Space complexity

Evgenij Thorstensen

V18

Evgenij Thorstensen

Space: The final frontier

There are interesting problems where we know the space complexity
rather than time.

How space consumption behaves is also interesting.

Finally, space and time relate in non-obvious ways.

Evgenij Thorstensen V18 2 /18

Space complexity

SPACE(f(n)) is the class of languages with a DTM decider with space
complexity O(f(n)).

Space complexity: Worst-case space usage syi(n), same as for time.

Can also define NSPACE(f(n)), the class of languages with an NTM
decider using O(f(n)) space.

Evgenij Thorstensen V18 3 /18

Space is big

First, how powerful is space compared to time?

Evgenij Thorstensen

Space is big
First, how powerful is space compared to time?

Theorem
For every f, we have NTIME(f) C SPACE(f). J

We can simulate a time-bounded NTM with linear overhead.

If my NTM M is bounded by time f(n), I use at most f(n) tape cells
on each branch.

The branch is given by at most f(n) choices (transitions).

Evgenij Thorstensen V18 4 /18

NTM simulation by space

To simulate a branch of the NTM, I preallocate 2f(n) cells.

Each pair of cells (xi,yi) will contain the transition choice and step
number.

Beyond these I have my actual working tape.

Evgenij Thorstensen V18 5 /18

Space simulation by time

What about the reverse? How many steps can a space-bounded decider
possibly take?

Evgenij Thorstensen V18 6 /18

Space simulation by time

What about the reverse? How many steps can a space-bounded decider
possibly take?

Well, f(n) tape cells give me |Z|f(™) different tapes.

At each step, I must be in exactly one state, so |Z|f(™) x |Q| possible
configurations.
For each configuration, I may be at any cell.

Theorem

For every f(n) > n, we have SPACE(f(n)) C TIME(f(n) - cf(™)) for
some ¢ € N.

Evgenij Thorstensen V18 6 /18

Space simulation by time

What about the reverse? How many steps can a space-bounded decider
possibly take?

Well, f(n) tape cells give me |Z|f(™) different tapes.

At each step, I must be in exactly one state, so |Z|f(™) x |Q| possible
configurations.

For each configuration, I may be at any cell.

Theorem

For every f(n) > n, we have SPACE(f(n)) C TIME(f(n) - cf(™)) for
some ¢ € N.

If the machine runs for longer, it loops forever. Why?

Evgenij Thorstensen V18 6 /18

Two interesting classes

PSPACE = |_J SPACE(n*)
keN

NPSPACE = | J NSPACE(n*)
keN

Unlike for time, we also have the interesting classes

L = SPACE(logn)

and

NL = NSPACE(logn)

Evgenij Thorstensen V18 7 /18

Some inclusions

L € NL € P C NP C PSPACE = NPSPACE C EXP

Exponential jumps from space to time, linear other way around.

Evgenij Thorstensen V18 8 /18

First, PSPACE

First, we are going to do what cannot be done for P and NP, and prove
that PSPACE = NPSPACE.

Theorem (Savitch)
For every f(n) > n, NSPACE(f(n)) C SPACE(f(n)?). J

In other words, space-bounded NT'Ms can be simulated by DTMs with
polynomial overhead.

Evgenij Thorstensen V18 9 /18

Savitch, observations

Naive approach (like in the proof of NTIME(f) C SPACE(f)) won't
work.

An NTM with f(n) cells can take f(n) x cf(™) steps. At each step I
have a choice.

I need to avoid writing down these exponentially many choices.

Idea: Recursive binary search. If I recurse on the time bound of the
NTM, I get log2¢f(") = cf(n) recursive calls.

Evgenij Thorstensen V18 10 / 18

The recursive search for acceptance

We will define a procedure CanYield(cy,cy,t) — {0, 1} that takes
configurations c; and c; as input as well as a time bound t.

We will binary-search through the choices leading between
configurations, looking for an accepting branch.

This will save us an exponential amount of space.

Evgenij Thorstensen V18 11 /18

CanVYield

CanYield(cq, ¢z, t):
Q If t =0, test whether ¢; = cy;

@ Ift > 0, then loop through each configuration cqy:
© Run CanYield(cy, ¢, 5)
© Run CanYield(cpm, c2, 5)
© If both accept, accept.

© If done with the loop, reject.

We will modify our NT'M to have a clear accept configuration. We
know that our NTM is time-bounded by f(n) x ¢f(™). We will run

CanYield(cstart, Caccept; 20”“)). The depth of the recursion is
log 2¢f(™) = ¢f(n).

Evgenij Thorstensen V18 12 /18

Complexity analysis

Depth of recursion cf(n).

At each call, store a new configuration c,,. Reuse this space when the
recursion returns to try next configuration.

Total O(f(n) x cf(n)) = O(f(n)?).

Observe that Savitch does not give us L = NL, since
SPACE(logn) # SPACE(log(n)?).

Evgenij Thorstensen V18 13 / 18

PSPACE-completeness

Completeness if defined as before, given a notion of reduction <x.
Polynomial space reductions bad, since NPSPACE = PSPACE.

We will stick to polynomial time reductions, <p. A problem is
complete for PSPACE is it is in PSPACE and every other problem there
reduces to it.

Such problems exist, but are a bit exotic.

Evgenij Thorstensen V18 14 / 18

Generalizing SAT

In SAT, we ask for an assignment. Let’s generalize this to asking
questions about multiple assignments.

Vx(x /Ay — z) means “for every assignment to x, does there exist a
satisfying assignment for the formula?”

Is the formula satisfiable regardless of x?

dxd is just ¢, is there an assignment? Could have 3 on every variable.

Can nest these to be explicit.

Evgenij Thorstensen V18 15 / 18

TQBF

A TQBF formula is a SAT formula preceded by a string of quantifiers,
one for each variable.

Vx.3y.Vz.p(x,y, z)

Easiest to think of it as a first-order formula where /\,V,— are
relations interpreted as required, and the universe is {0, 1}.

Order matters: Vx.3y(x V y) A (x V y) is true, while
Jy.vx(x Vy) A (x V) is false.

Evgenij Thorstensen V18 16 / 18

TQBF, membership

The problem is: Given a TQBF formula, is it true?

Recursive algorithm to solve: For Jx¢, recurse with an or on the value
of x, for Vx¢, recurse with an and.

Evgenij Thorstensen V18 17 / 18

TQBF, membership

The problem is: Given a TQBF formula, is it true?

Recursive algorithm to solve: For Jx¢, recurse with an or on the value
of x, for Vx¢, recurse with an and.

For SAT, this recursion:
Solve(d,1) = Solve(dp[x; = 11,1 —1) V Solve(dlx; =0,i—1).

When out of variables, evaluate formula and return result.

For TQBF, same, but V or /\ depends on the quantifier of x;.

Evgenij Thorstensen V18 17 / 18

Analysis

Depth is number of variables, we store the values of the variables,
space consumption O(m), linear in the number of variables.

Therefore TQBF € PSPACE.

Why is this not in NP?

Evgenij Thorstensen V18 18 / 18

