ contains (r, u) and $\delta(s, b, u)$ contains ($\left.q, \varepsilon\right)$,
- $A_{p q} \rightarrow A_{p r} A_{r q}$ for every $p, q, r \in Q$,
- $A_{p p} \rightarrow \varepsilon$ for all $p \in Q$
- start variable: $A_{q_{0}} q_{\text {accept }}$

Lemma

If x can bring P from p to q with empty stacks, $A_{p q}$ generates x.

- Second case (empty inbetween):
- Let r be a state where the stack empties other than at the beginning and end of the computation of x.
- Then the computations from p to r (call its parsed input y) and from r to q (call its parsed input z) contain at most k steps.

PDA \rightarrow CFG

- $A_{p q} \rightarrow a A_{r s} b$ for every $p, q, r, s \in Q, u \in \Gamma$ and $a, b \in \Sigma_{\varepsilon}$ such that $\delta(p, a, \varepsilon)$ contains (r, u) and $\delta(s, b, u)$ contains ($\left.q, \varepsilon\right)$,
- $A_{p q} \rightarrow A_{p r} A_{r q}$ for every $p, q, r \in Q$,
- $A_{p p} \rightarrow \varepsilon$ for all $p \in Q$
- start variable: $A_{q_{0}} q_{\text {accept }}$

Lemma

If x can bring P from p to q with empty stacks, $A_{p q}$ generates x.

- Second case (empty inbetween):
- Let r be a state where the stack empties other than at the beginning and end of the computation of x.
- Then the computations from p to r (call its parsed input y) and from r to q (call its parsed input z) contain at most k steps.
- induction hypothesis $\Rightarrow A_{p r}$ (resp. $A_{r q}$) generates y (resp. z)

PDA \rightarrow CFG

- $A_{p q} \rightarrow a A_{r s} b$ for every $p, q, r, s \in Q, u \in \Gamma$ and $a, b \in \Sigma_{\varepsilon}$ such that $\delta(p, a, \varepsilon)$ contains (r, u) and $\delta(s, b, u)$ contains (q, ε),
- $A_{p q} \rightarrow A_{p r} A_{r q}$ for every $p, q, r \in Q$,
- $A_{p p} \rightarrow \varepsilon$ for all $p \in Q$
- start variable: $A_{q_{0}} q_{\text {accept }}$

Lemma

If x can bring P from p to q with empty stacks, $A_{p q}$ generates x.

- Second case (empty inbetween):
- Let r be a state where the stack empties other than at the beginning and end of the computation of x.
- Then the computations from p to r (call its parsed input y) and from r to q (call its parsed input z) contain at most k steps.
- induction hypothesis $\Rightarrow A_{p r}$ (resp. $A_{r q}$) generates y (resp. z)
- Then $A_{p q}$ generates $x=y z$.

