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Repetition

Defined context-free grammars (CFGs):

contain rules of the form A→ X1X2 · · ·Xn where A is a variable and Xi are variables or
terminals
Example:

S → 0S1
S → ε

L = {0n1n | n ≥ 0}

CFGs generate context-free languages
We’ve seen {Regular Languages}( {Context-free Languages}
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Computational Models

We’ve seen {Regular Languages}( {Context-free Languages}
NFA/DFA/RE/GNFA were all equivalent computational models that describe/accept
regular languages

What computational model accepts context-free languages? → pushdown automata!
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Pushdown Automata (PDA)

DFA/NFA/RE/GNFA were all computational models with finite memory

we now add a (very limited) form of infinite memory: a stack (LIFO principle: last in, first
out)
So, essentially, PDA’s are NFA’s with an additional stack

INF2080 Lecture :: 8th February 4 / 37



Pushdown Automata (PDA)

DFA/NFA/RE/GNFA were all computational models with finite memory
we now add a (very limited) form of infinite memory: a stack (LIFO principle: last in, first
out)

So, essentially, PDA’s are NFA’s with an additional stack

INF2080 Lecture :: 8th February 4 / 37



Pushdown Automata (PDA)

DFA/NFA/RE/GNFA were all computational models with finite memory
we now add a (very limited) form of infinite memory: a stack (LIFO principle: last in, first
out)
So, essentially, PDA’s are NFA’s with an additional stack

INF2080 Lecture :: 8th February 4 / 37



Pushdown Automata (PDA)

NFA’s transitioned from one state to another according to the current input

NFA inputread Transitions:
A B

0

PDA’s can access a stack in addition to the input:

PDA

input

stack

read

read/write

Transitions:

A B
0, pop x, push y
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Pushdown Automata (PDA)

For notational ease, we sketch these transition as follows:

A B
w , pop x, push y

→ A B
w , x → y

w , x → y : read input w , pop x from stack, push y on to stack
w , x → ε: read input w , pop x from stack
w , ε→ y : read input w , push y on to stack
ε, x → y : read no input, perform stack operations as described above (x and/or y may be
ε)
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Pushdown Automata (PDA)

So what does the stack let us do?

Counting?
Storing read input?
...more?
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Pushdown Automata (PDA)

Consider grammar:

S → 0S1
S → ε

Generates all 0∗1∗ words with equal number of 0’s and 1’s.

Can we define a PDA that accepts this language?
vague idea: keep track of number of 0’s using the stack, compare with number of 1’s
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Pushdown Automata (PDA)

Slightly less vague idea:

for each 0 read, push a 0 on to the stack.
Then, for each 1 read, pop a 0 from the
stack.
If after reading the input the stack is
empty, accept.
Only stack operations allowed are:
pop/push! How to check if a stack is
empty with these operations?
before doing anything else, push a special
symbol, $, on to stack. If we ever read
this symbol again, the stack is empty!

q1start q2
ε, ε→ $

0, ε→ 0

q3

1, 0→ ε

1, 0→ ε

q4
ε, $→ ε
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Pushdown Automata (PDA)

1 w = 000111
Stack: $ (leftmost item is on top of stack)

2 w =
↓
000111

Stack: 0$

3 w = 0
↓
00111

Stack: 00$

4 w = 00
↓
0111

Stack: 000$

5 w = 000
↓
111

Stack: 00$

6 w = 0001
↓
11

Stack: 0$

7 w = 00011
↓
1

Stack: $

8 w = 000111
Stack:

q1start q2
ε, ε→ $

0, ε→ 0

q3

1, 0→ ε

1, 0→ ε

q4
ε, $→ ε
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Pushdown Automata (PDA)

so we can sort of count (compare numbers of 0’s and 1’s)

What about tracking input?
Consider language L2 = {wwR | w ∈ {0, 1}∗}
01011010 ∈ L2, 0110 ∈ L2. L2 is the language of even length 0, 1 palindromes
How to design a PDA that accepts L2?
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Pushdown Automata (PDA)

Intuitively: to check if input is of the
form wwR , push input on to stack, then
at some point compare the stack items to
input and, if equal, pop.

As before, before we do anything else,
add special symbol $ to stack.
If we read a 0 push a 0, if we read a 1
push a 1.
Nondeterministically guess when w has
been read and wR begins
Then if we read a 0 pop 0, if we read a 1
pop 1.
if the stack is empty, accept.

q1start q2
ε, ε→ $

0, ε→ 0
1, ε→ 1

q3

ε, ε→ ε

0, 0→ ε

1, 1→ ε

q4
ε, $→ ε
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PDA

Definition (PDA)

A PDA is a tuple (Q,Σ, Γ, δ, q0,F ) where Q,Σ, Γ,F are finite states and
1 Q is a set of states,
2 Σ is the input alphabet,
3 Γ is the stack alphabet,
4 δ : Q × Σε × Γε → P(Q × Γε) is the transition function
5 q0 ∈ Q is the start state, and
6 F ⊆ Q is the set of accepting states.
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This lecture

We want to show:

Theorem
A language is context-free if and only if some pushdown automaton recognizes it.

Step by step.... first we show:

Lemma
If a language is context-free then there exists a pushdown automaton that recognizes it.

In other words: given a CFG G , construct a PDA that recognizes L(G )!
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CFG->PDA

Lemma
If a language is context-free then there exists a pushdown automaton that recognizes it.

Proof idea:
construct a PDA that for input w determines if it has a valid derivation.

Use stack to store how far we’ve gotten in our derivation, i.e., the intermediate strings

S  aSb  aaSbb  aaεbb  aabb

PDA needs to find variables in order to substitute them (recall: can only access top of
stack) so if terminal is on top of stack, we compare to input
if top of stack is variable, we pop the variable and replace with the righthand side of a rule
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CFG→PDA

Lemma
If a language is context-free then there exists a pushdown automaton that recognizes it.

Proof idea: Intuitively, the PDA works as follows:

Place special symbol $ on stack
Repeat the following:

if the top of stack is a variable A, nondeterministically choose a rule A→ w , pop A and
push w

if top of stack is a terminal a, compare with next input symbol. If they match, pop a and
repeat. If they do not, reject this branch.
If top of stack is $, enter accept state.
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CFG→PDA

Place special symbol $ on stack, push
start variable S on to stack.
Repeat the following:
if the top of stack is a variable A,
nondeterministically choose a rule
A→ w , pop A and push w

if top of stack is a terminal a, compare
with next input symbol. If they match,
pop a and repeat. If they do not, reject
this branch.
If top of stack is $, enter accept state.

S  aSb  aaSbb  aaεbb  aabb

1 input: aabb
Stack: $

2 input: aabb
Stack: S$

3 input:
↓
aabb

Stack: aSb$

4 input: aabb
Stack: Sb$

5 input: a
↓
abb

Stack: aSbb$

6 input: aabb
Stack: Sbb$

7 input: aa
↓
bb

Stack: bb$

8 compare all terminals in stack to input
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CFG→PDA

Note how in the previous slide we added multiple symbols the stack in one step!

We popped S , and pushed aSb.

q r
ε, S → aSb →

q

q1 q2

r

ε,S → b

ε, ε→ S

ε, ε→ a

We will use this shorthand notation during the proof.
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CFG→PDA: Proof

Proof:
Given CFG G = (V ,Σ,R, S), we want to construct a PDA (Q,Σ, Γ, δ, q0,F ) that accepts
L(G ).

Let Q = {q0, qloop, qaccept} ∪ E , where E is the set of help states needed for our shorthand
notation (previous slide).
Before anything else, push $ and start variable on to stack: δ(q0, ε, ε) = {(qloop,S$)}.

INF2080 Lecture :: 8th February 19 / 37



CFG→PDA: Proof

Proof:
Given CFG G = (V ,Σ,R, S), we want to construct a PDA (Q,Σ, Γ, δ, q0,F ) that accepts
L(G ).
Let Q = {q0, qloop, qaccept} ∪ E , where E is the set of help states needed for our shorthand
notation (previous slide).

Before anything else, push $ and start variable on to stack: δ(q0, ε, ε) = {(qloop,S$)}.

INF2080 Lecture :: 8th February 19 / 37



CFG→PDA: Proof

Proof:
Given CFG G = (V ,Σ,R, S), we want to construct a PDA (Q,Σ, Γ, δ, q0,F ) that accepts
L(G ).
Let Q = {q0, qloop, qaccept} ∪ E , where E is the set of help states needed for our shorthand
notation (previous slide).
Before anything else, push $ and start variable on to stack: δ(q0, ε, ε) = {(qloop, S$)}.

INF2080 Lecture :: 8th February 19 / 37



CFG→PDA: Proof

Recall intuition:
if the top of stack is a variable A,
nondeterministically choose a rule
A→ w , pop A and push w

if top of stack is a terminal a, compare
with next input symbol. If they match,
repeat. If they do not, reject this branch.
If top of stack is $, enter accept state.

δ(qloop, ε,A) = {(qloop,w) | A→
w is a rule in R}
δ(qloop, a, a) = {(qloop, ε)}
δ(qloop, ε, $) = {(qaccept, ε)}
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CFG→ PDA

State diagram (without help states from shorthand notation):

q0

qloop

qaccept

ε, ε→ S$

ε,A→ w , for rule A→ w
a, a,→ ε, for terminal a

ε, $→ ε
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PDA→CFG

The other direction is much more involved....

For convenience, we assume our PDA has the
following properties

It has a single accept state qaccept (doable by creating a new accepting state with ε
transitions from all previous accept states)
It empties its stack before accepting (a loop on qaccept that empties the stack without
reading an input)
Each transition either pushes a symbol or pops a symbol, but does not do both at the
same time.
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PDA→CFG

Each transition either pushes a symbol or pops a symbol, but does not do both at the
same time.

q r
x , y → z

→
q

q1

r

x , y → ε ε, ε→ z

q r
x , ε→ ε

→
q

q1

r

x , ε→ # ε,#→ ε
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PDA→CFG

Idea: Given, PDA (Q,Σ, Γ, δ, q0,F ) create grammar where variables are Apq for states
p, q ∈ Q.

The variable Apq will generate all strings that take P from p to q with empty stacks.
...what does that mean?

 input s takes P from p to q with empty stacks if:
starting in p with an empty stack, after parsing the input s the PDA P ends in state q.
when P arrives at q, the stack is once again empty

Then Aq0qaccept will generate precisely the words the PDA accepts!
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PDA→CFG

Example:

q

r

s

x , ε→ x y , x → ε

string x does not take P from q to r with empty stacks, since the stack ends with an extra
x

string xy takes P from q to s with empty stacks, since the x that was pushed gets popped
in the last transition to s.
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PDA→CFG

Two possibilities:

q

r

s

u v

a, ε→ u b, ε→ x

b, x → ε

b, u → ε

Input abbb takes P from q to v with empty
stacks. Here the stack is never emptied in

between.

q

r

s

u v

a, ε→ u b, u → ε

b, ε→ x

b, x → ε

Input abbb takes P from q to v with empty
stacks. Here the stack is emptied at state s.
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PDA→CFG

Stack not emptied in between:

p

r

u

s q

a, ε→ u b, ε→ x

b, x → ε

b, u → ε

To address this case, add

Apq → aArsb

for every p, q, r , s ∈ Q, u ∈ Γ and a, b ∈ Σε such that δ(p, a, ε) contains (r , u) and δ(s, b, u)
contains (q, ε).
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Stack is emptied in between:

p

s

r

u q

a, ε→ u b, u → ε

b, ε→ x

b, x → ε

To address this case, add rule

Apq → AprArq

for all p, q, r ∈ Q
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PDA→CFG

Finally, add rules App → ε for all p ∈ Q.

Summarized:
Apq → aArsb for every p, q, r , s ∈ Q, u ∈ Γ and a, b ∈ Σε such that δ(p, a, ε) contains
(r , u) and δ(s, b, u) contains (q, ε),
Apq → AprArq for every p, q, r ∈ Q,
App → ε for all p ∈ Q

start variable: Aq0qaccept

INF2080 Lecture :: 8th February 29 / 37



PDA→CFG

Finally, add rules App → ε for all p ∈ Q.

Summarized:
Apq → aArsb for every p, q, r , s ∈ Q, u ∈ Γ and a, b ∈ Σε such that δ(p, a, ε) contains
(r , u) and δ(s, b, u) contains (q, ε),

Apq → AprArq for every p, q, r ∈ Q,
App → ε for all p ∈ Q

start variable: Aq0qaccept

INF2080 Lecture :: 8th February 29 / 37



PDA→CFG

Finally, add rules App → ε for all p ∈ Q.

Summarized:
Apq → aArsb for every p, q, r , s ∈ Q, u ∈ Γ and a, b ∈ Σε such that δ(p, a, ε) contains
(r , u) and δ(s, b, u) contains (q, ε),
Apq → AprArq for every p, q, r ∈ Q,

App → ε for all p ∈ Q

start variable: Aq0qaccept

INF2080 Lecture :: 8th February 29 / 37



PDA→CFG

Finally, add rules App → ε for all p ∈ Q.

Summarized:
Apq → aArsb for every p, q, r , s ∈ Q, u ∈ Γ and a, b ∈ Σε such that δ(p, a, ε) contains
(r , u) and δ(s, b, u) contains (q, ε),
Apq → AprArq for every p, q, r ∈ Q,
App → ε for all p ∈ Q

start variable: Aq0qaccept

INF2080 Lecture :: 8th February 29 / 37



PDA→CFG

We are done if we can show:

Lemma
If Apq generates x then x brings P from p to q with empty stacks.

Lemma
If x can bring P from p to q with empty stacks, Apq generates x .
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Apq → aArsb for every p, q, r, s ∈ Q, u ∈ Γ and a, b ∈ Σε such that δ(p, a, ε) contains (r, u) and δ(s, b, u) contains (q, ε),

Apq → AprArq for every p, q, r ∈ Q,

App → ε for all p ∈ Q

start variable: Aq0qaccept

Lemma
If Apq generates x then x brings P from p to q with empty stacks.

Proof by induction over number of derivation steps:
Base: Derivation has 1 step.

A derivation with 1 step uses a rule with no variables on the righthand side.
Only such rules are App → ε...

and ε takes P from p to p with empty stacks.X
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PDA→CFG
Apq → aArsb for every p, q, r, s ∈ Q, u ∈ Γ and a, b ∈ Σε such that δ(p, a, ε) contains (r, u) and δ(s, b, u) contains (q, ε),
Apq → AprArq for every p, q, r ∈ Q,
App → ε for all p ∈ Q

start variable: Aq0qaccept

Lemma
If Apq generates x then x brings P from p to q with empty stacks.

Proof by induction over number of derivation steps:
Step: assume true for derivations of length at most k ≥ 1.

Assume Apq derives x in k + 1 steps. Then the first rule applications is either
Apq → aArsb or Apq → AprArq

If Apq → aArsb was used, let y be generated by Ars such that x = ayb.
Ars derives y in at most k steps, hence the induction hypothesis tells us that y takes P
from r to s with empty stacks.
→ a brings P from p to r by pushing u, y brings P from r to s on empty stacks, b brings
PP from s to q by popping u. X
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Assume Apq derives x in k + 1 steps. Then the first rule applications is either
Apq → aArsb or Apq → AprArq

If Apq → AprArq was used, let x = yz such that y is generated by Apr and z is generated
by Arq.

Apr (resp. Arq) generates y (resp. z) in at most k steps.
Induction hypothesis tells us that y takes P from p to r with empty stacks, and z takes P
from r to q with empty stacks. X
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PDA→CFG

Apq → aArsb for every p, q, r, s ∈ Q, u ∈ Γ and a, b ∈ Σε such that δ(p, a, ε) contains (r, u) and δ(s, b, u) contains (q, ε),

Apq → AprArq for every p, q, r ∈ Q,

App → ε for all p ∈ Q

start variable: Aq0qaccept

Lemma
If x can bring P from p to q with empty stacks, Apq generates x .

Proof by induction over computation steps:
Base: computation has 0 steps.

A computation with 0 steps stays in the same state p and cannot read any input. Since
App → ε is a rule in G , base is proved. X

INF2080 Lecture :: 8th February 34 / 37



PDA→CFG

Apq → aArsb for every p, q, r, s ∈ Q, u ∈ Γ and a, b ∈ Σε such that δ(p, a, ε) contains (r, u) and δ(s, b, u) contains (q, ε),

Apq → AprArq for every p, q, r ∈ Q,

App → ε for all p ∈ Q

start variable: Aq0qaccept

Lemma
If x can bring P from p to q with empty stacks, Apq generates x .

Proof by induction over computation steps:
Base: computation has 0 steps.

A computation with 0 steps stays in the same state p and cannot read any input. Since
App → ε is a rule in G , base is proved. X

INF2080 Lecture :: 8th February 34 / 37



PDA→CFG

Apq → aArsb for every p, q, r, s ∈ Q, u ∈ Γ and a, b ∈ Σε such that δ(p, a, ε) contains (r, u) and δ(s, b, u) contains (q, ε),

Apq → AprArq for every p, q, r ∈ Q,

App → ε for all p ∈ Q

start variable: Aq0qaccept

Lemma
If x can bring P from p to q with empty stacks, Apq generates x .

Proof by induction over computation steps:
Base: computation has 0 steps.

A computation with 0 steps stays in the same state p and cannot read any input. Since
App → ε is a rule in G , base is proved.

X

INF2080 Lecture :: 8th February 34 / 37



PDA→CFG

Apq → aArsb for every p, q, r, s ∈ Q, u ∈ Γ and a, b ∈ Σε such that δ(p, a, ε) contains (r, u) and δ(s, b, u) contains (q, ε),

Apq → AprArq for every p, q, r ∈ Q,

App → ε for all p ∈ Q

start variable: Aq0qaccept

Lemma
If x can bring P from p to q with empty stacks, Apq generates x .

Proof by induction over computation steps:
Base: computation has 0 steps.

A computation with 0 steps stays in the same state p and cannot read any input. Since
App → ε is a rule in G , base is proved. X

INF2080 Lecture :: 8th February 34 / 37



PDA→CFG

Apq → aArsb for every p, q, r, s ∈ Q, u ∈ Γ and a, b ∈ Σε such that δ(p, a, ε) contains (r, u) and δ(s, b, u) contains (q, ε),

Apq → AprArq for every p, q, r ∈ Q,

App → ε for all p ∈ Q

start variable: Aq0qaccept

Lemma
If x can bring P from p to q with empty stacks, Apq generates x .

Proof by induction over computation steps:
Step: Assume true for computations of length at most k .

Assume P has a computation where input x takes it from state p to q with empty stacks
that takes k + 1 steps.
Two cases: either the stack is only empty at the beginning and end, or it is emptied in
betwen.
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Apq → aArsb for every p, q, r, s ∈ Q, u ∈ Γ and a, b ∈ Σε such that δ(p, a, ε) contains (r, u) and δ(s, b, u) contains (q, ε),
Apq → AprArq for every p, q, r ∈ Q,
App → ε for all p ∈ Q

start variable: Aq0qaccept

Lemma
If x can bring P from p to q with empty stacks, Apq generates x .

First case (empty only at beginning and end):
Symbol u pushed in the first step must be the same symbol popped in the last step

Let a denote the input read in step 1, b the input in the last step, r the state after the
first move, s the state before the last move.
Then Apq → aArsb is in G .
Let x = ayb. y takes P from r to s with empty stacks in k − 1 steps
induction hypothesis ⇒ Ars generates y .
⇒ Apq generates x .

INF2080 Lecture :: 8th February 36 / 37



PDA→CFG
Apq → aArsb for every p, q, r, s ∈ Q, u ∈ Γ and a, b ∈ Σε such that δ(p, a, ε) contains (r, u) and δ(s, b, u) contains (q, ε),
Apq → AprArq for every p, q, r ∈ Q,
App → ε for all p ∈ Q

start variable: Aq0qaccept

Lemma
If x can bring P from p to q with empty stacks, Apq generates x .

First case (empty only at beginning and end):
Symbol u pushed in the first step must be the same symbol popped in the last step
Let a denote the input read in step 1, b the input in the last step, r the state after the
first move, s the state before the last move.

Then Apq → aArsb is in G .
Let x = ayb. y takes P from r to s with empty stacks in k − 1 steps
induction hypothesis ⇒ Ars generates y .
⇒ Apq generates x .

INF2080 Lecture :: 8th February 36 / 37



PDA→CFG
Apq → aArsb for every p, q, r, s ∈ Q, u ∈ Γ and a, b ∈ Σε such that δ(p, a, ε) contains (r, u) and δ(s, b, u) contains (q, ε),
Apq → AprArq for every p, q, r ∈ Q,
App → ε for all p ∈ Q

start variable: Aq0qaccept

Lemma
If x can bring P from p to q with empty stacks, Apq generates x .

First case (empty only at beginning and end):
Symbol u pushed in the first step must be the same symbol popped in the last step
Let a denote the input read in step 1, b the input in the last step, r the state after the
first move, s the state before the last move.
Then Apq → aArsb is in G .

Let x = ayb. y takes P from r to s with empty stacks in k − 1 steps
induction hypothesis ⇒ Ars generates y .
⇒ Apq generates x .

INF2080 Lecture :: 8th February 36 / 37



PDA→CFG
Apq → aArsb for every p, q, r, s ∈ Q, u ∈ Γ and a, b ∈ Σε such that δ(p, a, ε) contains (r, u) and δ(s, b, u) contains (q, ε),
Apq → AprArq for every p, q, r ∈ Q,
App → ε for all p ∈ Q

start variable: Aq0qaccept

Lemma
If x can bring P from p to q with empty stacks, Apq generates x .

First case (empty only at beginning and end):
Symbol u pushed in the first step must be the same symbol popped in the last step
Let a denote the input read in step 1, b the input in the last step, r the state after the
first move, s the state before the last move.
Then Apq → aArsb is in G .
Let x = ayb. y takes P from r to s with empty stacks in k − 1 steps

induction hypothesis ⇒ Ars generates y .
⇒ Apq generates x .

INF2080 Lecture :: 8th February 36 / 37



PDA→CFG
Apq → aArsb for every p, q, r, s ∈ Q, u ∈ Γ and a, b ∈ Σε such that δ(p, a, ε) contains (r, u) and δ(s, b, u) contains (q, ε),
Apq → AprArq for every p, q, r ∈ Q,
App → ε for all p ∈ Q

start variable: Aq0qaccept

Lemma
If x can bring P from p to q with empty stacks, Apq generates x .

First case (empty only at beginning and end):
Symbol u pushed in the first step must be the same symbol popped in the last step
Let a denote the input read in step 1, b the input in the last step, r the state after the
first move, s the state before the last move.
Then Apq → aArsb is in G .
Let x = ayb. y takes P from r to s with empty stacks in k − 1 steps
induction hypothesis ⇒ Ars generates y .

⇒ Apq generates x .

INF2080 Lecture :: 8th February 36 / 37



PDA→CFG
Apq → aArsb for every p, q, r, s ∈ Q, u ∈ Γ and a, b ∈ Σε such that δ(p, a, ε) contains (r, u) and δ(s, b, u) contains (q, ε),
Apq → AprArq for every p, q, r ∈ Q,
App → ε for all p ∈ Q

start variable: Aq0qaccept

Lemma
If x can bring P from p to q with empty stacks, Apq generates x .

First case (empty only at beginning and end):
Symbol u pushed in the first step must be the same symbol popped in the last step
Let a denote the input read in step 1, b the input in the last step, r the state after the
first move, s the state before the last move.
Then Apq → aArsb is in G .
Let x = ayb. y takes P from r to s with empty stacks in k − 1 steps
induction hypothesis ⇒ Ars generates y .
⇒ Apq generates x .

INF2080 Lecture :: 8th February 36 / 37



PDA→CFG
Apq → aArsb for every p, q, r, s ∈ Q, u ∈ Γ and a, b ∈ Σε such that δ(p, a, ε) contains (r, u) and δ(s, b, u) contains (q, ε),

Apq → AprArq for every p, q, r ∈ Q,

App → ε for all p ∈ Q

start variable: Aq0qaccept

Lemma
If x can bring P from p to q with empty stacks, Apq generates x .

Second case (empty inbetween):

Let r be a state where the stack empties other than at the beginning and end of the
computation of x .
Then the computations from p to r (call its parsed input y) and from r to q (call its
parsed input z) contain at most k steps.
induction hypothesis ⇒ Apr (resp. Arq) generates y (resp. z)
Then Apq generates x = yz .

INF2080 Lecture :: 8th February 37 / 37



PDA→CFG
Apq → aArsb for every p, q, r, s ∈ Q, u ∈ Γ and a, b ∈ Σε such that δ(p, a, ε) contains (r, u) and δ(s, b, u) contains (q, ε),

Apq → AprArq for every p, q, r ∈ Q,

App → ε for all p ∈ Q

start variable: Aq0qaccept

Lemma
If x can bring P from p to q with empty stacks, Apq generates x .

Second case (empty inbetween):
Let r be a state where the stack empties other than at the beginning and end of the
computation of x .

Then the computations from p to r (call its parsed input y) and from r to q (call its
parsed input z) contain at most k steps.
induction hypothesis ⇒ Apr (resp. Arq) generates y (resp. z)
Then Apq generates x = yz .

INF2080 Lecture :: 8th February 37 / 37



PDA→CFG
Apq → aArsb for every p, q, r, s ∈ Q, u ∈ Γ and a, b ∈ Σε such that δ(p, a, ε) contains (r, u) and δ(s, b, u) contains (q, ε),

Apq → AprArq for every p, q, r ∈ Q,

App → ε for all p ∈ Q

start variable: Aq0qaccept

Lemma
If x can bring P from p to q with empty stacks, Apq generates x .

Second case (empty inbetween):
Let r be a state where the stack empties other than at the beginning and end of the
computation of x .
Then the computations from p to r (call its parsed input y) and from r to q (call its
parsed input z) contain at most k steps.

induction hypothesis ⇒ Apr (resp. Arq) generates y (resp. z)
Then Apq generates x = yz .

INF2080 Lecture :: 8th February 37 / 37



PDA→CFG
Apq → aArsb for every p, q, r, s ∈ Q, u ∈ Γ and a, b ∈ Σε such that δ(p, a, ε) contains (r, u) and δ(s, b, u) contains (q, ε),

Apq → AprArq for every p, q, r ∈ Q,

App → ε for all p ∈ Q

start variable: Aq0qaccept

Lemma
If x can bring P from p to q with empty stacks, Apq generates x .

Second case (empty inbetween):
Let r be a state where the stack empties other than at the beginning and end of the
computation of x .
Then the computations from p to r (call its parsed input y) and from r to q (call its
parsed input z) contain at most k steps.
induction hypothesis ⇒ Apr (resp. Arq) generates y (resp. z)

Then Apq generates x = yz .

INF2080 Lecture :: 8th February 37 / 37



PDA→CFG
Apq → aArsb for every p, q, r, s ∈ Q, u ∈ Γ and a, b ∈ Σε such that δ(p, a, ε) contains (r, u) and δ(s, b, u) contains (q, ε),

Apq → AprArq for every p, q, r ∈ Q,

App → ε for all p ∈ Q

start variable: Aq0qaccept

Lemma
If x can bring P from p to q with empty stacks, Apq generates x .

Second case (empty inbetween):
Let r be a state where the stack empties other than at the beginning and end of the
computation of x .
Then the computations from p to r (call its parsed input y) and from r to q (call its
parsed input z) contain at most k steps.
induction hypothesis ⇒ Apr (resp. Arq) generates y (resp. z)
Then Apq generates x = yz .

INF2080 Lecture :: 8th February 37 / 37


