# Space complexity 

Evgenij Thorstensen

V18

## Space: The final frontier

There are interesting problems where we know the space complexity rather than time.

How space consumption behaves is also interesting.
Finally, space and time relate in non-obvious ways.

## Space complexity

$\operatorname{SPACE}(f(n))$ is the class of languages with a DTM decider with space complexity $\mathrm{O}(\mathrm{f}(\mathrm{n}))$.

Space complexity: Worst-case space usage $s_{M}(n)$, same as for time.
Can also define $\operatorname{NSPACE}(\mathbf{f}(\mathrm{n}))$, the class of languages with an NTM decider using $O(f(n))$ space.

## Space is big

First, how powerful is space compared to time?

## Space is big

First, how powerful is space compared to time?

```
Theorem
```



We can simulate a time-bounded NTM with linear overhead.

If my NTM $M$ is bounded by time $f(n)$, I use at most $f(n)$ tape cells on each branch.

The branch is given by at most $\mathrm{f}(\mathrm{n})$ choices (transitions).

## NTM simulation by space

To simulate a branch of the NTM, I preallocate $2 f(n)$ cells.
Each pair of cells $\left(x_{i}, y_{i}\right)$ will contain the transition choice and step number.

Beyond these I have my actual working tape.

## Space simulation by time

> What about the reverse? How many steps can a space-bounded decider possibly take?

## Space simulation by time

What about the reverse? How many steps can a space-bounded decider possibly take?

Well, $f(n)$ tape cells give me $|\Sigma|^{f(n)}$ different tapes.
At each step, I must be in exactly one state, so $|\Sigma|^{f(n)} \times|\mathrm{Q}|$ possible configurations.

For each configuration, I may be at any cell.

## Theorem

For every $\mathrm{f}(\mathrm{n}) \geqslant \mathrm{n}$, we have $\operatorname{SPACE}(\mathrm{f}(\mathrm{n})) \subseteq \operatorname{TIME}\left(\mathrm{f}(\mathrm{n}) \cdot \mathrm{c}^{\mathrm{f}(\mathrm{n})}\right.$ ) for some $c \in \mathbb{N}$.

## Space simulation by time

What about the reverse? How many steps can a space-bounded decider possibly take?

Well, $f(n)$ tape cells give me $|\Sigma|^{f(n)}$ different tapes.
At each step, I must be in exactly one state, so $|\Sigma|^{\mathrm{f}(n)} \times|\mathrm{Q}|$ possible configurations.

For each configuration, I may be at any cell.

## Theorem

For every $\mathrm{f}(\mathrm{n}) \geqslant \mathrm{n}$, we have $\operatorname{SPACE}(\mathrm{f}(\mathrm{n})) \subseteq \operatorname{TIME}\left(\mathrm{f}(\mathrm{n}) \cdot \mathrm{c}^{\mathrm{f}(\mathrm{n})}\right.$ ) for some $c \in \mathbb{N}$.

If the machine runs for longer, it loops forever. Why?

## Two interesting classes

$$
\begin{aligned}
\operatorname{PSPACE} & =\bigcup_{k \in \mathbb{N}} \operatorname{SPACE}\left(n^{k}\right) \\
\operatorname{NPSPACE} & =\bigcup_{k \in \mathbb{N}} \operatorname{NSPACE}\left(n^{k}\right)
\end{aligned}
$$

Unlike for time, we also have the interesting classes

$$
\mathrm{L}=\mathrm{SPACE}(\log n)
$$

and

$$
\mathrm{NL}=\operatorname{NSPACE}(\log \mathfrak{n})
$$

## Some inclusions

$$
\mathrm{L} \subseteq \mathrm{NL} \subseteq \mathrm{P} \subseteq \mathrm{NP} \subseteq \mathrm{PSPACE}=\mathrm{NPSPACE} \subseteq \mathrm{EXP}
$$

Exponential jumps from space to time, linear other way around.

## First, PSPACE

First, we are going to do what cannot be done for $P$ and NP, and prove that PSPACE $=$ NPSPACE .

## Theorem (Savitch)

For every $f(n) \geqslant n, \operatorname{NSPACE}(f(n)) \subseteq \operatorname{SPACE}\left(f(n)^{2}\right)$.

In other words, space-bounded NTMs can be simulated by DTMs with polynomial overhead.

## Savitch, observations

Naive approach (like in the proof of $\operatorname{NTIME}(f) \subseteq \operatorname{SPACE}(f)$ ) won't work.

An NTM with $f(n)$ cells can take $f(n) \times c^{f(n)}$ steps. At each step I have a choice.

I need to avoid writing down these exponentially many choices.
Idea: Recursive binary search. If I recurse on the time bound of the NTM, I get $\log 2^{c f(n)}=c f(n)$ recursive calls.

## The recursive search for acceptance

We will define a procedure CanYield $\left(\mathrm{c}_{1}, \mathrm{c}_{2}, \mathrm{t}\right) \rightarrow\{0,1\}$ that takes configurations $c_{1}$ and $c_{2}$ as input as well as a time bound $t$.

We will binary-search through the choices leading between configurations, looking for an accepting branch.

This will save us an exponential amount of space.

## CanYield

CanYield( $\left.\mathrm{c}_{1}, \mathrm{c}_{2}, \mathrm{t}\right)$ :
(1) If $t=0$, test whether $c_{1}=c_{2}$;
(2) If $t>0$, then loop through each configuration $\mathrm{c}_{\mathrm{m}}$ :
(1) Run CanYield $\left(c_{1}, c_{m}, \frac{t}{2}\right)$
(2) Run CanYield $\left(c_{m}, c_{2}, \frac{t}{2}\right)$
(3) If both accept, accept.
(3) If done with the loop, reject.

We will modify our NTM to have a clear accept configuration. We know that our NTM is time-bounded by $f(n) \times c^{f(n)}$. We will run

CanYield $\left(c_{\text {start }}, c_{\text {accept }}, 2^{\text {cf(n) }}\right)$. The depth of the recursion is $\log 2^{c f(n)}=c f(n)$.

## Complexity analysis

Depth of recursion $\operatorname{cf}(\mathrm{n})$.
At each call, store a new configuration $\mathrm{c}_{\mathrm{m}}$. Reuse this space when the recursion returns to try next configuration.

Total $O(f(n) \times \operatorname{cf}(n))=O\left(f(n)^{2}\right)$.
Observe that Savitch does not give us $\mathrm{L}=\mathrm{NL}$, since $\operatorname{SPACE}(\log n) \neq \operatorname{SPACE}\left(\log (n)^{2}\right)$.

## PSPACE-completeness

Completeness if defined as before, given a notion of reduction $\leqslant x$.
Polynomial space reductions bad, since NPSPACE $=$ PSPACE .
We will stick to polynomial time reductions, $\leqslant \mathrm{p}$. A problem is complete for PSPACE is it is in PSPACE and every other problem there reduces to it.

Such problems exist, but are a bit exotic.

## Generalizing SAT

In SAT, we ask for an assignment. Let's generalize this to asking questions about multiple assignments.
$\forall x(x \wedge y \rightarrow z)$ means "for every assignment to $x$, does there exist a satisfying assignment for the formula?"

Is the formula satisfiable regardless of $x$ ?
$\exists x \phi$ is just $\phi$, is there an assignment? Could have $\exists$ on every variable.
Can nest these to be explicit.

## TQBF

A TQBF formula is a SAT formula preceded by a string of quantifiers, one for each variable.
$\forall x . \exists y . \forall z \cdot \phi(x, y, z)$
Easiest to think of it as a first-order formula where $\wedge, \vee, \neg$ are relations interpreted as required, and the universe is $\{0,1\}$.

Order matters: $\forall x . \exists y(x \vee y) \wedge(\bar{x} \vee \bar{y})$ is true, while $\exists y . \forall x(x \vee y) \wedge(\bar{x} \vee \bar{y})$ is false.

## TQBF, membership

The problem is: Given a TQBF formula, is it true?

Recursive algorithm to solve: For $\exists x \phi$, recurse with an or on the value of $x$, for $\forall x \phi$, recurse with an and.

## TQBF, membership

The problem is: Given a TQBF formula, is it true?

Recursive algorithm to solve: For $\exists x \phi$, recurse with an or on the value of $x$, for $\forall x \phi$, recurse with an and.

For SAT, this recursion:
$\operatorname{Solve}(\phi, i)=\operatorname{Solve}\left(\phi\left[x_{i}=1\right], i-1\right) \vee \operatorname{Solve}\left(\phi\left[x_{i}=0\right], i-1\right)$.
When out of variables, evaluate formula and return result.

For TQBF, same, but $\vee$ or $\wedge$ depends on the quantifier of $x_{i}$.

## Analysis

Depth is number of variables, we store the values of the variables, space consumption $\mathrm{O}(\mathrm{m})$, linear in the number of variables.

Therefore TQBF $\in$ PSPACE.
Why is this not in NP?

