INF2080

Context-Free Langugaes: Pushdown Automata

Daniel Lupp

Universitetet i Oslo

8th February 2018

Department of

‘ Informatics

INF2080 Lecture :: 8th February 1/37

University of
Oslo

-
Repetition

@ Defined context-free grammars (CFGs):

INF2080 Lecture :: 8th February 2 /37

-
Repetition

@ Defined context-free grammars (CFGs):
contain rules of the form A — X1 X5 --- X,, where A is a variable and X; are variables or
terminals

INF2080 Lecture :: 8th February 2 /37

Repetition

@ Defined context-free grammars (CFGs):
contain rules of the form A — X1 X5 --- X,, where A is a variable and X; are variables or

terminals
Example:

S —0S1
S—e¢

INF2080 Lecture :: 8th February 2 /37

Repetition

@ Defined context-free grammars (CFGs):
contain rules of the form A — X1 X5 --- X,, where A is a variable and X; are variables or

terminals
Example:

S — 0851
L={0"1"|n>0}
S—e¢

INF2080 Lecture :: 8th February 2 /37

Repetition

@ Defined context-free grammars (CFGs):
contain rules of the form A — X1 X5 --- X,, where A is a variable and X; are variables or

terminals
Example:

S — 0851

L={0"1"|n>0
Soe {0717 n > 0y

o CFGs generate context-free languages

INF2080 Lecture :: 8th February 2 /37

Repetition

@ Defined context-free grammars (CFGs):
contain rules of the form A — X1 X5 --- X,, where A is a variable and X; are variables or

terminals
Example:

5 — 051

L={0"1"|n>0}
S—e¢

o CFGs generate context-free languages

@ We've seen {Regular Languages}C {Context-free Languages}

INF2080 Lecture :: 8th February 2 /37

-
Computational Models

@ We've seen {Regular Languages}C {Context-free Languages}

e NFA/DFA/RE/GNFA were all equivalent computational models that describe/accept
regular languages

INF2080 Lecture :: 8th February 3 /37

-
Computational Models

@ We've seen {Regular Languages}C {Context-free Languages}

e NFA/DFA/RE/GNFA were all equivalent computational models that describe/accept
regular languages

@ What computational model accepts context-free languages?

INF2080 Lecture :: 8th February 3 /37

-
Computational Models

@ We've seen {Regular Languages}C {Context-free Languages}

e NFA/DFA/RE/GNFA were all equivalent computational models that describe/accept
regular languages

@ What computational model accepts context-free languages? — pushdown automatal

INF2080 Lecture :: 8th February 3 /37

o
Pushdown Automata (PDA)

e DFA/NFA/RE/GNFA were all computational models with finite memory

INF2080 Lecture :: 8th February 4 /37

o
Pushdown Automata (PDA)

e DFA/NFA/RE/GNFA were all computational models with finite memory

@ we now add a (very limited) form of infinite memory: a stack (LIFO principle: last in, first
out)

INF2080 Lecture :: 8th February 4 /37

Pushdown Automata (PDA)

e DFA/NFA/RE/GNFA were all computational models with finite memory

@ we now add a (very limited) form of infinite memory: a stack (LIFO principle: last in, first
out)

@ So, essentially, PDA’s are NFA's with an additional stack

INF2080 Lecture :: 8th February 4 /37

o
Pushdown Automata (PDA)

@ NFA's transitioned from one state to another according to the current input

INF2080 Lecture :: 8th February 5 /37

Pushdown Automata (PDA)

@ NFA's transitioned from one state to another according to the current input

Transitions:

INF2080 Lecture :: 8th February 5 /37

Pushdown Automata (PDA)

@ NFA's transitioned from one state to another according to the current input

Transitions:

@ PDA’s can access a stack in addition to the input:

INF2080 Lecture :: 8th February 5 /37

Pushdown Automata (PDA)

@ NFA's transitioned from one state to another according to the current input

Transitions:

@ PDA’s can access a stack in addition to the input:

Transitions:

(: 0, pop x, push y

INF2080 Lecture :: 8th February 5 /37

Pushdown Automata (PDA)

For notational ease, we sketch these transition as follows:

w,popx,pushy W,X—>y
:)_, - : >

INF2080 Lecture :: 8th February 6 /37

Pushdown Automata (PDA)

For notational ease, we sketch these transition as follows:

w,popx,pushy W,X—>y
:)_, - : >

@ w,x — y: read input w, pop x from stack, push y on to stack

INF2080 Lecture :: 8th February 6 /37

Pushdown Automata (PDA)

For notational ease, we sketch these transition as follows:

w, pop x, push y w, X — _y
%

@ w,x — y: read input w, pop x from stack, push y on to stack

@ w,x — &: read input w, pop x from stack

INF2080 Lecture :: 8th February 6 /37

Pushdown Automata (PDA)

For notational ease, we sketch these transition as follows:

w, pop x, push y w, X — _y
%

@ w,x — y: read input w, pop x from stack, push y on to stack
@ w,x — &: read input w, pop x from stack

@ w,e — y: read input w, push y on to stack

INF2080 Lecture :: 8th February 6 /37

Pushdown Automata (PDA)

For notational ease, we sketch these transition as follows:

w, pop x, push y w, X — _y
%

w,x — y: read input w, pop x from stack, push y on to stack

w,x — &: read input w, pop x from stack

w,e — y: read input w, push y on to stack

g,x — y: read no input, perform stack operations as described above (x and/or y may be

€)

INF2080 Lecture :: 8th February 6 /37

o
Pushdown Automata (PDA)

@ So what does the stack let us do?

INF2080 Lecture :: 8th February 7 /37

o
Pushdown Automata (PDA)

@ So what does the stack let us do?

e Counting?

INF2080 Lecture :: 8th February 7 /37

o
Pushdown Automata (PDA)

@ So what does the stack let us do?
e Counting?
@ Storing read input?

INF2080 Lecture :: 8th February 7 /37

o
Pushdown Automata (PDA)

So what does the stack let us do?
Counting?
Storing read input?

...more?

INF2080 Lecture :: 8th February 7 /37

o
Pushdown Automata (PDA)

Consider grammar:
S — 051

S—>e¢

o Generates all 0*1* words with equal number of 0's and 1's.

INF2080 Lecture :: 8th February 8 /37

o
Pushdown Automata (PDA)

Consider grammar:

S — 051
S—e¢

o Generates all 0*1* words with equal number of 0's and 1's.

@ Can we define a PDA that accepts this language?

INF2080 Lecture :: 8th February 8 /37

o
Pushdown Automata (PDA)

Consider grammar:

S — 051
S—e¢

o Generates all 0*1* words with equal number of 0's and 1's.
@ Can we define a PDA that accepts this language?

@ vague idea: keep track of number of 0's using the stack, compare with number of 1's

INF2080 Lecture :: 8th February 8 /37

o
Pushdown Automata (PDA)

Slightly less vague idea:

INF2080 Lecture :: 8th February 9 /37

o
Pushdown Automata (PDA)

Slightly less vague idea:
@ for each 0 read, push a 0 on to the stack.

@ Then, for each 1 read, pop a 0 from the
stack.

o If after reading the input the stack is
empty, accept.

INF2080 Lecture :: 8th February 9 /37

Pushdown Automata (PDA)

Slightly less vague idea:
@ for each 0 read, push a 0 on to the stack.

@ Then, for each 1 read, pop a 0 from the
stack.

o If after reading the input the stack is
empty, accept.

@ Only stack operations allowed are:
pop/push! How to check if a stack is
empty with these operations?

INF2080 Lecture :: 8th February 9 /37

o
Pushdown Automata (PDA)

Slightly less vague idea:
@ for each 0 read, push a 0 on to the stack.

@ Then, for each 1 read, pop a 0 from the
stack.

o If after reading the input the stack is
empty, accept.

@ Only stack operations allowed are:
pop/push! How to check if a stack is
empty with these operations?

@ before doing anything else, push a special
symbol, $, on to stack.

INF2080 Lecture :: 8th February 9 /37

o
Pushdown Automata (PDA)

Slightly less vague idea:
@ for each 0 read, push a 0 on to the stack.

@ Then, for each 1 read, pop a 0 from the
stack.

o If after reading the input the stack is
empty, accept.

@ Only stack operations allowed are:
pop/push! How to check if a stack is
empty with these operations?

@ before doing anything else, push a special

symbol, $, on to stack. If we ever read
this symbol again, the stack is empty!

INF2080 Lecture :: 8th February 9 /37

Pushdown Automata (PDA)

Slightly less vague idea:
@ for each 0 read, push a 0 on to the stack.

@ Then, for each 1 read, pop a 0 from the ‘ g,e —$
start —
stack.

o If after reading the input the stack is
empty, accept.

@ Only stack operations allowed are:
pop/push! How to check if a stack is
empty with these operations?

@ before doing anything else, push a special

symbol, $, on to stack. If we ever read
this symbol again, the stack is empty!

Pushdown Automata (PDA)

Slightly less vague idea: 0,e —0
@ for each 0 read, push a 0 on to the stack.

@ Then, for each 1 read, pop a 0 from the ‘ g,e —$
start —
stack.

o If after reading the input the stack is
empty, accept.

@ Only stack operations allowed are:
pop/push! How to check if a stack is
empty with these operations?

@ before doing anything else, push a special

symbol, $, on to stack. If we ever read
this symbol again, the stack is empty!

Pushdown Automata (PDA)

Slightly less vague idea: 0,e —0
@ for each 0 read, push a 0 on to the stack.

@ Then, for each 1 read, pop a 0 from the ‘ g,e —$ @
start —
stack.

o If after reading the input the stack is

empty, accept. 1.0 - ¢

@ Only stack operations allowed are:

pop/push! How to check if a stack is

empty with these operations?
@ before doing anything else, push a special

symbol, $, on to stack. If we ever read

this symbol again, the stack is empty!

Pushdown Automata (PDA)

Slightly less vague idea: 0,e —0
@ for each 0 read, push a 0 on to the stack.

@ Then, for each 1 read, pop a 0 from the ‘ g,e —$ @
start —
stack.

o If after reading the input the stack is

empty, accept. 1.0 - ¢

@ Only stack operations allowed are:

pop/push! How to check if a stack is

empty with these operations? e
@ before doing anything else, push a special

symbol, $, on to stack. If we ever read

this symbol again, the stack is empty! 1,0—e

Pushdown Automata (PDA)

Slightly less vague idea: 0,e —0
@ for each 0 read, push a 0 on to the stack.

@ Then, for each 1 read, pop a 0 from the ‘ g,e —$ @
start —
stack.

o If after reading the input the stack is

empty, accept. 10—¢

@ Only stack operations allowed are:
pop/push! How to check if a stack is

empty with these operations? e
@ before doing anything else, push a special e¥—e
symbol, $, on to stack. If we ever read

this symbol again, the stack is empty! 1,0—e

INF2080 Lecture :: 8th February 9 /37

Pushdown Automata (PDA)

0,e =0

e,e—$
start —

1,0—e¢

g% —e 9

1,0 > ¢

w = 000111
Stack: $ (leftmost item is on top of stack)

INF2080 Lecture :: 8th February 10 / 37

Pushdown Automata (PDA)

0,e =0
w = 000111
Stack: $ (leftmost item is on top of stack)

Qo ce S
ack: start —

1,0—e¢

g% —e 9

1,0 > ¢

INF2080 Lecture :: 8th February 10 / 37

Pushdown Automata (PDA)

w = 000111 0,e =0
Stack: $ (leftmost item is on top of stack)

L
w = 000111
2] g,e—$
k:)
© v =o00111

Stack: 00%

1,0—e¢

g% —e 9

1,0 —¢

INF2080 Lecture :: 8th February 10 / 37

Pushdown Automata (PDA)

0,e =0
w = 000111
Stack: $ (leftmost item is on top of stack)

1
@ w =0oo111 57€_>$
Stack: 0%
. start —
© v =o00111
Stack: 00%

1
w = 000111
Stack: 000$
1,0—e¢

e,$—¢ 9

1,0 —¢

INF2080 Lecture :: 8th February 10 / 37

Pushdown Automata (PDA)

0,e =0
w = 000111
Stack: $ (leftmost item is on top of stack)

1
@ w =0oo111 c.e—=$
.)
Stack¢0$ start e
© v =o00111

Stack: 00%

1
w = 000111
Stack: 000$

. 1,0—e¢
w = 000111
Stack: 00%

87 $ — € E
1,0 —¢

INF2080 Lecture :: 8th February 10 / 37

Pushdown Automata (PDA)

0,e =0
w = 000111
Stack: $ (leftmost item is on top of stack)

1
@ w =0oo111 c.e—=$
.)
Stack¢0$ start e
© v =o00111

Stack: 00%

1
w = 000111
Stack: 000$
1,0—e¢

+
w = 000111
Stack: 00%

i
@ v =oo0111
Stack: 0% @
e,$—¢

INF2080

1,0 —¢

Lecture :: 8th February 10 / 37

Pushdown Automata (PDA)

0,e =0
w = 000111
Stack: $ (leftmost item is on top of stack)

1
@ w =0oo111 c.e—=$
.)
Stack¢0$ start e
© v =o00111

Stack: 00%

1
w = 000111
Stack: 000$
1,0—e¢

+
w = 000111
Stack: 00%

L
@ v =oo0111
Stack: 0%
1
@ v = ooo111 g% —e
Stack: $

INF2080

1,0 —¢

Lecture :: 8th February 10 / 37

Pushdown Automata (PDA)

0,e —>0
w = 000111

Stack: $ (leftmost item is on top of stack)

1
@ w =0oo111 c.e—=$
.)
Stack¢0$ start e
© v =o00111

INF2080

Stack: 00%

1
w = 000111
Stack: 000$
1,0— ¢

+
w = 000111
Stack: 00%

L
@ v =oo0111
Stack: 0%
4
@ v = ooo111 g% —e
Stack: $
w = 000111

Stack: 1’ 0 e

Lecture :: 8th February 10 / 37

o
Pushdown Automata (PDA)

@ so we can sort of count (compare numbers of 0's and 1's)

INF2080 Lecture :: 8th February 11 / 37

o
Pushdown Automata (PDA)

@ so we can sort of count (compare numbers of 0's and 1's)

e What about tracking input?

INF2080 Lecture :: 8th February 11 / 37

o
Pushdown Automata (PDA)

@ so we can sort of count (compare numbers of 0's and 1's)
e What about tracking input?

o Consider language Ly = {ww® | w € {0,1}*}

e 01011010 € Ly, 0110 € L,.

INF2080 Lecture :: 8th February 11 / 37

o
Pushdown Automata (PDA)

@ so we can sort of count (compare numbers of 0's and 1's)

e What about tracking input?

e Consider language Ly = {wwf | w € {0,1}*}

@ 01011010 € Ly, 0110 € L. L, is the language of even length 0,1 palindromes

INF2080 Lecture :: 8th February 11 / 37

o
Pushdown Automata (PDA)

so we can sort of count (compare numbers of 0's and 1's)

What about tracking input?

Consider language L, = {wwf | w € {0,1}*}

01011010 € Ly, 0110 € Ly. Ly is the language of even length 0,1 palindromes
How to design a PDA that accepts L5?

INF2080 Lecture :: 8th February 11 / 37

Pushdown Automata (PDA)

@ Intuitively: to check if input is of the
form wwf, push input on to stack, then
at some point compare the stack items to
input and, if equal, pop.

INF2080 Lecture :: 8th February 12 / 37

o
Pushdown Automata (PDA)

@ Intuitively: to check if input is of the
form wwf, push input on to stack, then
at some point compare the stack items to
input and, if equal, pop.

@ As before, before we do anything else,
add special symbol $ to stack.

INF2080 Lecture :: 8th February 12 / 37

o
Pushdown Automata (PDA)

@ Intuitively: to check if input is of the
form wwf, push input on to stack, then
at some point compare the stack items to
input and, if equal, pop.

@ As before, before we do anything else,
add special symbol $ to stack.

@ If we read a 0 push a 0, if we read a 1
push a 1.

INF2080 Lecture :: 8th February 12 / 37

Pushdown Automata (PDA)

@ Intuitively: to check if input is of the
form wwf, push input on to stack, then
at some point compare the stack items to
input and, if equal, pop.

@ As before, before we do anything else,
add special symbol $ to stack.

@ If we read a 0 push a 0, if we read a 1
push a 1.

@ Nondeterministically guess when w has
been read and w® begins

INF2080 Lecture :: 8th February 12 / 37

o
Pushdown Automata (PDA)

@ Intuitively: to check if input is of the
form wwf, push input on to stack, then
at some point compare the stack items to
input and, if equal, pop.

@ As before, before we do anything else,
add special symbol $ to stack.

@ If we read a 0 push a 0, if we read a 1
push a 1.

@ Nondeterministically guess when w has
been read and w® begins

@ Then if we read a0 pop 0, if weread a 1
pop 1.

INF2080 Lecture :: 8th February 12 / 37

o
Pushdown Automata (PDA)

@ Intuitively: to check if input is of the
form wwf, push input on to stack, then
at some point compare the stack items to
input and, if equal, pop.

@ As before, before we do anything else,
add special symbol $ to stack.

@ If we read a 0 push a 0, if we read a 1
push a 1.

@ Nondeterministically guess when w has
been read and w® begins

@ Then if we read a0 pop 0, if weread a 1
pop 1.
o if the stack is empty, accept.

INF2080 Lecture :: 8th February 12 / 37

Pushdown Automata (PDA)

@ Intuitively: to check if input is of the
form wwf, push input on to stack, then
at some point compare the stack items to

: : . g,e— 9%
input and, if equal, pop. start H ;
@ As before, before we do anything else,

add special symbol $ to stack.

@ If we read a 0 push a 0, if we read a 1
push a 1.

@ Nondeterministically guess when w has
been read and w® begins

@ Then if we read a0 pop 0, if weread a 1
pop 1.
o if the stack is empty, accept.

Pushdown Automata (PDA)

@ Intuitively: to check if input is of the
form wwf, push input on to stack, then
at some point compare the stack items to

input and, if equal, pop. ctart H e,e =% e 0
@ As before, before we do anything else,

le—>1
add special symbol $ to stack.

@ If we read a 0 push a 0, if we read a 1
push a 1.

@ Nondeterministically guess when w has
been read and w® begins

@ Then if we read a0 pop 0, if weread a 1
pop 1.
o if the stack is empty, accept.

Pushdown Automata (PDA)

Intuitively: to check if input is of the
form wwf, push input on to stack, then
at some point compare the stack items to

)) . e,e =%
input and, if equal, pop. ctart H @ 0,60
As before, before we do anything else,

le—>1
add special symbol $ to stack.

If we read a 0 push a 0, if we read a 1 £, > €
push a 1.

Nondeterministically guess when w has

been read and w® begins
Then if we read a 0 pop O, if we read a 1

pop 1.

if the stack is empty, accept.

Pushdown Automata (PDA)

Intuitively: to check if input is of the
form wwf, push input on to stack, then
at some point compare the stack items to

)) . e,e =%
input and, if equal, pop. ctart H @ 0,60
As before, before we do anything else,

le—>1
add special symbol $ to stack.

If we read a 0 push a 0, if we read a 1 £, > €

push a 1.

Nondeterministically guess when w has

been read and w® begins 0,0 —¢
Then if we read a 0 pop O, if we read a 1 1,1—e¢
pop 1.

if the stack is empty, accept.

Pushdown Automata (PDA)

@ Intuitively: to check if input is of the
form wwf, push input on to stack, then
at some point compare the stack items to

)) . e,e =%
input and, if equal, pop. start H @ 0, 50
@ As before, before we do anything else,

le—>1
add special symbol $ to stack.

@ If we read a 0 push a 0, if we read a 1 €,6 ¢
push a 1.

@ Nondeterministically guess when w has
been read and wf begins 0,0 —¢
,$—e¢

@ Then if we read a0 pop 0, if weread a 1 1,1—e¢
pop 1.
o if the stack is empty, accept.

INF2080 Lecture :: 8th February 12 / 37

PDA

Definition (PDA)
A PDA is a tuple (Q,X,T, 6, qo, F) where Q, %, T, F are finite states and
@ Q is a set of states,
© X is the input alphabet,
© T is the stack alphabet,
Q §: QxX.xT.— P(Q xT.) is the transition function
@ o € Q is the start state, and
O F C Q is the set of accepting states.

INF2080 Lecture :: 8th February

13 / 37

e
This lecture

We want to show:

Theorem

A language is context-free if and only if some pushdown automaton recognizes it. J

INF2080 Lecture :: 8th February 14 / 37

This lecture

We want to show:
Theorem

A language is context-free if and only if some pushdown automaton recognizes it.

Step by step.... first we show:

Lemma

If a language is context-free then there exists a pushdown automaton that recognizes it.

INF2080 Lecture :: 8th February 14 / 37

This lecture

We want to show:
Theorem

A language is context-free if and only if some pushdown automaton recognizes it.

Step by step.... first we show:

Lemma

If a language is context-free then there exists a pushdown automaton that recognizes it.

In other words: given a CFG G, construct a PDA that recognizes L(G)!

INF2080 Lecture :: 8th February 14 / 37

o
CFG->PDA

Lemma
If a language is context-free then there exists a pushdown automaton that recognizes it. J

Proof idea:

@ construct a PDA that for input w determines if it has a valid derivation.

INF2080 Lecture :: 8th February 15 / 37

o
CFG->PDA

Lemma
If a language is context-free then there exists a pushdown automaton that recognizes it. J

Proof idea:
@ construct a PDA that for input w determines if it has a valid derivation.

@ Use stack to store how far we've gotten in our derivation, i.e., the intermediate strings

S ~ aSb ~~ aaSbb ~~ aasbb ~~ aabb

INF2080 Lecture :: 8th February 15 / 37

o
CFG->PDA

Lemma
If a language is context-free then there exists a pushdown automaton that recognizes it. J

Proof idea:
@ construct a PDA that for input w determines if it has a valid derivation.

@ Use stack to store how far we've gotten in our derivation, i.e., the intermediate strings

S ~ aSb ~~ aaSbb ~~ aasbb ~~ aabb

@ PDA needs to find variables in order to substitute them (recall: can only access top of
stack) so if terminal is on top of stack, we compare to input

INF2080 Lecture :: 8th February 15 / 37

o
CFG->PDA

Lemma
If a language is context-free then there exists a pushdown automaton that recognizes it. J

Proof idea:
@ construct a PDA that for input w determines if it has a valid derivation.

@ Use stack to store how far we've gotten in our derivation, i.e., the intermediate strings

S ~ aSb ~~ aaSbb ~~ aasbb ~~ aabb

@ PDA needs to find variables in order to substitute them (recall: can only access top of
stack) so if terminal is on top of stack, we compare to input

o if top of stack is variable, we pop the variable and replace with the righthand side of a rule

INF2080 Lecture :: 8th February 15 / 37

o
CFG—PDA

Lemma
If a language is context-free then there exists a pushdown automaton that recognizes it. J

Proof idea: Intuitively, the PDA works as follows:

@ Place special symbol $ on stack

@ Repeat the following:

INF2080 Lecture :: 8th February 16 / 37

o
CFG—PDA

Lemma
If a language is context-free then there exists a pushdown automaton that recognizes it. J

Proof idea: Intuitively, the PDA works as follows:

@ Place special symbol $ on stack
@ Repeat the following:

o if the top of stack is a variable A, nondeterministically choose a rule A — w, pop A and
push w

INF2080 Lecture :: 8th February 16 / 37

o
CFG—PDA

Lemma J

If a language is context-free then there exists a pushdown automaton that recognizes it.

Proof idea: Intuitively, the PDA works as follows:

INF2080

Place special symbol $ on stack
Repeat the following:

if the top of stack is a variable A, nondeterministically choose a rule A — w, pop A and
push w

if top of stack is a terminal a, compare with next input symbol. If they match, pop a and
repeat. If they do not, reject this branch.

Lecture :: 8th February 16 / 37

o
CFG—PDA

Lemma
If a language is context-free then there exists a pushdown automaton that recognizes it. J

Proof idea: Intuitively, the PDA works as follows:

@ Place special symbol $ on stack
@ Repeat the following:

o if the top of stack is a variable A, nondeterministically choose a rule A — w, pop A and
push w

o if top of stack is a terminal a, compare with next input symbol. If they match, pop a and
repeat. If they do not, reject this branch.

@ If top of stack is $, enter accept state.

INF2080 Lecture :: 8th February 16 / 37

o
CFG—PDA

@ Place special symbol $ on stack, push S ~s 2Sh ~» 22Sbhb ~» aachb ~ 2abb
start variable S on to stack.

@ Repeat the following:

o if the top of stack is a variable A,
nondeterministically choose a rule
A — w, pop A and push w

e if top of stack is a terminal a, compare
with next input symbol. If they match,
pop a and repeat. If they do not, reject
this branch.

o If top of stack is $, enter accept state.

INF2080 Lecture :: 8th February 17 / 37

CFG—PDA
@ Place special symbol $ on stack, push S ~s 2Sh ~» 22Sbhb ~» aachb ~ 2abb
start variable S on to stack.
@ Repeat the following: © input: sabb
Stack: $

o if the top of stack is a variable A,
nondeterministically choose a rule
A — w, pop A and push w

e if top of stack is a terminal a, compare
with next input symbol. If they match,
pop a and repeat. If they do not, reject
this branch.

o If top of stack is $, enter accept state.

INF2080 Lecture :: 8th February 17 / 37

CFG—PDA
@ Place special symbol $ on stack, push S ~s 2Sh ~ 3aSbhb ~ aachb ~ 2abb
start variable S on to stack.
@ Repeat the following: © input: aabb
. . . Stack: $
o if the top of stack is a variable A, @ input: sabb

nondeterministically choose a rule Stack: 5%

A — w, pop A and push w

e if top of stack is a terminal a, compare
with next input symbol. If they match,
pop a and repeat. If they do not, reject
this branch.

o If top of stack is $, enter accept state.

INF2080 Lecture :: 8th February 17 / 37

CFG—PDA

@ Place special symbol $ on stack, push S ~s 2Sh ~ 3aSbhb ~ aachb ~ 2abb
start variable S on to stack.

@ Repeat the following: © input: aabb
. . . ack: $

o if the top of stack is a variable A, P2) :puf: o
nondeterministically choose a rule Stack: fs
A — w, pop A and push w O on s

e if top of stack is a terminal a, compare
with next input symbol. If they match,
pop a and repeat. If they do not, reject
this branch.

o If top of stack is $, enter accept state.

INF2080

Lecture :: 8th February 17 / 37

CFG—PDA

@ Place spfecial symbol $ on stack, push S ~s 2Sh ~ 3aSbhb ~ aachb ~ 2abb
start variable S on to stack.

@ Repeat the following: © input: aabb
. . . Stack: $

o if the top of stack is a variable A, P2) intput: o
nondeterministically choose a rule Stack: fs
A — w, pop A and push w O o

e if top of stack is a terminal a, compare Q input: 22t

with next input symbol. If they match,
pop a and repeat. If they do not, reject
this branch.

o If top of stack is $, enter accept state.

INF2080 Lecture :: 8th February 17 / 37

CFG—PDA

@ Place spfecial symbol $ on stack, push S ~s 2Sh ~» 22Sbhb ~» aachb ~ 2abb
start variable S on to stack.

@ Repeat the following: Q inpus oo
- . . tack:

o if the top of stack is a variable A, @ input: sabb
nondeterministically choose a rule Stack: fs
A~ w, pop A and push w O o

e if top of stack is a terminal a, compare Q irput: aabh
with next input symbol. If they match, © input: bbb
pop a and repeat. If they do not, reject Stack: asbbS
this branch.

o If top of stack is $, enter accept state.

INF2080 Lecture :: 8th February 17 / 37

CFG—PDA

@ Place spfeaal symbol $ on stack, push S ~s 2Sh ~ 3aSbhb ~ aachb ~ 2abb
start variable S on to stack.

@ Repeat the following: © input: aabb
. . . Stack: $

o if the top of stack is a variable A, P2) intput: o
nondeterministically choose a rule Stack: fs
A — w, pop A and push w O o

e if top of stack is a terminal a, compare Q input: 22t

with next input symbol. If they match, © input: bbb
Stack: aSbb$

pop a and repeat. If they do not, reject © ot sotb
i input: aa
this branch. Stack: Sbb$

o If top of stack is $, enter accept state.

INF2080 Lecture :: 8th February 17 / 37

CFG—PDA
@ Place spfeaal symbol $ on stack, push S ~s 2Sh ~» 22Sbhb ~» aachb ~ 2abb
start variable S on to stack.
@ Repeat the following: Q inpus oo
. . . tack:
o if the top of stack is a variable A, @ input: sabb
nondeterministically choose a rule Stack: fs
A~ w, pop A and push w O o
e if top of stack is a terminal a, compare Q irput: aabh
with next input symbol. If they match, © input: bbb
pop a and repeat. If they do not, reject Stack: 2566
X e input: aabb
this branch. Stack: SbbS
) 1
o If top of stack is $, enter accept state. Q@ input: 2abb
INF2080 Lecture :: 8th February 17 / 37

CFG—PDA
@ Place special symbol $ on stack, push S ~s 2Sh ~ 3aSbhb ~ aachb ~ 2abb
start variable S on to stack.
@ Repeat the following: © input: aabb
. . . Stack: $
o if the top of stack is a variable A, @ input: sabb
nondeterministically choose a rule Stack: fs
A~ w, pop A and push w O o
e if top of stack is a terminal a, compare Q input: 22t
with next input symbol. If they match, © input: bbb
pop a and repeat. If they do not, reject Stack: asbbS
X e input: aabb
this branch. Stack: Sbb$
. +
e If top of stack is §, enter accept state. Q@ input: 2abb
e compare all terminals in stack to input
INF2080 Lecture :: 8th February 17 / 37

o
CFG—PDA

Note how in the previous slide we added multiple symbols the stack in one step!

INF2080 Lecture :: 8th February 18 / 37

o
CFG—PDA

Note how in the previous slide we added multiple symbols the stack in one step!
We popped S, and pushed aSbh.

INF2080 Lecture :: 8th February 18 / 37

o
CFG—PDA

Note how in the previous slide we added multiple symbols the stack in one step!
We popped S, and pushed aSbh.

i :aSﬁaSb@

INF2080 Lecture :: 8th February 18 / 37

CFG—PDA

Note how in the previous slide we added multiple symbols the stack in one step!

We popped S, and pushed aSbh.
CaSﬁaSb@ N &S b e — e cea
O

INF2080 Lecture :: 8th February 18 / 37

CFG—PDA

Note how in the previous slide we added multiple symbols the stack in one step!

We popped S, and pushed aSbh.
CaSﬁaSb@ N &S b a — @ cea
O

We will use this shorthand notation during the proof.

INF2080 Lecture :: 8th February 18 / 37

-
CFG—PDA: Proof

Proof:

e Given CFG G = (V,X,R,S), we want to construct a PDA (Q, X, T, 4, qo, F) that accepts
L(G).

INF2080 Lecture :: 8th February 19 / 37

CFG—PDA: Proof

Proof:

e Given CFG G = (V,X,R,S), we want to construct a PDA (Q, X, T, 4, qo, F) that accepts
L(G).

@ Let Q@ = {90, Gioop, Gaccept } U E, where E is the set of help states needed for our shorthand
notation (previous slide).

INF2080 Lecture :: 8th February 19 / 37

-
CFG—PDA: Proof

Proof:

e Given CFG G = (V,X,R,S), we want to construct a PDA (Q, X, T, 4, qo, F) that accepts
L(G).

@ Let Q@ = {90, Gioop, Gaccept } U E, where E is the set of help states needed for our shorthand
notation (previous slide).

@ Before anything else, push $ and start variable on to stack: §(qo, ¢, €) = {(qioop, S9)}-

INF2080 Lecture :: 8th February 19 / 37

-
CFG—PDA: Proof

Recall intuition:

e if the top of stack is a variable A,
nondeterministically choose a rule
A — w, pop A and push w

o if top of stack is a terminal a, compare
with next input symbol. If they match,
repeat. If they do not, reject this branch.

o If top of stack is $, enter accept state.

INF2080 Lecture :: 8th February 20 / 37

-
CFG—PDA: Proof

Recall intuition:

o if the top of stack is a variable A,
nondeterministically choose a rule ® (qioop:€:A) = {(Gloops W) | A —
A — w, pop A and push w w is a rule in R}

o if top of stack is a terminal a, compare
with next input symbol. If they match,
repeat. If they do not, reject this branch.

o If top of stack is $, enter accept state.

INF2080 Lecture :: 8th February 20 / 37

-
CFG—PDA: Proof

Recall intuition:

e if the top of stack is a variable A,

nondeterministically choose a rule ® (qioop:€:A) = {(Gloops W) | A —
A — w, pop A and push w w is a rule in R}
o if top of stack is a terminal a, compare @ (Gloop; @, 3) = {(Gloop> €) }

with next input symbol. If they match,
repeat. If they do not, reject this branch.

o If top of stack is $, enter accept state.

INF2080 Lecture :: 8th February 20 / 37

-
CFG—PDA: Proof

Recall intuition:

e if the top of stack is a variable A,

nondeterministically choose a rule ® (qioop:€:A) = {(Gloops W) | A —
A — w, pop A and push w w is a rule in R}

o if top of stack is a terminal a, compare @ (Gloop; @, 3) = {(Gloop> €) }
with next input symbol. If they match, @ J(Gioop, €, %) = {(Gaccept, €)}

repeat. If they do not, reject this branch.

o If top of stack is $, enter accept state.

INF2080 Lecture :: 8th February 20 / 37

CFG— PDA

State diagram (without help states from shorthand notation):
®
e,e — S$

e,A— w, for rule A—> w

Gloop .
a,a, — ¢, for terminal a

g$—e¢

@

INF2080 Lecture :: 8th February 21 / 37

o
PDA—CFG

The other direction is much more involved....

INF2080 Lecture :: 8th February 22 / 37

o
PDA—CFG

The other direction is much more involved....For convenience, we assume our PDA has the
following properties

INF2080 Lecture :: 8th February 22 / 37

o
PDA—CFG

The other direction is much more involved....For convenience, we assume our PDA has the
following properties

@ It has a single accept state Gaccept

INF2080 Lecture :: 8th February 22 / 37

o
PDA—CFG

The other direction is much more involved....For convenience, we assume our PDA has the
following properties

o It has a single accept state gaccept (doable by creating a new accepting state with ¢
transitions from all previous accept states)

INF2080 Lecture :: 8th February 22 / 37

o
PDA—CFG

The other direction is much more involved....For convenience, we assume our PDA has the
following properties

o It has a single accept state gaccept (doable by creating a new accepting state with ¢
transitions from all previous accept states)

@ |t empties its stack before accepting

INF2080 Lecture :: 8th February 22 / 37

o
PDA—CFG

The other direction is much more involved....For convenience, we assume our PDA has the
following properties

o It has a single accept state gaccept (doable by creating a new accepting state with ¢
transitions from all previous accept states)

@ It empties its stack before accepting (a loop on Gaccept that empties the stack without
reading an input)

INF2080 Lecture :: 8th February 22 / 37

o
PDA—CFG

The other direction is much more involved....For convenience, we assume our PDA has the
following properties
o It has a single accept state gaccept (doable by creating a new accepting state with ¢
transitions from all previous accept states)
@ It empties its stack before accepting (a loop on Gaccept that empties the stack without
reading an input)
@ Each transition either pushes a symbol or pops a symbol, but does not do both at the
same time.

INF2080 Lecture :: 8th February 22 / 37

o
PDA—CFG

@ Each transition either pushes a symbol or pops a symbol, but does not do both at the
same time.

oo

INF2080 Lecture :: 8th February 23 / 37

PDA—CFG

@ Each transition either pushes a symbol or pops a symbol, but does not do both at the
same time.

Xy e e cez
O, @/ .\@

INF2080 Lecture :: 8th February 23 / 37

PDA—CFG

@ Each transition either pushes a symbol or pops a symbol, but does not do both at the

same time.
X,y =€ %*}Z

oo} oo

INF2080 Lecture :: 8th February 23 / 37

PDA—CFG

@ Each transition either pushes a symbol or pops a symbol, but does not do both at the

same time.
X,y —¢€ %*}Z X, € — # N@#ﬁe
@ : : X, € = € @ @
%

OO

INF2080 Lecture :: 8th February 23 / 37

o
PDA—CFG

Idea: Given, PDA (Q,X,T,J, qo, F) create grammar where variables are A, for states
p,q € Q.

INF2080 Lecture :: 8th February 24 / 37

PDA—CFG

Idea: Given, PDA (Q,X,T,J, qo, F) create grammar where variables are A, for states
p,q € Q.

The variable Apq will generate all strings that take P from p to q with empty stacks.

INF2080 Lecture :: 8th February 24 / 37

PDA—CFG

Idea: Given, PDA (Q,X,T,J, qo, F) create grammar where variables are A, for states
p,q € Q.

The variable Apq will generate all strings that take P from p to q with empty stacks.
...what does that mean?

INF2080 Lecture :: 8th February 24 / 37

PDA—CFG

Idea: Given, PDA (Q,X,T,J, qo, F) create grammar where variables are A, for states
p,q € Q.

The variable Apq will generate all strings that take P from p to q with empty stacks.
...what does that mean?

~> input s takes P from p to g with empty stacks if:

@ starting in p with an empty stack, after parsing the input s the PDA P ends in state q.
@ when P arrives at g, the stack is once again empty

INF2080 Lecture :: 8th February 24 / 37

PDA—CFG

Idea: Given, PDA (Q,X,T,J, qo, F) create grammar where variables are A, for states
p,q € Q.

The variable Apq will generate all strings that take P from p to q with empty stacks.
...what does that mean?

~> input s takes P from p to g with empty stacks if:

@ starting in p with an empty stack, after parsing the input s the PDA P ends in state q.
@ when P arrives at g, the stack is once again empty

Then Agogaceee Will generate precisely the words the PDA accepts!

INF2080 Lecture :: 8th February 24 / 37

PDA—CFG

Example:

X, = X Y. X — €

©

INF2080 Lecture :: 8th February 25 / 37

PDA—CFG

Example:

X, = X Y. X — €

©

@ string x does not take P from g to r with empty stacks, since the stack ends with an extra
b%s

INF2080 Lecture :: 8th February 25 / 37

PDA—CFG

Example:

X, € — X Y, X =€

©

@ string x does not take P from g to r with empty stacks, since the stack ends with an extra
b%s

@ string xy takes P from g to s with empty stacks, since the x that was pushed gets popped
in the last transition to s.

INF2080 Lecture :: 8th February 25 / 37

PDA—CFG

Two possibilities:

a,e—u b,e — x

b,x — ¢

oo

Input abbb takes P from g to v with empty
stacks. Here the stack is never emptied in
between.

INF2080 Lecture :: 8th February 26 / 37

PDA—CFG

Two possibilities:

a,e—u b,e — x
a,e—=u b,u—¢

b,x — ¢
b,e — x

(== (D225

Input abbb takes P from g to v with empty

stacks. Here the stack is never emptied in
between.

Input abbb takes P from g to v with empty
stacks. Here the stack is emptied at state s.

INF2080 Lecture :: 8th February 26 / 37

PDA—CFG

Stack not emptied in between:

a,e—u b,e = x
b,x — ¢
:) b,u— e @
To address this case, add
Apg — aArsh

for every p,q,r,s € Q, u €T and a, b € X, such that §(p, a,¢) contains (r, u) and (s, b, u)
contains (g, €).

INF2080 Lecture :: 8th February 27 / 37

PDA—CFG

Stack is emptied in between:
a,e—u byu—¢e

b,e = x

Ty)

To address this case, add rule

Apg = AprArg
for all p,q,r € Q

INF2080 Lecture :: 8th February 28 / 37

o
PDA—CFG

Finally, add rules A,, — ¢ for all p € Q.

INF2080 Lecture :: 8th February 29 / 37

o
PDA—CFG

Finally, add rules A,, — ¢ for all p € Q.

Summarized:

@ Apg — aAssb for every p,q,r,s € Q, u €T and a, b € X, such that §(p, a,e) contains
(r,u) and (s, b, u) contains (q, €),

INF2080 Lecture :: 8th February 29 / 37

o
PDA—CFG

Finally, add rules App — € for all p € Q.

Summarized:

@ Apg — aAssb for every p,q,r,s € Q, u €T and a, b € X, such that §(p, a,e) contains
(r,u) and (s, b, u) contains (q, €),
@ Apg — AprArq for every p,q,r € Q,

INF2080 Lecture :: 8th February 29 / 37

o
PDA—CFG

Finally, add rules App — € for all p € Q.

Summarized:
@ Apg — aAssb for every p,q,r,s € Q, u €T and a, b € X, such that §(p, a,e) contains
(r,u) and (s, b, u) contains (q, €),
@ Apg — AprArq for every p,q,r € Q,
@ App —eforall pe Q

@ start variable: Ao Gaceept

INF2080 Lecture :: 8th February 29 / 37

PDA—CFG

We are done if we can show:

Lemma
If Apq generates x then x brings P from p to q with empty stacks. J
Lemma
If x can bring P from p to q with empty stacks, Apq generates x. J

INF2080 Lecture :: 8th February 30/ 37

@ Apq — aAssh for every p,q,r,s € Q, u €T and a, b € I such that §(p, a, €) contains (r, u) and &(s, b, u) contains (g, €),
o Apg — AprArq for every p,q,r € Q,

@ A seforallpe Q

@ start variable: Ago daceept

Lemma
If Apq generates x then x brings P from p to q with empty stacks. J

Proof by induction over number of derivation steps:
Base: Derivation has 1 step.

@ A derivation with 1 step uses a rule with no variables on the righthand side.

@ Only such rules are Ay, — ¢...

INF2080 Lecture :: 8th February 31 /37

@ Apq — aAssh for every p,q,r,s € Q, u €T and a, b € I such that §(p, a, €) contains (r, u) and &(s, b, u) contains (g, €),
o Apg — AprArq for every p,q,r € Q,

@ A seforallpe Q

@ start variable: Ago daceept

Lemma
If Apq generates x then x brings P from p to q with empty stacks. J

Proof by induction over number of derivation steps:
Base: Derivation has 1 step.

@ A derivation with 1 step uses a rule with no variables on the righthand side.

@ Only such rules are Ay, — ¢... and € takes P from p to p with empty stacks.

INF2080 Lecture :: 8th February 31 /37

@ Apq — aAssh for every p,q,r,s € Q, u €T and a, b € I such that §(p, a, €) contains (r, u) and &(s, b, u) contains (g, €),
o Apg — AprArq for every p,q,r € Q,

@ A seforallpe Q

@ start variable: Ago daceept

Lemma
If Apq generates x then x brings P from p to q with empty stacks. J

Proof by induction over number of derivation steps:
Base: Derivation has 1 step.

@ A derivation with 1 step uses a rule with no variables on the righthand side.

@ Only such rules are Ay, — ¢... and ¢ takes P from p to p with empty stacks.v’

INF2080 Lecture :: 8th February 31 /37

PDA—CFG

@ A,; — aAsb forevery p,q,r,s € Q, u €T and a, b € T, such that §(p, a,) contains (r, u) and (s, b, u) contains (q, €),
@ Ay — AprAng forevery p,q,r € Q,
.A,,,,—)sfora”pGQ
@ start variable: A,_mqamept
Lemma
If Apq generates x then x brings P from p to q with empty stacks. J

Proof by induction over number of derivation steps:
Step: assume true for derivations of length at most k > 1.

INF2080 Lecture :: 8th February 32 /37

o
PDA—CFG

Apg — aArsb for every p,q,r,s € Q, u € I and a, b € X such that §(p, a, €) contains (r, u) and §(s, b, u) contains (q, €),
Apg — AprArq for every p, q,r € Q,

App — e forallpe Q

start variable: A,_mqamept

Lemma

If Apq generates x then x brings P from p to q with empty stacks. J

Proof by induction over number of derivation steps:
Step: assume true for derivations of length at most k > 1.
@ Assume Ap, derives x in k + 1 steps.

INF2080 Lecture :: 8th February 32 /37

o
PDA—CFG

Apg — aArsb for every p,q,r,s € Q, u € I and a, b € X such that §(p, a, €) contains (r, u) and §(s, b, u) contains (q, €),
Apg — AprArq for every p, q,r € Q,

App — e forallpe Q

start variable: A,_mqamept

Lemma

If Apq generates x then x brings P from p to q with empty stacks. J

Proof by induction over number of derivation steps:
Step: assume true for derivations of length at most k > 1.

@ Assume Ap, derives x in k + 1 steps. Then the first rule applications is either
Apg — aArsb or Apg — AprArg

INF2080 Lecture :: 8th February 32 /37

o
PDA—CFG

Apg — aArsb for every p,q,r,s € Q, u € I and a, b € X such that §(p, a, €) contains (r, u) and §(s, b, u) contains (q, €),
Apg — AprArq for every p, q,r € Q,

App — e forallpe Q

start variable: ch.qamept

Lemma

If Apq generates x then x brings P from p to q with empty stacks. J

Proof by induction over number of derivation steps:
Step: assume true for derivations of length at most k > 1.
@ Assume Ap, derives x in k + 1 steps. Then the first rule applications is either
Apg — aArsb or Apg — AprArg
o If Apg — aA,sb was used, let y be generated by A,s such that x = ayb.

INF2080 Lecture :: 8th February 32 /37

PDA—CFG

Apg — aArsb for every p,q,r,s € Q, u € I and a, b € X such that §(p, a, €) contains (r, u) and §(s, b, u) contains (q, €),
Apg — AprArq for every p, q,r € Q,

App — e forallpe Q

start variable: ch.qamept

Lemma

If Apq generates x then x brings P from p to q with empty stacks. }

Proof by induction over number of derivation steps:
Step: assume true for derivations of length at most k > 1.
@ Assume Ap, derives x in k + 1 steps. Then the first rule applications is either
Apg — aArsb or Apg — AprArg
o If Apg — aA,sb was used, let y be generated by A,s such that x = ayb.

@ A, derives y in at most k steps, hence the induction hypothesis tells us that y takes P
from r to s with empty stacks.

INF2080 Lecture :: 8th February 32 /37

@ A,; — aAsb forevery p,q,r,s € Q, u €T and a, b € T, such that §(p, a,) contains (r, u) and (s, b, u) contains (q, €),
@ Ay — AprAng forevery p,q,r € Q,

.App—>sfora||p€Q

()

start variable: ch.qamept

Lemma

If Apq generates x then x brings P from p to q with empty stacks. J

Proof by induction over number of derivation steps:
Step: assume true for derivations of length at most k > 1.
@ Assume Ap, derives x in k + 1 steps. Then the first rule applications is either
Apg — aArsb or Apg — AprArg
o If Apg — aA,sb was used, let y be generated by A,s such that x = ayb.
@ A, derives y in at most k steps, hence the induction hypothesis tells us that y takes P
from r to s with empty stacks.

@ — a brings P from p to r by pushing u, y brings P from r to s on empty stacks, b brings
PP from s to g by popping wu.

INF2080 Lecture :: 8th February 32 /37

@ A,; — aAsb forevery p,q,r,s € Q, u €T and a, b € T, such that §(p, a,) contains (r, u) and (s, b, u) contains (q, €),
@ Ay — AprAng forevery p,q,r € Q,

.App—>sfora||p€Q

()

start variable: ch.qamept

Lemma

If Apq generates x then x brings P from p to q with empty stacks. J

Proof by induction over number of derivation steps:
Step: assume true for derivations of length at most k > 1.
@ Assume Ap, derives x in k + 1 steps. Then the first rule applications is either
Apg — aArsb or Apg — AprArg
o If Apg — aA,sb was used, let y be generated by A,s such that x = ayb.
@ A, derives y in at most k steps, hence the induction hypothesis tells us that y takes P
from r to s with empty stacks.

@ — a brings P from p to r by pushing u, y brings P from r to s on empty stacks, b brings
PP from s to q by popping u. v/

INF2080 Lecture :: 8th February 32 /37

o
PDA—CFG

Apg — aArsb for every p,q,r,s € Q, u € I and a, b € X such that §(p, a, €) contains (r, u) and §(s, b, u) contains (q, €),
Apg — AprArq for every p, q,r € Q,

App — e forallpe Q

start variable: ch.qamept

Lemma

If Apq generates x then x brings P from p to q with empty stacks. J

Proof by induction over number of derivation steps:
Step: assume true for derivations of length at most k > 1.
@ Assume Ap, derives x in k + 1 steps. Then the first rule applications is either
Apg — aArsb or Apg — AprArg

o If Apg — AprArg was used, let x = yz such that y is generated by A, and z is generated
by Arg.

INF2080 Lecture :: 8th February 33 /37

PDA—CFG

Apg — aArsb for every p,q,r,s € Q, u € I and a, b € X such that §(p, a, €) contains (r, u) and §(s, b, u) contains (q, €),
Apg — AprArq for every p, q,r € Q,

App — e forallpe Q

start variable: ch.qamept

Lemma

If Apq generates x then x brings P from p to q with empty stacks. }

Proof by induction over number of derivation steps:
Step: assume true for derivations of length at most k > 1.
@ Assume Ap, derives x in k + 1 steps. Then the first rule applications is either
Apg — aArsb or Apg — AprArg
o If Apg — AprArg was used, let x = yz such that y is generated by A, and z is generated
by Arg.
@ Apr (resp. Ayq) generates y (resp. z) in at most k steps.

INF2080 Lecture :: 8th February 33 /37

o
PDA—CFG

Apg — aArsb for every p,q,r,s € Q, u € I and a, b € X such that §(p, a, €) contains (r, u) and §(s, b, u) contains (q, €),
Apg — AprArq for every p, q,r € Q,

App — e forallpe Q

start variable: ch.qamept

Lemma

If Apq generates x then x brings P from p to q with empty stacks. J

Proof by induction over number of derivation steps:
Step: assume true for derivations of length at most k > 1.
@ Assume Ap, derives x in k + 1 steps. Then the first rule applications is either
Apg — aArsb or Apg — AprArg
o If Apg — AprArg was used, let x = yz such that y is generated by A, and z is generated
by Arg.
@ Apr (resp. Ayq) generates y (resp. z) in at most k steps.

@ Induction hypothesis tells us that y takes P from p to r with empty stacks, and z takes P

from r to g with empty stacks.

INF2080 Lecture :: 8th February 33 /37

o
PDA—CFG

Apg — aArsb for every p,q,r,s € Q, u € I and a, b € X such that §(p, a, €) contains (r, u) and §(s, b, u) contains (q, €),
Apg — AprArq for every p, q,r € Q,

App — e forallpe Q

start variable: ch.qamept

Lemma

If Apq generates x then x brings P from p to q with empty stacks. J

Proof by induction over number of derivation steps:
Step: assume true for derivations of length at most k > 1.
@ Assume Ap, derives x in k + 1 steps. Then the first rule applications is either
Apg — aArsb or Apg — AprArg
o If Apg — AprArg was used, let x = yz such that y is generated by A, and z is generated
by Arg.
@ Apr (resp. Ayq) generates y (resp. z) in at most k steps.

@ Induction hypothesis tells us that y takes P from p to r with empty stacks, and z takes P
from r to g with empty stacks. v/

INF2080 Lecture :: 8th February 33 /37

o
PDA—CFG

@ A, — aAsb forevery p,q,r,s € Q, u €T and a, b € I, such that §(p, a,) contains (r, u) and (s, b, u) contains (q,),
o Apg — AprArq for every p,q,r € Q,
@ A, seforallpeQ
@ start variable: Ago daccept
Lemma

If x can bring P from p to q with empty stacks, Apq generates x.

INF2080 Lecture :: 8th February 34 / 37

o
PDA—CFG

@ Apq — aArsh for every p,q,r,s € Q, u € T and a, b € I such that §(p, a, €) contains (r, u) and &(s, b, u) contains (g, €),
o Apqg — AprArq for every p,q,r € Q,
@ Ay —seforallpe
@ start variable: Ago daccept
Lemma

If x can bring P from p to q with empty stacks, Apq generates x.

Proof by induction over computation steps:
Base: computation has 0 steps.

INF2080 Lecture :: 8th February 34 / 37

PDA—CFG
@ Apq — aArsh for every p,q,r,s € Q, u € T and a, b € I such that §(p, a, €) contains (r, u) and &(s, b, u) contains (g, €),
o Apqg — AprArq for every p,q,r € Q,
@ Ay —seforallpe
@ start variable: Ago daccept

Lemma
If x can bring P from p to q with empty stacks, Apq generates x. J

Proof by induction over computation steps:
Base: computation has 0 steps.

@ A computation with 0 steps stays in the same state p and cannot read any input. Since
App — € is a rule in G, base is proved.

INF2080 Lecture :: 8th February 34 /37

PDA—CFG
@ Apq — aArsh for every p,q,r,s € Q, u € T and a, b € I such that §(p, a, €) contains (r, u) and &(s, b, u) contains (g, €),
o Apqg — AprArq for every p,q,r € Q,
@ Ay —seforallpe
@ start variable: Ago daccept

Lemma
If x can bring P from p to q with empty stacks, Apq generates x. J

Proof by induction over computation steps:
Base: computation has 0 steps.

@ A computation with 0 steps stays in the same state p and cannot read any input. Since
App — € is a rule in G, base is proved. v/

INF2080 Lecture :: 8th February 34 /37

PDA—CFG

o Apg — aArsb for every p,q,r,s € Q, u € T and a, b € T such that §(p, a,) contains (r, u) and &(s, b, u) contains (q, €),
Q@ Ay — AprAr forevery p,q,r € Q,
@ A s eforallpe Q
@ start variable: Ago daceept
Lemma
If x can bring P from p to q with empty stacks, Apq generates x. J

Proof by induction over computation steps:
Step: Assume true for computations of length at most k.

INF2080 Lecture :: 8th February 35/ 37

o Apg — aArsb for every p,q,r,s € Q, u € T and a, b € T such that §(p, a,) contains (r, u) and &(s, b, u) contains (q, €),
Q@ Ay — AprAr forevery p,q,r € Q,

@ A s eforallpe Q

o

start variable: Ago daccept

Lemma

If x can bring P from p to q with empty stacks, Apq generates x. J

Proof by induction over computation steps:
Step: Assume true for computations of length at most k.

@ Assume P has a computation where input x takes it from state p to g with empty stacks
that takes k + 1 steps.

INF2080 Lecture :: 8th February 35/ 37

PDA—CFG

o Apg — aArsb for every p,q,r,s € Q, u € T and a, b € T such that §(p, a,) contains (r, u) and &(s, b, u) contains (q, €),
Q@ Ay — AprAr forevery p,q,r € Q,
@ A s eforallpe Q

@ start variable: Ago daceept

Lemma

If x can bring P from p to q with empty stacks, Apq generates x. J

Proof by induction over computation steps:
Step: Assume true for computations of length at most k.

@ Assume P has a computation where input x takes it from state p to g with empty stacks
that takes k + 1 steps.

@ Two cases: either the stack is only empty at the beginning and end, or it is emptied in
betwen.

INF2080 Lecture :: 8th February 35 /37

o
PDA—CFG

Apg — aArsb for every p,q,r,s € Q, u € T and a, b € T such that §(p, a,) contains (r, u) and §(s, b, u) contains (q, €),
Apg — AprArg for every p,q,r € Q,
App —+ e forallpe Q

start variable: AQOQaccept

Lemma
If x can bring P from p to q with empty stacks, Apq generates x. J

e First case (empty only at beginning and end):
@ Symbol u pushed in the first step must be the same symbol popped in the last step

INF2080 Lecture :: 8th February 36 / 37

o
PDA—CFG

o Apg — aArsb for every p,q,r,s € Q, u € T and a, b € T such that §(p, a,) contains (r, u) and §(s, b, u) contains (q, €),
o Apg — AprArq for every p,q,r € Q,
OApp—>€foral|p€Q
@ start variable: AQOQaccept
Lemma
If x can bring P from p to q with empty stacks, Apq generates x. J

e First case (empty only at beginning and end):

@ Symbol u pushed in the first step must be the same symbol popped in the last step

@ Let a denote the input read in step 1, b the input in the last step, r the state after the
first move, s the state before the last move.

INF2080 Lecture :: 8th February 36 / 37

o
PDA—CFG

o Apg — aArsb for every p,q,r,s € Q, u € T and a, b € T such that §(p, a,) contains (r, u) and §(s, b, u) contains (q, €),
o Apg — AprArq for every p,q,r € Q,
OApp—>€foral|p€Q
@ start variable: AQOQaccept
Lemma
If x can bring P from p to q with empty stacks, Apq generates x. J

e First case (empty only at beginning and end):

@ Symbol u pushed in the first step must be the same symbol popped in the last step

@ Let a denote the input read in step 1, b the input in the last step, r the state after the
first move, s the state before the last move.

@ Then A,g — aAsbis in G.

INF2080 Lecture :: 8th February 36 / 37

o
PDA—CFG

o Apg — aArsb for every p,q,r,s € Q, u € T and a, b € T such that §(p, a,) contains (r, u) and §(s, b, u) contains (q, €),
o Apg — AprArq for every p,q,r € Q,
OApp—>€foral|p€Q
@ start variable: AQOQaccept
Lemma
If x can bring P from p to q with empty stacks, Apq generates x. }

e First case (empty only at beginning and end):

@ Symbol u pushed in the first step must be the same symbol popped in the last step

@ Let a denote the input read in step 1, b the input in the last step, r the state after the
first move, s the state before the last move.

@ Then A,g — aAsbis in G.

@ Let x = ayb. y takes P from r to s with empty stacks in kK — 1 steps

INF2080 Lecture :: 8th February 36 / 37

o
PDA—CFG

o Apg — aArsb for every p,q,r,s € Q, u € T and a, b € T such that §(p, a,) contains (r, u) and §(s, b, u) contains (q, €),
o Apg — AprArq for every p,q,r € Q,
OApp—>€foral|p€Q
@ start variable: AQOQaccept
Lemma
If x can bring P from p to q with empty stacks, Apq generates x. }

e First case (empty only at beginning and end):

@ Symbol u pushed in the first step must be the same symbol popped in the last step

@ Let a denote the input read in step 1, b the input in the last step, r the state after the
first move, s the state before the last move.

@ Then A,g — aAsbis in G.

@ Let x = ayb. y takes P from r to s with empty stacks in kK — 1 steps

@ induction hypothesis = A, generates y.

INF2080 Lecture :: 8th February 36 / 37

o
PDA—CFG

o Apg — aArsb for every p,q,r,s € Q, u € T and a, b € T such that §(p, a,) contains (r, u) and §(s, b, u) contains (q, €),
o Apg — AprArq for every p,q,r € Q,
OApp—>€foral|p€Q
@ start variable: AQOQaccept
Lemma
If x can bring P from p to q with empty stacks, Apq generates x. }

e First case (empty only at beginning and end):

@ Symbol u pushed in the first step must be the same symbol popped in the last step

@ Let a denote the input read in step 1, b the input in the last step, r the state after the
first move, s the state before the last move.

Then Apg — aAisbis in G.

Let x = ayb. y takes P from r to s with empty stacks in k — 1 steps

induction hypothesis = A,s generates y.

= Apq generates x.

INF2080 Lecture :: 8th February 36 / 37

o
PDA—CFG

@ A,q — aAb forevery p,q,r,s € Q, u €T and a, b € T, such that §(p, a,) contains (r, u) and (s, b, u) contains (q, €),
o Apg — AprArq for every p,q,r € Q,
@ A, seforallpe Q
@ start variable: Agodaccept
Lemma
If x can bring P from p to q with empty stacks, Apq generates x. J

@ Second case (empty inbetween):

INF2080 Lecture :: 8th February 37 /37

o
PDA—CFG

@ A,q — aAb forevery p,q,r,s € Q, u €T and a, b € T, such that §(p, a,) contains (r, u) and (s, b, u) contains (q, €),
o Apg — AprArq for every p,q,r € Q,

@ A, seforallpe Q

@ start variable: Adodaccept

Lemma
If x can bring P from p to q with empty stacks, Apq generates x. J

@ Second case (empty inbetween):

@ Let r be a state where the stack empties other than at the beginning and end of the
computation of x.

INF2080 Lecture :: 8th February 37 /37

o
PDA—CFG

@ A,q — aAb forevery p,q,r,s € Q, u €T and a, b € T, such that §(p, a,) contains (r, u) and (s, b, u) contains (q, €),
o Apg — AprArq for every p,q,r € Q,

@ A, seforallpe Q

@ start variable: Adodaccept

Lemma
If x can bring P from p to q with empty stacks, Apq generates x. J

@ Second case (empty inbetween):

@ Let r be a state where the stack empties other than at the beginning and end of the
computation of x.

@ Then the computations from p to r (call its parsed input y) and from r to g (call its
parsed input z) contain at most k steps.

INF2080 Lecture :: 8th February 37 /37

o
PDA—CFG

@ A,q — aAb forevery p,q,r,s € Q, u €T and a, b € T, such that §(p, a,) contains (r, u) and (s, b, u) contains (q, €),
o Apg — AprArq for every p,q,r € Q,

@ A, seforallpe Q

@ start variable: Adodaccept

Lemma
If x can bring P from p to q with empty stacks, Apq generates x. }

@ Second case (empty inbetween):

@ Let r be a state where the stack empties other than at the beginning and end of the
computation of x.

@ Then the computations from p to r (call its parsed input y) and from r to g (call its
parsed input z) contain at most k steps.

@ induction hypothesis = A, (resp. Aq) generates y (resp. z)

INF2080 Lecture :: 8th February 37 /37

o
PDA—CFG

@ A,q — aAb forevery p,q,r,s € Q, u €T and a, b € T, such that §(p, a,) contains (r, u) and (s, b, u) contains (q, €),
o Apg — AprArq for every p,q,r € Q,

@ A, seforallpe Q

@ start variable: Adodaccept

Lemma
If x can bring P from p to q with empty stacks, Apq generates x. }

@ Second case (empty inbetween):

@ Let r be a state where the stack empties other than at the beginning and end of the
computation of x.

@ Then the computations from p to r (call its parsed input y) and from r to g (call its
parsed input z) contain at most k steps.

@ induction hypothesis = A, (resp. Aq) generates y (resp. z)
@ Then Apq generates x = yz. [

INF2080 Lecture :: 8th February 37 /37

