INF2080

2. Regular Expressions and Nonregular languages

Daniel Lupp

Universitetet i Oslo

25th January 2018

Department of Informatics

University of Oslo

• Deterministic finite automata (DFA)

• Deterministic finite automata (DFA)

• Regular languages are those languages accepted by DFA's

Deterministic finite automata (DFA)

- Regular languages are those languages accepted by DFA's
- Nondeterministic automata (NFA)

Deterministic finite automata (DFA)

- Regular languages are those languages accepted by DFA's
- Nondeterministic automata (NFA)

 \bullet DFA \leftrightarrow NFA

Definition (Regular Expression)

Given an alphabet Σ , a regular expression is

• a for some $a \in \Sigma$,

Definition (Regular Expression)

- a for some $a \in \Sigma$,
- ε,

Definition (Regular Expression)

- a for some $a \in \Sigma$,
- ε,
- Ø,

Definition (Regular Expression)

- a for some $a \in \Sigma$,
- ε,
- Ø,
- $(R_1 \cup R_2)$ for regular expressions R_1, R_2 ,

Definition (Regular Expression)

- a for some $a \in \Sigma$,
- ε,
- Ø,
- $(R_1 \cup R_2)$ for regular expressions R_1, R_2 ,
- (R_1R_2) for regular expressions R_1, R_2 ,

Definition (Regular Expression)

- a for some $a \in \Sigma$,
- ε,
- Ø,
- $(R_1 \cup R_2)$ for regular expressions R_1, R_2 ,
- (R_1R_2) for regular expressions R_1, R_2 ,
- R_1^* for a regular expression R_1 .

Definition (Regular Expression)

- a for some $a \in \Sigma$,
- ε,
- Ø,
- $(R_1 \cup R_2)$ for regular expressions R_1, R_2 ,
- (R_1R_2) for regular expressions R_1, R_2 ,
- R_1^* for a regular expression R_1 .
- \rightarrow Regular expressions represent languages!

Regular Expressions - Examples

What languages do the following regular expressions (RE) represent?

• 0*

Regular Expressions - Examples

What languages do the following regular expressions (RE) represent?

- 0*
- 10*1

Regular Expressions - Examples

What languages do the following regular expressions (RE) represent?

- 0*
- 10*1
- $(1(0 \cup 1)^*1) \cup (0(0 \cup 1)^*0) \cup 0 \cup 1$

What is the connection between RE and DFA/NFA?

What is the connection between RE and DFA/NFA?

Language $0(0 \cup 1)^*0$:

What is the connection between RE and DFA/NFA?

Language $0(0 \cup 1)^*0$:

What is the connection between RE and DFA/NFA?

- Can all RE be represented using DFA/NFA?
- Can all DFA/NFA be described by RE?

What is the connection between RE and DFA/NFA?

- Can all RE be represented using DFA/NFA?
- Can all DFA/NFA be described by RE?

Yes!

Proposition

Every language described by an RE is regular.

Proof based on inductive definition of RE!

- a for some $a \in \Sigma$,
- ε,
- Ø,
- $(R_1 \cup R_2)$ for regular expressions R_1, R_2 ,
- (R_1R_2) for regular expressions R_1, R_2 ,
- R_1^* for a regular expression R_1 .

Given an alphabet Σ , a regular expression is

- a for some $a \in \Sigma$,
- ε,
- Ø,
- $(R_1 \cup R_2)$ for regular expressions R_1, R_2 ,
- (R_1R_2) for regular expressions R_1, R_2 ,
- R_1^* for a regular expression R_1 .

if R=a for $a\in \Sigma$, then $L(R)=\{a\}$ is accepted by

Given an alphabet Σ , a regular expression is

- a for some $a \in \Sigma$,
- ε,
- Ø,
- $(R_1 \cup R_2)$ for regular expressions R_1, R_2 ,
- (R_1R_2) for regular expressions R_1, R_2 ,
- R_1^* for a regular expression R_1 .

if R=a for $a\in \Sigma$, then $L(R)=\{a\}$ is accepted by

If $R = \varepsilon$, then $L(R) = \{\varepsilon\}$ is accepted by

Given an alphabet Σ , a regular expression is

- a for some $a \in \Sigma$,
- ε,
- Ø,
- $(R_1 \cup R_2)$ for regular expressions R_1, R_2 ,
- (R_1R_2) for regular expressions R_1, R_2 ,
- R_1^* for a regular expression R_1 .

if R=a for $a\in \Sigma$, then $L(R)=\{a\}$ is accepted by

start
$$\rightarrow$$
 \longrightarrow \longrightarrow

If $R = \varepsilon$, then $L(R) = \{\varepsilon\}$ is accepted by

$$\mathsf{start} \longrightarrow \bigcirc$$

If $R = \emptyset$, then $L(R) = \emptyset$ is accepted by

Given an alphabet Σ , a regular expression is

- a for some $a \in \Sigma$,
- ε,
- Ø,
- $(R_1 \cup R_2)$ for regular expressions R_1, R_2 ,
- (R_1R_2) for regular expressions R_1, R_2 ,
- R_1^* for a regular expression R_1 .

The rest is union, concatanation and Kleene star of regular languages, as discussed last week!

Given an alphabet Σ , a regular expression is

- a for some $a \in \Sigma$,
- ε,
- Ø,
- $(R_1 \cup R_2)$ for regular expressions R_1, R_2 ,
- (R_1R_2) for regular expressions R_1, R_2 ,
- R_1^* for a regular expression R_1 .

The rest is union, concatanation and Kleene star of regular languages, as discussed last week!

(recall: the union/concatanation/Kleene star of regular languages is itself regular)

So we've just proven

Proposition

Every language described by a RE is regular.

So we've just proven

Proposition

Every language described by a RE is regular.

Next:

Proposition

Every regular language can be described using a RE.

Generalized Nondeterministic Finite Automaton (GNFA):

• NFA where the transitions are RE, not only symbols from Σ .

Generalized Nondeterministic Finite Automaton (GNFA):

• NFA where the transitions are RE, not only symbols from Σ .

Generalized Nondeterministic Finite Automaton (GNFA):

- NFA where the transitions are RE, not only symbols from Σ .
- some other assumptions for convenience:

Generalized Nondeterministic Finite Automaton (GNFA):

- NFA where the transitions are RE. not only symbols from Σ .
- some other assumptions for convenience:
- start state goes to every other state, but has no incoming states

Generalized Nondeterministic Finite Automaton (GNFA):

- NFA where the transitions are RE. not only symbols from Σ .
- some other assumptions for convenience:
- start state goes to every other state, but has no incoming states
- every state goes to the unique accepting state, which is different from the starting state. The accepting state does not have any outgoing arrows.

Generalized Nondeterministic Finite Automaton (GNFA):

- NFA where the transitions are RE, not only symbols from Σ .
- some other assumptions for convenience:
- start state goes to every other state, but has no incoming states
- every state goes to the unique accepting state, which is different from the starting state. The accepting state does not have any outgoing arrows.
- all other states have one transition to all other states, including themselves.

GNFA: Convenient assumptions

Generalized Nondeterministic Finite Automaton (GNFA):

- NFA where the transitions are RE, not only symbols from Σ .
- some other assumptions for convenience:
- start state goes to every other state, but has no incoming states
- every state goes to the unique accepting state, which is different from the starting state. The accepting state does not have any outgoing arrows.
- all other states have one transition to all other states, including themselves.

GNFA: Convenient assumptions

Generalized Nondeterministic Finite Automaton (GNFA):

- NFA where the transitions are RE, not only symbols from Σ .
- some other assumptions for convenience:
- start state goes to every other state, but has no incoming states √
- every state goes to the unique accepting state, which is different from the starting state. The accepting state does not have any outgoing arrows.
- all other states have one transition to all other states, including themselves.

GNFA: Convenient assumptions

Generalized Nondeterministic Finite Automaton (GNFA):

- NFA where the transitions are RE, not only symbols from Σ .
- some other assumptions for convenience:
- start state goes to every other state, but has no incoming states √
- every state goes to the unique accepting state, which is different from the starting state. The accepting state does not have any outgoing arrows.
- all other states have one transition to all other states, including themselves. (\checkmark)

GNFA: Convenient assumptions

Generalized Nondeterministic Finite Automaton (GNFA):

- NFA where the transitions are RE, not only symbols from Σ .
- some other assumptions for convenience:
- start state goes to every other state, but has no incoming states √
- every state goes to the unique accepting state, which is different from the starting state. The accepting state does not have any outgoing arrows. √
- all other states have one transition to all other states, including themselves. (√)

for the

last point, add \emptyset transitions between any two non-accepting/starting states that were not previously connected (e.g., (B, D))

Generalized Nondeterministic Finite Automata

Definition

A generalized nondeterministic finite automaton (GNFA) is a 5-tuple $(Q, \Sigma, \delta, q_{start}, q_{accept})$ where

- \mathbf{Q} is a finite set of states
- **③** $\delta: (Q \setminus \{q_{accept}\}) \times (Q \setminus \{q_{start}\}) \rightarrow \mathcal{R}$ is the transition function, where \mathcal{R} is the set of all RE's over Σ ,
- \mathbf{Q} q_{start} is the start state, and

Proposition

Every regular language can be described using a RE.

Proposition

Every regular language can be described using a RE.

Proof idea: take DFA and transform into a GNFA that accepts the same language. Iteratively remove (non-starting and non-accepting) states so that the same language is accepted, until only the starting and accepting state remain. Then the RE along the transition between the two states describes the regular language.

Proposition

Every regular language can be described using a RE.

Proof:

- Given a DFA M, we construct an equivalent GNFA G by adding a new start state q_{start} with an ε transition to the old start state q_0 , as well as a new accepting state q_{acept} , with ε transitions from all old accept states.
- add \emptyset transitions for all state pairs that do not have a transition in M.

- Recall the "convenient" properties of GNFA:
- start state goes to every other state, but has no incoming states
- every state goes to the unique accepting state, which is different from the starting state. The accepting state does not have any outgoing arrows.
- all other states have one transition to all other states, including themselves.

- Recall the "convenient" properties of GNFA:
- start state goes to every other state, but has no incoming states
- every state goes to the unique accepting state, which is different from the starting state. The accepting state does not have any outgoing arrows.
- all other states have one transition to all other states, including themselves.

 \Rightarrow When removing X, we only need to consider situations like this:

- Recall the "convenient" properties of GNFA:
- start state goes to every other state, but has no incoming states
- every state goes to the unique accepting state, which is different from the starting state. The accepting state does not have any outgoing arrows.
- all other states have one transition to all other states, including themselves.

 \Rightarrow When removing X, we only need to consider situations like this:

Let's formalize this! Let us define a procedure CONVERT(G):

• If k = 2 then G only has one start and one accept state, so return the regular expression R of the transition connecting them.

Let's formalize this! Let us define a procedure CONVERT(G):

- If k = 2 then G only has one start and one accept state, so return the regular expression R of the transition connecting them.
- ② if k > 2 select a state $q' \notin \{q_{accept}, q_{start}\}$. Define $G' = \{Q', \Sigma, \delta', q_{start}, q_{accept}\}$ with $Q' = Q \setminus \{q'\}$ and

$$\delta'(q_i,q_j)=R_1\cup R_2R_3^*R_4$$

where $R_1=\delta(q_i,q_j)$, $R_2=\delta(q_i,q')$, $R_3=\delta(q',q')$, $R_4=\delta(q',q_j)$, and .

Let's formalize this! Let us define a procedure CONVERT(*G*):

- If k = 2 then G only has one start and one accept state, so return the regular expression R of the transition connecting them.
- ② if k > 2 select a state $q' \notin \{q_{accept}, q_{start}\}$. Define $G' = \{Q', \Sigma, \delta', q_{start}, q_{accept}\}$ with $Q' = Q \setminus \{q'\}$ and

$$\delta'(q_i,q_j)=R_1\cup R_2R_3^*R_4$$

where
$$R_1=\delta(q_i,q_j)$$
, $R_2=\delta(q_i,q')$, $R_3=\delta(q',q')$, $R_4=\delta(q',q_j)$, and .

3 Return the result of CONVERT(G').

Let's formalize this! Let us define a procedure CONVERT(*G*):

- If k = 2 then G only has one start and one accept state, so return the regular expression R of the transition connecting them.
- ② if k > 2 select a state $q' \notin \{q_{accept}, q_{start}\}$. Define $G' = \{Q', \Sigma, \delta', q_{start}, q_{accept}\}$ with $Q' = Q \setminus \{q'\}$ and

$$\delta'(q_i,q_j)=R_1\cup R_2R_3^*R_4$$

where
$$R_1=\delta(q_i,q_j)$$
, $R_2=\delta(q_i,q')$, $R_3=\delta(q',q')$, $R_4=\delta(q',q_j)$, and .

- **3** Return the result of CONVERT(G').
- correctness still remains to be shown! See book for details! (Claim 1.65)

Proposition

Every regular language can be described using a RE.

Example: DFA:

Proposition

Every regular language can be described using a RE.

Example: DFA:

GNFA:

Proposition

Every regular language can be described using a RE.

Example:

Remove state X:

Proposition

Every regular language can be described using a RE.

Example:

Remove state X:

Proposition

Every regular language can be described using a RE.

Example:

Remove state Y:

Proposition

Every regular language can be described using a RE.

Example:

Remove state Y:

Summary

So RE = GNFA = DFA = NFA = Regular languages...

Summary

So RE = GNFA = DFA = NFA = Regular languages...But when is a language *nonregular*? How can we check?

Summary

```
So RE = GNFA = DFA = NFA = Regular languages... But when is a language nonregular? How can we check? \Rightarrow Pumping Lemma!
```

Pumping Lemma

• DFAs only have *finite* memory, aka states.

Pumping Lemma

- DFAs only have finite memory, aka states.
- Pumping lemma gives a *pumping length*: if a string is longer than the pumping length, it can be *pumped*, i.e., there is a substring that can be repeated arbitrarily often such that the string remains in the language

Pumping Lemma

- DFAs only have finite memory, aka states.
- Pumping lemma gives a *pumping length*: if a string is longer than the pumping length, it can be *pumped*, i.e., there is a substring that can be repeated arbitrarily often such that the string remains in the language
- If a DFA has p states, and a string has length $\geq p$, then the accepting path in the DFA must visit at least p+1 states. In other words, at least one state appears twice. \Rightarrow loop!
- This loop can be repeated while staying in the language.

• Language $(10*1) \cup (01*0)$

- Language $(10*1) \cup (01*0)$
- DFA has 4 states

- Language $(10*1) \cup (01*0)$
- DFA has 4 states
- consider string 10001, length 5

- Language $(10*1) \cup (01*0)$
- DFA has 4 states
- consider string 10001, length 5
- ⇒ path must contain a loop (in this case, at node b)

• Language 1(010)*1

- Language 1(010)*1
- DFA has 5 states

- Language 1(010)*1
- DFA has 5 states
- consider string 10101, length 5

- Language 1(010)*1
- DFA has 5 states
- consider string 10101, length 5
- ⇒ path must contain a loop (in this case, at nodes b,d,e)

Pumping Lemma - Example

- Language 1(010)*1
- DFA has 5 states
- consider string 10101, length 5
- ⇒ path must contain a loop (in this case, at nodes b,d,e)
- ullet \Rightarrow 10100101 is also a word!

Lemma (Pumping Lemma)

- **2** |y| > 0,
- $|xy| \le p.$

Lemma (Pumping Lemma)

If A is a regular language, then there is a number p, called the pumping length, where if w is a word in A of length $\geq p$ then w can be divided into three parts, w = xyz, such that

- **2** |y| > 0,
- $|xy| \le p.$

Proof: We formalize our intuition.

• Let $M = (Q.\Sigma, \delta, q_0, F)$ be a DFA, A = L(M) the language accepted by M, and p be the number of states in M.

Lemma (Pumping Lemma)

If A is a regular language, then there is a number p, called the pumping length, where if w is a word in A of length $\geq p$ then w can be divided into three parts, w = xyz, such that

- **2** |y| > 0,
- $|xy| \le p.$

Proof: We formalize our intuition.

- Let $M = (Q.\Sigma, \delta, q_0, F)$ be a DFA, A = L(M) the language accepted by M, and p be the number of states in M.
- Let $w = w_1 \cdots w_n$ be a word in A of length $n \ge p$. Since $w \in A$, it is accepted by M, i.e., there exists a sequence of states $s_1, s_2, \ldots s_{n+1}$ of length n+1, where s_{n+1} is an accept state and $\delta(s_i, w_{i+1}) = s_{i+1}$.

Lemma (Pumping Lemma)

- $xy^iz \in A$ for every $i \ge 0$,
- ② |y| > 0,
- $|xy| \le p.$
 - Let $w = w_1 \cdots w_n$ be a word in A of length $n \ge p$. Since $w \in A$, it is accepted by M, i.e., there exists a sequence of states $s_1, s_2, \ldots s_{n+1}$ of length n+1.

Lemma (Pumping Lemma)

- $xy^iz \in A$ for every $i \ge 0$,
- **2** |y| > 0,
- $|xy| \le p.$
 - Let $w = w_1 \cdots w_n$ be a word in A of length $n \ge p$. Since $w \in A$, it is accepted by M, i.e., there exists a sequence of states $s_1, s_2, \ldots s_{n+1}$ of length n+1.
 - Since $n+1 \ge p+1$, one state must occur twice within the first p+1 elements of the sequence (pigeonhole pricriple).

Lemma (Pumping Lemma)

- **1** $xy^iz \in A$ for every $i \geq 0$,
- **2** |y| > 0,
- $|xy| \le p.$
 - Let $w = w_1 \cdots w_n$ be a word in A of length $n \ge p$. Since $w \in A$, it is accepted by M, i.e., there exists a sequence of states $s_1, s_2, \ldots s_{n+1}$ of length n+1.
 - Since $n+1 \ge p+1$, one state must occur twice within the first p+1 elements of the sequence (pigeonhole pricriple).
 - Let these occurrences be s_j and s_l . Since these occur in the first p+1 elements of the sequence, we have $l \le p+1$.

Lemma (Pumping Lemma)

- **2** |y| > 0,
- $|xy| \le p.$
- Let these occurrences be s_j and s_l . Since these occur in the first p+1 elements of the sequence, we have $l \leq p+1$.

Lemma (Pumping Lemma)

- **2** |y| > 0,
- $|xy| \le p.$
 - Let these occurrences be s_j and s_l . Since these occur in the first p+1 elements of the sequence, we have $l \le p+1$.
 - define $x = w_1 \cdots w_{i-1}, y = w_i \cdots w_{i-1}, z = w_i \cdots w_n$.

Lemma (Pumping Lemma)

- **2** |y| > 0,
- $|xy| \le p.$
 - Let these occurrences be s_j and s_l . Since these occur in the first p+1 elements of the sequence, we have $l \le p+1$.
 - define $x = w_1 \cdots w_{j-1}, y = w_j \cdots w_{l-1}, z = w_l \cdots w_n$.
 - Then |y| > 0 and $|xy| \le p$.

Lemma (Pumping Lemma)

- $xy^iz \in A$ for every $i \ge 0$,
- **2** |y| > 0,
- $|xy| \le p.$
- define $x = w_1 \cdots w_{j-1}, y = w_j \cdots w_{l-1}, z = w_l \cdots w_n$.
- x takes M from s_1 to s_j , y takes M from s_j to s_l , z takes M from s_l to s_{n+1} .

Lemma (Pumping Lemma)

- $xy^iz \in A$ for every $i \ge 0$,
- |y| > 0,
- $|xy| \le p.$
 - define $x = w_1 \cdots w_{j-1}, y = w_j \cdots w_{l-1}, z = w_l \cdots w_n$.
 - x takes M from s_1 to s_j , y takes M from s_j to s_l , z takes M from s_l to s_{n+1} .
 - Thus the word xy^iz takes M from the start state s_1 to s_j , follows the path from s_j to s_l i times (recall that $s_j = s_l$), then takes M from s_l to s_{n+1} .

Lemma (Pumping Lemma)

- $xy^iz \in A$ for every $i \ge 0$,
- |y| > 0,
- $|xy| \le p.$
- define $x = w_1 \cdots w_{i-1}, y = w_i \cdots w_{i-1}, z = w_i \cdots w_n$.
- x takes M from s_1 to s_j , y takes M from s_j to s_l , z takes M from s_l to s_{n+1} .
- Thus the word xy^iz takes M from the start state s_1 to s_j , follows the path from s_j to s_l i times (recall that $s_j = s_l$), then takes M from s_l to s_{n+1} .
- Thus M accepts any word xy^iz for $i \ge 0$.

Lemma (Pumping Lemma)

- $xy^iz \in A$ for every $i \ge 0$,
- **2** |y| > 0,
- **3** $|xy| \le p$.
 - define $x = w_1 \cdots w_{i-1}, y = w_i \cdots w_{i-1}, z = w_i \cdots w_n$.
 - x takes M from s_1 to s_j , y takes M from s_j to s_l , z takes M from s_l to s_{n+1} .
- Thus the word xy^iz takes M from the start state s_1 to s_j , follows the path from s_j to s_l i times (recall that $s_j = s_l$), then takes M from s_l to s_{n+1} .
- Thus M accepts any word xy^iz for i > 0.

• very useful for determining if a language is nonregular

- very useful for determining if a language is nonregular
- ullet ightarrow find a string with length \geq p such that the pumping lemma does not hold

- very useful for determining if a language is nonregular
- ullet ightarrow find a string with length \geq p such that the pumping lemma does not hold
- not very useful for proving a language is regular

- very useful for determining if a language is nonregular
- ullet ightarrow find a string with length \geq p such that the pumping lemma does not hold
- not very useful for proving a language is regular
- ullet \rightarrow not an if and only if statement!

Lemma (Pumping Lemma)

- **2** |y| > 0,
- $|xy| \le p.$
- Let $A = \{0^n 1^n \mid n \ge 0\}$.

Lemma (Pumping Lemma)

- **2** |y| > 0,
- $|xy| \le p.$
- Let $A = \{0^n 1^n \mid n \ge 0\}$.
- Is A regular?

Lemma (Pumping Lemma)

- **2** |y| > 0,
- $|xy| \le p.$
 - Let $A = \{0^n 1^n \mid n \ge 0\}$.
 - Is A regular?
 - If it is, then the pumping lemma gives us a pumping length p.
 - Let $s = 0^p 1^p$.

Lemma (Pumping Lemma)

- **2** |y| > 0,
- $|xy| \le p.$
- Let $A = \{0^n 1^n \mid n \ge 0\}$.
- Let $s = 0^p 1^p$.

Lemma (Pumping Lemma)

- **2** |y| > 0,
- $|xy| \le p.$
- Let $A = \{0^n 1^n \mid n \ge 0\}$.
- Let $s = 0^p 1^p$.
- Condition 3 tells us that y consists of only 0s.

Lemma (Pumping Lemma)

- **2** |y| > 0,
- $|xy| \leq p$.
- Let $A = \{0^n 1^n \mid n \ge 0\}$.
- Let $s = 0^p 1^p$.
- Condition 3 tells us that y consists of only 0s.
- \Rightarrow then xy^iz for $i \ge 2$ has more 0s than 1s. Contradiction! $\Rightarrow A$ is nonregular.

• Even if a language is nonregular, it might contain strings for which the pumping lemma is true!

- Even if a language is nonregular, it might contain strings for which the pumping lemma is true!
- We have to be careful!

$$|w| \ge p$$
, $w = xyz$, s.t.

- $xy^iz \in A$ for every $i \geq 0$,
- **2** |y| > 0,
- $|xy| \le p.$
 - Let $B = \{\omega \mid \omega \text{ contains an equal number of 0s and 1s}\}.$
 - Let $w = (01)^p$.

$$|w| \ge p$$
, $w = xyz$, s.t.

- $xy^iz \in A$ for every $i \ge 0$,
- **2** |y| > 0,
- $|xy| \le p.$
 - Let $B = \{\omega \mid \omega \text{ contains an equal number of 0s and 1s}\}.$
 - Let $w = (01)^p$.
 - $x = \varepsilon, y = 01, z = (01)^{p-1}$

$$|w| \ge p$$
, $w = xyz$, s.t.

- $xy^iz \in A$ for every $i \geq 0$,
- **2** |y| > 0,
- $|xy| \le p.$
 - Let $B = \{\omega \mid \omega \text{ contains an equal number of 0s and 1s}\}.$
 - Let $w = (01)^p$.
 - $x = \varepsilon, y = 01, z = (01)^{p-1}$
 - all conditions are met!

- $xy^iz \in A$ for every $i \ge 0$,
- **2** |y| > 0,
- $|xy| \le p.$
- Let $B = \{\omega \mid \omega \text{ contains an equal number of 0s and 1s}\}.$
- Let $s = 0^p 1^p$.

- $xy^iz \in A$ for every $i \ge 0$,
- **2** |y| > 0,
- $|xy| \le p.$
- Let $B = \{\omega \mid \omega \text{ contains an equal number of 0s and 1s}\}.$
- Let $s = 0^p 1^p$.
- $x = \varepsilon, y = 0^p 1^p, z = \varepsilon$

- $xy^iz \in A$ for every $i \ge 0$,
- **2** |y| > 0,
- $|xy| \le p.$
- Let $B = \{\omega \mid \omega \text{ contains an equal number of 0s and 1s}\}.$
- Let $s = 0^p 1^p$.
- $x = \varepsilon, y = 0^p 1^p, z = \varepsilon$
- looks like it can be pumped

- $xy^iz \in A$ for every $i \ge 0$,
- **2** |y| > 0,
- $|xy| \le p.$
- Let $B = \{\omega \mid \omega \text{ contains an equal number of 0s and 1s}\}.$
- Let $s = 0^p 1^p$.
- $x = \varepsilon, y = 0^p 1^p, z = \varepsilon$
- looks like it can be pumped, but are all conditions met?

- $xy^iz \in A$ for every $i \ge 0$,
- **2** |y| > 0,
- $|xy| \le p.$
- Let $B = \{\omega \mid \omega \text{ contains an equal number of 0s and 1s}\}.$
- Let $s = 0^p 1^p$.
- $x = \varepsilon, y = 0^p 1^p, z = \varepsilon$
- looks like it can be pumped, but are all conditions met?
- condition $3 \Rightarrow y$ must contain only 0s, so it cannot be pumped

- $xy^iz \in A$ for every $i \ge 0$,
- **2** |y| > 0,
- $|xy| \le p.$
- Let $B = \{\omega \mid \omega \text{ contains an equal number of 0s and 1s}\}.$
- Let $s = 0^p 1^p$.
- $x = \varepsilon, y = 0^p 1^p, z = \varepsilon$
- looks like it can be pumped, but are all conditions met?
- condition $3 \Rightarrow y$ must contain only 0s, so it cannot be pumped $\Rightarrow B$ nonregular!

- $A = \{0^n 1^n | n \ge 0\}.$
- $B = \{\omega \mid \omega \text{ contains an equal number of 0s and 1s}\}$
- Another way of showing B is nonregular is to reduce it to the nonregularity of A:

- $A = \{0^n 1^n | n \ge 0\}.$
- $B = \{\omega \mid \omega \text{ contains an equal number of 0s and 1s}\}$
- Another way of showing B is nonregular is to reduce it to the nonregularity of A:
- regular languages are closed under intersection

- $A = \{0^n 1^n | n \ge 0\}.$
- $B = \{\omega \mid \omega \text{ contains an equal number of 0s and 1s}\}$
- Another way of showing B is nonregular is to reduce it to the nonregularity of A:
- regular languages are closed under intersection
- and $A = B \cap 0^*1^*$

- $A = \{0^n 1^n \mid n \ge 0\}.$
- $B = \{\omega \mid \omega \text{ contains an equal number of 0s and 1s}\}$
- Another way of showing B is nonregular is to reduce it to the nonregularity of A:
- regular languages are closed under intersection
- and $A = B \cap 0^*1^*$
- if B is regular and since 0^*1^* is regular, then A must be as well

- $A = \{0^n 1^n \mid n \ge 0\}.$
- $B = \{ \omega \mid \omega \text{ contains an equal number of 0s and 1s} \}$
- Another way of showing B is nonregular is to reduce it to the nonregularity of A:
- regular languages are closed under intersection
- and $A = B \cap 0^*1^*$
- if B is regular and since 0^*1^* is regular, then A must be as well, contradiction!

• regular expressions are shorthand notations for languages

- regular expressions are shorthand notations for languages
- RE = GNFA = DFA = NFA, i.e., regular expressions are shorthand for regular languages

- regular expressions are shorthand notations for languages
- RE = GNFA = DFA = NFA, i.e., regular expressions are shorthand for regular languages
- proof involved transforming a DFA to a GNFA then reducing the number of states to 2 while accepting the same language

- regular expressions are shorthand notations for languages
- RE = GNFA = DFA = NFA, i.e., regular expressions are shorthand for regular languages
- proof involved transforming a DFA to a GNFA then reducing the number of states to 2 while accepting the same language
- ullet ightarrow the regular expressions describe the paths in the DFA

- regular expressions are shorthand notations for languages
- RE = GNFA = DFA = NFA, i.e., regular expressions are shorthand for regular languages
- proof involved transforming a DFA to a GNFA then reducing the number of states to 2 while accepting the same language
- ullet ightarrow the regular expressions describe the paths in the DFA
- every regular language has a pumping length

- regular expressions are shorthand notations for languages
- RE = GNFA = DFA = NFA, i.e., regular expressions are shorthand for regular languages
- proof involved transforming a DFA to a GNFA then reducing the number of states to 2 while accepting the same language
- ullet ightarrow the regular expressions describe the paths in the DFA
- every regular language has a pumping length
- useful for determining if a language is nonregular