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Space: The final frontier

There are interesting problems where we know the space complexity
rather than time.

How space consumption behaves is also interesting.

Finally, space and time relate in non-obvious ways.
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Space complexity

SPACE(f(n)) is the class of languages with a DTM decider with space
complexity O(f(n)).

Space complexity: Worst-case space usage syi(n), same as for time.

Can also define NSPACE(f(n)), the class of languages with an NTM
decider using O(f(n)) space.
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Space is big

First, how powerful is space compared to time?
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Space is big
First, how powerful is space compared to time?

Theorem
For every f, we have NTIME(f) C SPACE(f). J

We can simulate a time-bounded NTM with linear overhead.

If my NTM M is bounded by time f(n), I use at most f(n) tape cells
on each branch.

The branch is given by at most f(n) choices (transitions).
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NTM simulation by space

To simulate a branch of the NTM, I preallocate 2f(n) cells.

Each pair of cells (xi,yi) will contain the transition choice and step
number.

Beyond these I have my actual working tape.
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Space simulation by time

What about the reverse? How many steps can a space-bounded decider
possibly take?
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Space simulation by time

What about the reverse? How many steps can a space-bounded decider
possibly take?

Well, f(n) tape cells give me |Z|f(™) different tapes.

At each step, I must be in exactly one state, so |Z|f(™) x |Q| possible
configurations.
For each configuration, I may be at any cell.

Theorem

For every f(n) > n, we have SPACE(f(n)) C TIME(f(n) - cf(™)) for
some ¢ € N.
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Space simulation by time

What about the reverse? How many steps can a space-bounded decider
possibly take?

Well, f(n) tape cells give me |Z|f(™) different tapes.

At each step, I must be in exactly one state, so |Z|f(™) x |Q| possible
configurations.

For each configuration, I may be at any cell.

Theorem

For every f(n) > n, we have SPACE(f(n)) C TIME(f(n) - cf(™)) for
some ¢ € N.

If the machine runs for longer, it loops forever. Why?
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Two interesting classes

PSPACE = |_J SPACE(n*)
keN

NPSPACE = | J NSPACE(n*)
keN

Unlike for time, we also have the interesting classes

L = SPACE(logn)

and

NL = NSPACE(logn)
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Some inclusions

L € NL € P C NP C PSPACE = NPSPACE C EXP

Exponential jumps from space to time, linear other way around.
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First, PSPACE

First, we are going to do what cannot be done for P and NP, and prove
that PSPACE = NPSPACE.

Theorem (Savitch)
For every f(n) > n, NSPACE(f(n)) C SPACE(f(n)?). J

In other words, space-bounded NT'Ms can be simulated by DTMs with
polynomial overhead.
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Savitch, observations

Naive approach (like in the proof of NTIME(f) C SPACE(f)) won't
work.

An NTM with f(n) cells can take f(n) x cf(™) steps. At each step I
have a choice.

I need to avoid writing down these exponentially many choices.

Idea: Recursive binary search. If I recurse on the time bound of the
NTM, I get log2¢f(") = cf(n) recursive calls.
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The recursive search for acceptance

We will define a procedure CanYield(cy,cy,t) — {0, 1} that takes
configurations c; and c; as input as well as a time bound t.

We will binary-search through the choices leading between
configurations, looking for an accepting branch.

This will save us an exponential amount of space.
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CanVYield

CanYield(cq, ¢z, t):
Q If t =0, test whether ¢; = cy;

@ Ift > 0, then loop through each configuration cqy:
© Run CanYield(cy, ¢, 5)
© Run CanYield(cpm, c2, 5)
© If both accept, accept.

© If done with the loop, reject.

We will modify our NT'M to have a clear accept configuration. We
know that our NTM is time-bounded by f(n) x ¢f(™). We will run

CanYield(cstart, Caccept; 20”“)). The depth of the recursion is
log 2¢f(™) = ¢f(n).
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Complexity analysis

Depth of recursion cf(n).

At each call, store a new configuration c,,. Reuse this space when the
recursion returns to try next configuration.

Total O(f(n) x cf(n)) = O(f(n)?).

Observe that Savitch does not give us L = NL, since
SPACE(logn) # SPACE(log(n)?).
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PSPACE-completeness

Completeness if defined as before, given a notion of reduction <x.
Polynomial space reductions bad, since NPSPACE = PSPACE.

We will stick to polynomial time reductions, <p. A problem is
complete for PSPACE is it is in PSPACE and every other problem there
reduces to it.

Such problems exist, but are a bit exotic.
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Generalizing SAT

In SAT, we ask for an assignment. Let’s generalize this to asking
questions about multiple assignments.

Vx(x /Ay — z) means “for every assignment to x, does there exist a
satisfying assignment for the formula?”

Is the formula satisfiable regardless of x?

dxd is just ¢, is there an assignment? Could have 3 on every variable.

Can nest these to be explicit.
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TQBF

A TQBF formula is a SAT formula preceded by a string of quantifiers,
one for each variable.

Vx.3y.Vz.p(x,y, z)

Easiest to think of it as a first-order formula where /\,V,— are
relations interpreted as required, and the universe is {0, 1}.

Order matters: Vx.3y(x V y) A (x V y) is true, while
Jy.vx(x Vy) A (x V) is false.
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TQBF, membership

The problem is: Given a TQBF formula, is it true?

Recursive algorithm to solve: For Jx¢, recurse with an or on the value
of x, for Vx¢, recurse with an and.
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TQBF, membership

The problem is: Given a TQBF formula, is it true?

Recursive algorithm to solve: For Jx¢, recurse with an or on the value
of x, for Vx¢, recurse with an and.

For SAT, this recursion:
Solve(d,1) = Solve(dp[x; = 11,1 —1) V Solve(dlx; =0,i—1).

When out of variables, evaluate formula and return result.

For TQBF, same, but V or /\ depends on the quantifier of x;.
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Analysis

Depth is number of variables, we store the values of the variables,
space consumption O(m), linear in the number of variables.

Therefore TQBF € PSPACE.

Why is this not in NP?
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