
INF2080
2. Regular Expressions and Nonregular languages

Daniel Lupp

Universitetet i Oslo

25th January 2018

Department of
Informatics

University of
Oslo

INF2080 Lecture :: 25th January 1 / 39

Last week

Deterministic finite automata (DFA)

start

0

1

0

Regular languages are those languages accepted by DFA’s
Nondeterministic automata (NFA)

start

0

0, 1

0

1start

2 3

ε
a

b
a, b

a

DFA ↔ NFA

INF2080 Lecture :: 25th January 2 / 39

Last week

Deterministic finite automata (DFA)

start

0

1

0

Regular languages are those languages accepted by DFA’s

Nondeterministic automata (NFA)

start

0

0, 1

0

1start

2 3

ε
a

b
a, b

a

DFA ↔ NFA

INF2080 Lecture :: 25th January 2 / 39

Last week

Deterministic finite automata (DFA)

start

0

1

0

Regular languages are those languages accepted by DFA’s
Nondeterministic automata (NFA)

start

0

0, 1

0

1start

2 3

ε
a

b
a, b

a

DFA ↔ NFA

INF2080 Lecture :: 25th January 2 / 39

Last week

Deterministic finite automata (DFA)

start

0

1

0

Regular languages are those languages accepted by DFA’s
Nondeterministic automata (NFA)

start

0

0, 1

0

1start

2 3

ε
a

b
a, b

a

DFA ↔ NFA
INF2080 Lecture :: 25th January 2 / 39

Regular Expressions

Definition (Regular Expression)

Given an alphabet Σ, a regular expression is
a for some a ∈ Σ,

ε,
∅,
(R1 ∪ R2) for regular expressions R1,R2,
(R1R2) for regular expressions R1,R2,
R∗1 for a regular expression R1.

→ Regular expressions represent languages!

INF2080 Lecture :: 25th January 3 / 39

Regular Expressions

Definition (Regular Expression)

Given an alphabet Σ, a regular expression is
a for some a ∈ Σ,
ε,

∅,
(R1 ∪ R2) for regular expressions R1,R2,
(R1R2) for regular expressions R1,R2,
R∗1 for a regular expression R1.

→ Regular expressions represent languages!

INF2080 Lecture :: 25th January 3 / 39

Regular Expressions

Definition (Regular Expression)

Given an alphabet Σ, a regular expression is
a for some a ∈ Σ,
ε,
∅,

(R1 ∪ R2) for regular expressions R1,R2,
(R1R2) for regular expressions R1,R2,
R∗1 for a regular expression R1.

→ Regular expressions represent languages!

INF2080 Lecture :: 25th January 3 / 39

Regular Expressions

Definition (Regular Expression)

Given an alphabet Σ, a regular expression is
a for some a ∈ Σ,
ε,
∅,
(R1 ∪ R2) for regular expressions R1,R2,

(R1R2) for regular expressions R1,R2,
R∗1 for a regular expression R1.

→ Regular expressions represent languages!

INF2080 Lecture :: 25th January 3 / 39

Regular Expressions

Definition (Regular Expression)

Given an alphabet Σ, a regular expression is
a for some a ∈ Σ,
ε,
∅,
(R1 ∪ R2) for regular expressions R1,R2,
(R1R2) for regular expressions R1,R2,

R∗1 for a regular expression R1.

→ Regular expressions represent languages!

INF2080 Lecture :: 25th January 3 / 39

Regular Expressions

Definition (Regular Expression)

Given an alphabet Σ, a regular expression is
a for some a ∈ Σ,
ε,
∅,
(R1 ∪ R2) for regular expressions R1,R2,
(R1R2) for regular expressions R1,R2,
R∗1 for a regular expression R1.

→ Regular expressions represent languages!

INF2080 Lecture :: 25th January 3 / 39

Regular Expressions

Definition (Regular Expression)

Given an alphabet Σ, a regular expression is
a for some a ∈ Σ,
ε,
∅,
(R1 ∪ R2) for regular expressions R1,R2,
(R1R2) for regular expressions R1,R2,
R∗1 for a regular expression R1.

→ Regular expressions represent languages!

INF2080 Lecture :: 25th January 3 / 39

Regular Expressions - Examples

What languages do the following regular expressions (RE) represent?
0∗

10∗1
(1(0 ∪ 1)∗1) ∪ (0(0 ∪ 1)∗0) ∪ 0 ∪ 1

INF2080 Lecture :: 25th January 4 / 39

Regular Expressions - Examples

What languages do the following regular expressions (RE) represent?
0∗

10∗1

(1(0 ∪ 1)∗1) ∪ (0(0 ∪ 1)∗0) ∪ 0 ∪ 1

INF2080 Lecture :: 25th January 4 / 39

Regular Expressions - Examples

What languages do the following regular expressions (RE) represent?
0∗

10∗1
(1(0 ∪ 1)∗1) ∪ (0(0 ∪ 1)∗0) ∪ 0 ∪ 1

INF2080 Lecture :: 25th January 4 / 39

Regular Expressions - Automata

What is the connection between RE and DFA/NFA?

Language 0(0 ∪ 1)∗0:
2

1start 3

0

0, 1

0

INF2080 Lecture :: 25th January 5 / 39

Regular Expressions - Automata

What is the connection between RE and DFA/NFA?

Language 0(0 ∪ 1)∗0:

2

1start 3

0

0, 1

0

INF2080 Lecture :: 25th January 5 / 39

Regular Expressions - Automata

What is the connection between RE and DFA/NFA?

Language 0(0 ∪ 1)∗0:
2

1start 3

0

0, 1

0

INF2080 Lecture :: 25th January 5 / 39

Regular Expressions and Automata

What is the connection between RE and DFA/NFA?

Can all RE be represented using DFA/NFA?
Can all DFA/NFA be described by RE?

Yes!

INF2080 Lecture :: 25th January 6 / 39

Regular Expressions and Automata

What is the connection between RE and DFA/NFA?

Can all RE be represented using DFA/NFA?
Can all DFA/NFA be described by RE?

Yes!

INF2080 Lecture :: 25th January 6 / 39

Regular Expressions and Automata

Proposition
Every language described by an RE is regular.

Proof based on inductive definition of RE!

INF2080 Lecture :: 25th January 7 / 39

Definition (Regular Expression)

Given an alphabet Σ, a regular expression
is

a for some a ∈ Σ,
ε,
∅,
(R1 ∪ R2) for regular expressions
R1,R2,
(R1R2) for regular expressions R1,R2,
R∗1 for a regular expression R1.

if R = a for a ∈ Σ, then L(R) = {a} is ac-
cepted by

start
a

If R = ε, then L(R) = {ε} is accepted by

start

If R = ∅, then L(R) = ∅ is accepted by

start

INF2080 Lecture :: 25th January 8 / 39

Definition (Regular Expression)

Given an alphabet Σ, a regular expression
is

a for some a ∈ Σ,
ε,
∅,
(R1 ∪ R2) for regular expressions
R1,R2,
(R1R2) for regular expressions R1,R2,
R∗1 for a regular expression R1.

if R = a for a ∈ Σ, then L(R) = {a} is ac-
cepted by

start
a

If R = ε, then L(R) = {ε} is accepted by

start

If R = ∅, then L(R) = ∅ is accepted by

start

INF2080 Lecture :: 25th January 8 / 39

Definition (Regular Expression)

Given an alphabet Σ, a regular expression
is

a for some a ∈ Σ,
ε,
∅,
(R1 ∪ R2) for regular expressions
R1,R2,
(R1R2) for regular expressions R1,R2,
R∗1 for a regular expression R1.

if R = a for a ∈ Σ, then L(R) = {a} is ac-
cepted by

start
a

If R = ε, then L(R) = {ε} is accepted by

start

If R = ∅, then L(R) = ∅ is accepted by

start

INF2080 Lecture :: 25th January 8 / 39

Definition (Regular Expression)

Given an alphabet Σ, a regular expression
is

a for some a ∈ Σ,
ε,
∅,
(R1 ∪ R2) for regular expressions
R1,R2,
(R1R2) for regular expressions R1,R2,
R∗1 for a regular expression R1.

if R = a for a ∈ Σ, then L(R) = {a} is ac-
cepted by

start
a

If R = ε, then L(R) = {ε} is accepted by

start

If R = ∅, then L(R) = ∅ is accepted by

start

INF2080 Lecture :: 25th January 8 / 39

Definition (Regular Expression)

Given an alphabet Σ, a regular expression
is

a for some a ∈ Σ,
ε,
∅,
(R1 ∪ R2) for regular expressions
R1,R2,
(R1R2) for regular expressions R1,R2,
R∗1 for a regular expression R1.

The rest is union, concatanation and Kleene
star of regular languages, as discussed last
week!

(recall: the union/concatanation/Kleene star of
regular languages is itself regular)

INF2080 Lecture :: 25th January 9 / 39

Definition (Regular Expression)

Given an alphabet Σ, a regular expression
is

a for some a ∈ Σ,
ε,
∅,
(R1 ∪ R2) for regular expressions
R1,R2,
(R1R2) for regular expressions R1,R2,
R∗1 for a regular expression R1.

The rest is union, concatanation and Kleene
star of regular languages, as discussed last
week!
(recall: the union/concatanation/Kleene star of
regular languages is itself regular)

INF2080 Lecture :: 25th January 9 / 39

Regular Expressions and Automata

So we’ve just proven

Proposition
Every language described by a RE is regular.

Next:

Proposition
Every regular language can be described using a RE.

INF2080 Lecture :: 25th January 10 / 39

Regular Expressions and Automata

So we’ve just proven

Proposition
Every language described by a RE is regular.

Next:

Proposition
Every regular language can be described using a RE.

INF2080 Lecture :: 25th January 10 / 39

GNFA

Generalized Nondeterministic Finite Automaton
(GNFA):

NFA where the transitions are RE, not
only symbols from Σ.

some other assumptions for convenience:
start state goes to every other state, but
has no incoming states
every state goes to the unique accepting
state, which is different from the starting
state. The accepting state does not have
any outgoing arrows.
all other states have one transition to all
other states, including themselves.

start1

(0 ∪ 1)∗

0

1∗

start
((ab∗) ∪ (ba∗))∗

INF2080 Lecture :: 25th January 11 / 39

GNFA

Generalized Nondeterministic Finite Automaton
(GNFA):

NFA where the transitions are RE, not
only symbols from Σ.

some other assumptions for convenience:
start state goes to every other state, but
has no incoming states
every state goes to the unique accepting
state, which is different from the starting
state. The accepting state does not have
any outgoing arrows.
all other states have one transition to all
other states, including themselves.

start

1

(0 ∪ 1)∗

0

1∗

start
((ab∗) ∪ (ba∗))∗

INF2080 Lecture :: 25th January 11 / 39

GNFA

Generalized Nondeterministic Finite Automaton
(GNFA):

NFA where the transitions are RE, not
only symbols from Σ.
some other assumptions for convenience:

start state goes to every other state, but
has no incoming states
every state goes to the unique accepting
state, which is different from the starting
state. The accepting state does not have
any outgoing arrows.
all other states have one transition to all
other states, including themselves.

start

1

(0 ∪ 1)∗

0

1∗

start
((ab∗) ∪ (ba∗))∗

INF2080 Lecture :: 25th January 11 / 39

GNFA

Generalized Nondeterministic Finite Automaton
(GNFA):

NFA where the transitions are RE, not
only symbols from Σ.
some other assumptions for convenience:
start state goes to every other state, but
has no incoming states

every state goes to the unique accepting
state, which is different from the starting
state. The accepting state does not have
any outgoing arrows.
all other states have one transition to all
other states, including themselves.

start

1

(0 ∪ 1)∗

0

1∗

start
((ab∗) ∪ (ba∗))∗

INF2080 Lecture :: 25th January 11 / 39

GNFA

Generalized Nondeterministic Finite Automaton
(GNFA):

NFA where the transitions are RE, not
only symbols from Σ.
some other assumptions for convenience:
start state goes to every other state, but
has no incoming states
every state goes to the unique accepting
state, which is different from the starting
state. The accepting state does not have
any outgoing arrows.

all other states have one transition to all
other states, including themselves.

start

1

(0 ∪ 1)∗

0

1∗

start
((ab∗) ∪ (ba∗))∗

INF2080 Lecture :: 25th January 11 / 39

GNFA

Generalized Nondeterministic Finite Automaton
(GNFA):

NFA where the transitions are RE, not
only symbols from Σ.
some other assumptions for convenience:
start state goes to every other state, but
has no incoming states
every state goes to the unique accepting
state, which is different from the starting
state. The accepting state does not have
any outgoing arrows.
all other states have one transition to all
other states, including themselves.

start

1

(0 ∪ 1)∗

0

1∗

start
((ab∗) ∪ (ba∗))∗

INF2080 Lecture :: 25th January 11 / 39

GNFA: Convenient assumptions

Generalized Nondeterministic Finite Automaton
(GNFA):

NFA where the transitions are RE, not
only symbols from Σ.
some other assumptions for convenience:
start state goes to every other state, but
has no incoming states
every state goes to the unique accepting
state, which is different from the starting
state. The accepting state does not have
any outgoing arrows.
all other states have one transition to all
other states, including themselves.

Astart

B C

D

1

(0 ∪ 1)∗

0

1∗

ε

INF2080 Lecture :: 25th January 12 / 39

GNFA: Convenient assumptions

Generalized Nondeterministic Finite Automaton
(GNFA):

NFA where the transitions are RE, not
only symbols from Σ.
some other assumptions for convenience:
start state goes to every other state, but
has no incoming states X
every state goes to the unique accepting
state, which is different from the starting
state. The accepting state does not have
any outgoing arrows.
all other states have one transition to all
other states, including themselves.

start A

B C

D

ε

1

(0 ∪ 1)∗

0

1∗

ε

∅
∅

∅

INF2080 Lecture :: 25th January 13 / 39

GNFA: Convenient assumptions

Generalized Nondeterministic Finite Automaton
(GNFA):

NFA where the transitions are RE, not
only symbols from Σ.
some other assumptions for convenience:
start state goes to every other state, but
has no incoming states X
every state goes to the unique accepting
state, which is different from the starting
state. The accepting state does not have
any outgoing arrows. X
all other states have one transition to all
other states, including themselves. (X)

start A

B C

D

ε

1

(0 ∪ 1)∗

0

1∗

ε

∅
∅

∅
ε

ε
∅

∅

∅

for the
last point, add ∅ transitions between any two
non-accepting/starting states that were not
previously connected (e.g., (B,D))

INF2080 Lecture :: 25th January 14 / 39

GNFA: Convenient assumptions

Generalized Nondeterministic Finite Automaton
(GNFA):

NFA where the transitions are RE, not
only symbols from Σ.
some other assumptions for convenience:
start state goes to every other state, but
has no incoming states X
every state goes to the unique accepting
state, which is different from the starting
state. The accepting state does not have
any outgoing arrows. X
all other states have one transition to all
other states, including themselves. (X)

start A

B C

D

ε

1

(0 ∪ 1)∗

0

1∗

ε

∅
∅

∅
ε

ε
∅

∅

∅

for the
last point, add ∅ transitions between any two
non-accepting/starting states that were not
previously connected (e.g., (B,D))

INF2080 Lecture :: 25th January 14 / 39

Generalized Nondeterministic Finite Automata

Definition
A generalized nondeterministic finite automaton (GNFA) is a 5-tuple (Q,Σ, δ, qstart , qaccept)
where

1 Q is a finite set of states
2 Σ is the input alphabet
3 δ : (Q \ {qaccept})× (Q \ {qstart})→ R is the transition function, where R is the set of

all RE’s over Σ,
4 qstart is the start state, and
5 qaccept is the accept state.

INF2080 Lecture :: 25th January 15 / 39

Regular Expressions and Automata

Proposition
Every regular language can be described using a RE.

Proof idea: take DFA and transform into a GNFA that accepts the same language. Iteratively
remove (non-starting and non-accepting) states so that the same language is accepted, until
only the starting and accepting state remain. Then the RE along the transition between the
two states describes the regular language.

INF2080 Lecture :: 25th January 16 / 39

Regular Expressions and Automata

Proposition
Every regular language can be described using a RE.

Proof idea: take DFA and transform into a GNFA that accepts the same language. Iteratively
remove (non-starting and non-accepting) states so that the same language is accepted, until
only the starting and accepting state remain. Then the RE along the transition between the
two states describes the regular language.

INF2080 Lecture :: 25th January 16 / 39

Regular Expressions and Automata

Proposition
Every regular language can be described using a RE.

Proof:
Given a DFA M, we construct an equivalent GNFA G by adding a new start state qstart
with an ε transition to the old start state q0, as well as a new accepting state qacept , with
ε transitions from all old accept states.
add ∅ transitions for all state pairs that do not have a transition in M.

INF2080 Lecture :: 25th January 17 / 39

Regular Expressions and Automata

Recall the “convenient” properties of
GNFA:
start state goes to every other state, but
has no incoming states
every state goes to the unique accepting
state, which is different from the starting
state. The accepting state does not have
any outgoing arrows.
all other states have one transition to all
other states, including themselves.

⇒ When removing X, we only need to consider
situations like this:

X

R2 R4

R3

R1

⇓
R1 ∪ (R2R

∗
3R4)

INF2080 Lecture :: 25th January 18 / 39

Regular Expressions and Automata

Recall the “convenient” properties of
GNFA:
start state goes to every other state, but
has no incoming states
every state goes to the unique accepting
state, which is different from the starting
state. The accepting state does not have
any outgoing arrows.
all other states have one transition to all
other states, including themselves.

⇒ When removing X, we only need to consider
situations like this:

X

R2 R4

R3

R1

⇓
R1 ∪ (R2R

∗
3R4)

INF2080 Lecture :: 25th January 18 / 39

Regular Expressions and Automata

Recall the “convenient” properties of
GNFA:
start state goes to every other state, but
has no incoming states
every state goes to the unique accepting
state, which is different from the starting
state. The accepting state does not have
any outgoing arrows.
all other states have one transition to all
other states, including themselves.

⇒ When removing X, we only need to consider
situations like this:

X

R2 R4

R3

R1

⇓
R1 ∪ (R2R

∗
3R4)

INF2080 Lecture :: 25th January 18 / 39

Regular Expressions and Automata

Let’s formalize this! Let us define a procedure CONVERT(G):
1 If k = 2 then G only has one start and one accept state, so return the regular expression

R of the transition connecting them.

2 if k > 2 select a state q′ 6∈ {qaccept , qstart}. Define G ′ = {Q ′,Σ, δ′, qstart , qaccept} with
Q ′ = Q \ {q′} and

δ′(qi , qj) = R1 ∪ R2R
∗
3R4

where R1 = δ(qi , qj), R2 = δ(qi , q
′), R3 = δ(q′, q′), R4 = δ(q′, qj), and .

3 Return the result of CONVERT(G ′).
4 correctness still remains to be shown! See book for details! (Claim 1.65)

INF2080 Lecture :: 25th January 19 / 39

Regular Expressions and Automata

Let’s formalize this! Let us define a procedure CONVERT(G):
1 If k = 2 then G only has one start and one accept state, so return the regular expression

R of the transition connecting them.
2 if k > 2 select a state q′ 6∈ {qaccept , qstart}. Define G ′ = {Q ′,Σ, δ′, qstart , qaccept} with

Q ′ = Q \ {q′} and
δ′(qi , qj) = R1 ∪ R2R

∗
3R4

where R1 = δ(qi , qj), R2 = δ(qi , q
′), R3 = δ(q′, q′), R4 = δ(q′, qj), and .

3 Return the result of CONVERT(G ′).
4 correctness still remains to be shown! See book for details! (Claim 1.65)

INF2080 Lecture :: 25th January 19 / 39

Regular Expressions and Automata

Let’s formalize this! Let us define a procedure CONVERT(G):
1 If k = 2 then G only has one start and one accept state, so return the regular expression

R of the transition connecting them.
2 if k > 2 select a state q′ 6∈ {qaccept , qstart}. Define G ′ = {Q ′,Σ, δ′, qstart , qaccept} with

Q ′ = Q \ {q′} and
δ′(qi , qj) = R1 ∪ R2R

∗
3R4

where R1 = δ(qi , qj), R2 = δ(qi , q
′), R3 = δ(q′, q′), R4 = δ(q′, qj), and .

3 Return the result of CONVERT(G ′).

4 correctness still remains to be shown! See book for details! (Claim 1.65)

INF2080 Lecture :: 25th January 19 / 39

Regular Expressions and Automata

Let’s formalize this! Let us define a procedure CONVERT(G):
1 If k = 2 then G only has one start and one accept state, so return the regular expression

R of the transition connecting them.
2 if k > 2 select a state q′ 6∈ {qaccept , qstart}. Define G ′ = {Q ′,Σ, δ′, qstart , qaccept} with

Q ′ = Q \ {q′} and
δ′(qi , qj) = R1 ∪ R2R

∗
3R4

where R1 = δ(qi , qj), R2 = δ(qi , q
′), R3 = δ(q′, q′), R4 = δ(q′, qj), and .

3 Return the result of CONVERT(G ′).
4 correctness still remains to be shown! See book for details! (Claim 1.65)

INF2080 Lecture :: 25th January 19 / 39

Regular Expressions and Automata

Proposition
Every regular language can be described using a RE.

Example:
DFA:

start

1

0

1

0 0

1

GNFA:

start

1

0

1

0 0

1

∅ ∅

∅

INF2080 Lecture :: 25th January 20 / 39

Regular Expressions and Automata

Proposition
Every regular language can be described using a RE.

Example:
DFA:

start

1

0

1

0 0

1

GNFA:

start

1

0

1

0 0

1

∅ ∅

∅

INF2080 Lecture :: 25th January 20 / 39

Regular Expressions and Automata

Proposition
Every regular language can be described using a RE.

Example:
Remove state X:

start

X1

0

1

0 0

1

∅ ∅

∅

start

0 0

1

∅ ∪ (10∗1)

INF2080 Lecture :: 25th January 21 / 39

Regular Expressions and Automata

Proposition
Every regular language can be described using a RE.

Example:
Remove state X:

start

X1

0

1

0 0

1

∅ ∅

∅
start

0 0

1

∅ ∪ (10∗1)

INF2080 Lecture :: 25th January 21 / 39

Regular Expressions and Automata

Proposition
Every regular language can be described using a RE.

Example:
Remove state Y:

start

Y

0 0

1

(10∗1)

start

(10∗1) ∪ (01∗0)

INF2080 Lecture :: 25th January 22 / 39

Regular Expressions and Automata

Proposition
Every regular language can be described using a RE.

Example:
Remove state Y:

start

Y

0 0

1

(10∗1)

start

(10∗1) ∪ (01∗0)

INF2080 Lecture :: 25th January 22 / 39

Summary

So RE = GNFA = DFA = NFA = Regular languages...

But when is a language nonregular? How can we check?
⇒ Pumping Lemma!

INF2080 Lecture :: 25th January 23 / 39

Summary

So RE = GNFA = DFA = NFA = Regular languages...
But when is a language nonregular? How can we check?

⇒ Pumping Lemma!

INF2080 Lecture :: 25th January 23 / 39

Summary

So RE = GNFA = DFA = NFA = Regular languages...
But when is a language nonregular? How can we check?
⇒ Pumping Lemma!

INF2080 Lecture :: 25th January 23 / 39

Pumping Lemma

DFAs only have finite memory, aka states.

Pumping lemma gives a pumping length: if a string is longer than the pumping length, it
can be pumped, i.e., there is a substring that can be repeated arbitrarily often such that
the string remains in the language
If a DFA has p states, and a string has length ≥ p, then the accepting path in the DFA
must visit at least p + 1 states. In other words, at least one state appears twice. ⇒ loop!
This loop can be repeated while staying in the language.

INF2080 Lecture :: 25th January 24 / 39

Pumping Lemma

DFAs only have finite memory, aka states.
Pumping lemma gives a pumping length: if a string is longer than the pumping length, it
can be pumped, i.e., there is a substring that can be repeated arbitrarily often such that
the string remains in the language

If a DFA has p states, and a string has length ≥ p, then the accepting path in the DFA
must visit at least p + 1 states. In other words, at least one state appears twice. ⇒ loop!
This loop can be repeated while staying in the language.

INF2080 Lecture :: 25th January 24 / 39

Pumping Lemma

DFAs only have finite memory, aka states.
Pumping lemma gives a pumping length: if a string is longer than the pumping length, it
can be pumped, i.e., there is a substring that can be repeated arbitrarily often such that
the string remains in the language
If a DFA has p states, and a string has length ≥ p, then the accepting path in the DFA
must visit at least p + 1 states. In other words, at least one state appears twice. ⇒ loop!
This loop can be repeated while staying in the language.

INF2080 Lecture :: 25th January 24 / 39

Pumping Lemma - Example

astart

b

c

d

1

0

1

0 0

1

Language (10∗1) ∪ (01∗0)

DFA has 4 states
consider string 10001, length 5
⇒ path must contain a loop (in this case,
at node b)

INF2080 Lecture :: 25th January 25 / 39

Pumping Lemma - Example

astart

b

c

d

1

0

1

0 0

1

Language (10∗1) ∪ (01∗0)

DFA has 4 states
consider string 10001, length 5
⇒ path must contain a loop (in this case,
at node b)

INF2080 Lecture :: 25th January 25 / 39

Pumping Lemma - Example

astart

b

c

d

1

0

1

0 0

1

Language (10∗1) ∪ (01∗0)

DFA has 4 states

consider string 10001, length 5
⇒ path must contain a loop (in this case,
at node b)

INF2080 Lecture :: 25th January 25 / 39

Pumping Lemma - Example

astart

b

c

d

1

0

1

0 0

1

Language (10∗1) ∪ (01∗0)

DFA has 4 states
consider string 10001, length 5

⇒ path must contain a loop (in this case,
at node b)

INF2080 Lecture :: 25th January 25 / 39

Pumping Lemma - Example

astart

b

c

d

1

0

1

0 0

1

Language (10∗1) ∪ (01∗0)

DFA has 4 states
consider string 10001, length 5
⇒ path must contain a loop (in this case,
at node b)

INF2080 Lecture :: 25th January 25 / 39

Pumping Lemma - Example

astart

b

c

d e

1 1

0

1

0

Language 1(010)∗1
DFA has 5 states
consider string 10101, length 5
⇒ path must contain a loop (in this case,
at nodes b,d,e)
⇒ 10100101 is also a word!

INF2080 Lecture :: 25th January 26 / 39

Pumping Lemma - Example

astart

b

c

d e

1 1

0

1

0

Language 1(010)∗1

DFA has 5 states
consider string 10101, length 5
⇒ path must contain a loop (in this case,
at nodes b,d,e)
⇒ 10100101 is also a word!

INF2080 Lecture :: 25th January 26 / 39

Pumping Lemma - Example

astart

b

c

d e

1 1

0

1

0

Language 1(010)∗1
DFA has 5 states

consider string 10101, length 5
⇒ path must contain a loop (in this case,
at nodes b,d,e)
⇒ 10100101 is also a word!

INF2080 Lecture :: 25th January 26 / 39

Pumping Lemma - Example

astart

b

c

d e

1 1

0

1

0

Language 1(010)∗1
DFA has 5 states
consider string 10101, length 5

⇒ path must contain a loop (in this case,
at nodes b,d,e)
⇒ 10100101 is also a word!

INF2080 Lecture :: 25th January 26 / 39

Pumping Lemma - Example

astart

b

c

d e

1 1

0

1

0

Language 1(010)∗1
DFA has 5 states
consider string 10101, length 5
⇒ path must contain a loop (in this case,
at nodes b,d,e)

⇒ 10100101 is also a word!

INF2080 Lecture :: 25th January 26 / 39

Pumping Lemma - Example

astart

b

c

d e

1 1

0

1

0

Language 1(010)∗1
DFA has 5 states
consider string 10101, length 5
⇒ path must contain a loop (in this case,
at nodes b,d,e)
⇒ 10100101 is also a word!

INF2080 Lecture :: 25th January 26 / 39

Pumping Lemma

Lemma (Pumping Lemma)

If A is a regular language, then there is a number p, called the pumping length, where if w is a
word in A of length ≥ p then w can be divided into three parts, w = xyz , such that

1 xy iz ∈ A for every i ≥ 0,
2 |y | > 0,
3 |xy | ≤ p.

INF2080 Lecture :: 25th January 27 / 39

Pumping Lemma

Lemma (Pumping Lemma)

If A is a regular language, then there is a number p, called the pumping length, where if w is a
word in A of length ≥ p then w can be divided into three parts, w = xyz , such that

1 xy iz ∈ A for every i ≥ 0,
2 |y | > 0,
3 |xy | ≤ p.

Proof: We formalize our intuition.
Let M = (Q.Σ, δ, q0,F) be a DFA, A = L(M) the language accepted by M, and p be the
number of states in M.

Let w = w1 · · ·wn be a word in A of length n ≥ p. Since w ∈ A, it is accepted by M, i.e.,
there exists a sequence of states s1, s2, . . . sn+1 of length n + 1, where sn+1 is an accept
state and δ(si ,wi+1) = si+1.

INF2080 Lecture :: 25th January 28 / 39

Pumping Lemma

Lemma (Pumping Lemma)

If A is a regular language, then there is a number p, called the pumping length, where if w is a
word in A of length ≥ p then w can be divided into three parts, w = xyz , such that

1 xy iz ∈ A for every i ≥ 0,
2 |y | > 0,
3 |xy | ≤ p.

Proof: We formalize our intuition.
Let M = (Q.Σ, δ, q0,F) be a DFA, A = L(M) the language accepted by M, and p be the
number of states in M.
Let w = w1 · · ·wn be a word in A of length n ≥ p. Since w ∈ A, it is accepted by M, i.e.,
there exists a sequence of states s1, s2, . . . sn+1 of length n + 1, where sn+1 is an accept
state and δ(si ,wi+1) = si+1.

INF2080 Lecture :: 25th January 28 / 39

Pumping Lemma

Lemma (Pumping Lemma)

If A is a regular language, then there is a number p, called the pumping length, where if w is a
word in A of length ≥ p then w can be divided into three parts, w = xyz , such that

1 xy iz ∈ A for every i ≥ 0,
2 |y | > 0,
3 |xy | ≤ p.

Let w = w1 · · ·wn be a word in A of length n ≥ p. Since w ∈ A, it is accepted by M, i.e.,
there exists a sequence of states s1, s2, . . . sn+1 of length n + 1.

Since n + 1 ≥ p + 1, one state must occur twice within the first p + 1 elements of the
sequence (pigeonhole pricniple).
Let these occurences be sj and sl . Since these occur in the first p + 1 elements of the
sequence, we have l ≤ p + 1.

INF2080 Lecture :: 25th January 29 / 39

Pumping Lemma

Lemma (Pumping Lemma)

If A is a regular language, then there is a number p, called the pumping length, where if w is a
word in A of length ≥ p then w can be divided into three parts, w = xyz , such that

1 xy iz ∈ A for every i ≥ 0,
2 |y | > 0,
3 |xy | ≤ p.

Let w = w1 · · ·wn be a word in A of length n ≥ p. Since w ∈ A, it is accepted by M, i.e.,
there exists a sequence of states s1, s2, . . . sn+1 of length n + 1.
Since n + 1 ≥ p + 1, one state must occur twice within the first p + 1 elements of the
sequence (pigeonhole pricniple).

Let these occurences be sj and sl . Since these occur in the first p + 1 elements of the
sequence, we have l ≤ p + 1.

INF2080 Lecture :: 25th January 29 / 39

Pumping Lemma

Lemma (Pumping Lemma)

If A is a regular language, then there is a number p, called the pumping length, where if w is a
word in A of length ≥ p then w can be divided into three parts, w = xyz , such that

1 xy iz ∈ A for every i ≥ 0,
2 |y | > 0,
3 |xy | ≤ p.

Let w = w1 · · ·wn be a word in A of length n ≥ p. Since w ∈ A, it is accepted by M, i.e.,
there exists a sequence of states s1, s2, . . . sn+1 of length n + 1.
Since n + 1 ≥ p + 1, one state must occur twice within the first p + 1 elements of the
sequence (pigeonhole pricniple).
Let these occurences be sj and sl . Since these occur in the first p + 1 elements of the
sequence, we have l ≤ p + 1.

INF2080 Lecture :: 25th January 29 / 39

Pumping Lemma

Lemma (Pumping Lemma)

If A is a regular language, then there is a number p, called the pumping length, where if w is a
word in A of length ≥ p then w can be divided into three parts, w = xyz , such that

1 xy iz ∈ A for every i ≥ 0,
2 |y | > 0,
3 |xy | ≤ p.

Let these occurences be sj and sl . Since these occur in the first p + 1 elements of the
sequence, we have l ≤ p + 1.

define x = w1 · · ·wj−1, y = wj · · ·wl−1, z = wl · · ·wn.
Then |y | > 0 and |xy | ≤ p.

INF2080 Lecture :: 25th January 30 / 39

Pumping Lemma

Lemma (Pumping Lemma)

If A is a regular language, then there is a number p, called the pumping length, where if w is a
word in A of length ≥ p then w can be divided into three parts, w = xyz , such that

1 xy iz ∈ A for every i ≥ 0,
2 |y | > 0,
3 |xy | ≤ p.

Let these occurences be sj and sl . Since these occur in the first p + 1 elements of the
sequence, we have l ≤ p + 1.
define x = w1 · · ·wj−1, y = wj · · ·wl−1, z = wl · · ·wn.

Then |y | > 0 and |xy | ≤ p.

INF2080 Lecture :: 25th January 30 / 39

Pumping Lemma

Lemma (Pumping Lemma)

If A is a regular language, then there is a number p, called the pumping length, where if w is a
word in A of length ≥ p then w can be divided into three parts, w = xyz , such that

1 xy iz ∈ A for every i ≥ 0,
2 |y | > 0,
3 |xy | ≤ p.

Let these occurences be sj and sl . Since these occur in the first p + 1 elements of the
sequence, we have l ≤ p + 1.
define x = w1 · · ·wj−1, y = wj · · ·wl−1, z = wl · · ·wn.
Then |y | > 0 and |xy | ≤ p.

INF2080 Lecture :: 25th January 30 / 39

Pumping Lemma

Lemma (Pumping Lemma)

If A is a regular language, then there is a number p, called the pumping length, where if w is a
word in A of length ≥ p then w can be divided into three parts, w = xyz , such that

1 xy iz ∈ A for every i ≥ 0,
2 |y | > 0,
3 |xy | ≤ p.

define x = w1 · · ·wj−1, y = wj · · ·wl−1, z = wl · · ·wn.
x takes M from s1 to sj , y takes M from sj to sl , z takes M from sl to sn+1.

Thus the word xy iz takes M from the start state s1 to sj , follows the path from sj to sl i
times (recall that sj = sl), then takes M from sl to sn+1.
Thus M accepts any word xy iz for i ≥ 0.

INF2080 Lecture :: 25th January 31 / 39

Pumping Lemma

Lemma (Pumping Lemma)

If A is a regular language, then there is a number p, called the pumping length, where if w is a
word in A of length ≥ p then w can be divided into three parts, w = xyz , such that

1 xy iz ∈ A for every i ≥ 0,
2 |y | > 0,
3 |xy | ≤ p.

define x = w1 · · ·wj−1, y = wj · · ·wl−1, z = wl · · ·wn.
x takes M from s1 to sj , y takes M from sj to sl , z takes M from sl to sn+1.
Thus the word xy iz takes M from the start state s1 to sj , follows the path from sj to sl i
times (recall that sj = sl), then takes M from sl to sn+1.

Thus M accepts any word xy iz for i ≥ 0.

INF2080 Lecture :: 25th January 31 / 39

Pumping Lemma

Lemma (Pumping Lemma)

If A is a regular language, then there is a number p, called the pumping length, where if w is a
word in A of length ≥ p then w can be divided into three parts, w = xyz , such that

1 xy iz ∈ A for every i ≥ 0,
2 |y | > 0,
3 |xy | ≤ p.

define x = w1 · · ·wj−1, y = wj · · ·wl−1, z = wl · · ·wn.
x takes M from s1 to sj , y takes M from sj to sl , z takes M from sl to sn+1.
Thus the word xy iz takes M from the start state s1 to sj , follows the path from sj to sl i
times (recall that sj = sl), then takes M from sl to sn+1.
Thus M accepts any word xy iz for i ≥ 0.

INF2080 Lecture :: 25th January 31 / 39

Pumping Lemma

Lemma (Pumping Lemma)

If A is a regular language, then there is a number p, called the pumping length, where if w is a
word in A of length ≥ p then w can be divided into three parts, w = xyz , such that

1 xy iz ∈ A for every i ≥ 0,
2 |y | > 0,
3 |xy | ≤ p.

define x = w1 · · ·wj−1, y = wj · · ·wl−1, z = wl · · ·wn.
x takes M from s1 to sj , y takes M from sj to sl , z takes M from sl to sn+1.
Thus the word xy iz takes M from the start state s1 to sj , follows the path from sj to sl i
times (recall that sj = sl), then takes M from sl to sn+1.
Thus M accepts any word xy iz for i ≥ 0.

INF2080 Lecture :: 25th January 31 / 39

Pumping Lemma

very useful for determining if a language is nonregular

→ find a string with length ≥ p such that the pumping lemma does not hold
not very useful for proving a language is regular
→ not an if and only if statement!

INF2080 Lecture :: 25th January 32 / 39

Pumping Lemma

very useful for determining if a language is nonregular
→ find a string with length ≥ p such that the pumping lemma does not hold

not very useful for proving a language is regular
→ not an if and only if statement!

INF2080 Lecture :: 25th January 32 / 39

Pumping Lemma

very useful for determining if a language is nonregular
→ find a string with length ≥ p such that the pumping lemma does not hold
not very useful for proving a language is regular

→ not an if and only if statement!

INF2080 Lecture :: 25th January 32 / 39

Pumping Lemma

very useful for determining if a language is nonregular
→ find a string with length ≥ p such that the pumping lemma does not hold
not very useful for proving a language is regular
→ not an if and only if statement!

INF2080 Lecture :: 25th January 32 / 39

Pumping Lemma - Applied

Lemma (Pumping Lemma)

If A is a regular language, then there is a number p, called the pumping length, where if w is a
word in A of length ≥ p then w can be divided into three parts, w = xyz , such that

1 xy iz ∈ A for every i ≥ 0,
2 |y | > 0,
3 |xy | ≤ p.

Let A = {0n1n | n ≥ 0}.

Is A regular?
If it is, then the pumping lemma gives us a pumping length p.
Let s = 0p1p.

INF2080 Lecture :: 25th January 33 / 39

Pumping Lemma - Applied

Lemma (Pumping Lemma)

If A is a regular language, then there is a number p, called the pumping length, where if w is a
word in A of length ≥ p then w can be divided into three parts, w = xyz , such that

1 xy iz ∈ A for every i ≥ 0,
2 |y | > 0,
3 |xy | ≤ p.

Let A = {0n1n | n ≥ 0}.
Is A regular?

If it is, then the pumping lemma gives us a pumping length p.
Let s = 0p1p.

INF2080 Lecture :: 25th January 33 / 39

Pumping Lemma - Applied

Lemma (Pumping Lemma)

If A is a regular language, then there is a number p, called the pumping length, where if w is a
word in A of length ≥ p then w can be divided into three parts, w = xyz , such that

1 xy iz ∈ A for every i ≥ 0,
2 |y | > 0,
3 |xy | ≤ p.

Let A = {0n1n | n ≥ 0}.
Is A regular?
If it is, then the pumping lemma gives us a pumping length p.
Let s = 0p1p.

INF2080 Lecture :: 25th January 33 / 39

Pumping Lemma - Applied

Lemma (Pumping Lemma)

If A is a regular language, then there is a number p, called the pumping length, where if w is a
word in A of length ≥ p then w can be divided into three parts, w = xyz , such that

1 xy iz ∈ A for every i ≥ 0,
2 |y | > 0,
3 |xy | ≤ p.

Let A = {0n1n | n ≥ 0}.
Let s = 0p1p.

Condition 3 tells us that y consists of only 0s.
⇒ then xy iz for i ≥ 2 has more 0s than 1s. Contradiction! ⇒ A is nonregular.

INF2080 Lecture :: 25th January 34 / 39

Pumping Lemma - Applied

Lemma (Pumping Lemma)

If A is a regular language, then there is a number p, called the pumping length, where if w is a
word in A of length ≥ p then w can be divided into three parts, w = xyz , such that

1 xy iz ∈ A for every i ≥ 0,
2 |y | > 0,
3 |xy | ≤ p.

Let A = {0n1n | n ≥ 0}.
Let s = 0p1p.
Condition 3 tells us that y consists of only 0s.

⇒ then xy iz for i ≥ 2 has more 0s than 1s. Contradiction! ⇒ A is nonregular.

INF2080 Lecture :: 25th January 34 / 39

Pumping Lemma - Applied

Lemma (Pumping Lemma)

If A is a regular language, then there is a number p, called the pumping length, where if w is a
word in A of length ≥ p then w can be divided into three parts, w = xyz , such that

1 xy iz ∈ A for every i ≥ 0,
2 |y | > 0,
3 |xy | ≤ p.

Let A = {0n1n | n ≥ 0}.
Let s = 0p1p.
Condition 3 tells us that y consists of only 0s.
⇒ then xy iz for i ≥ 2 has more 0s than 1s. Contradiction! ⇒ A is nonregular.

INF2080 Lecture :: 25th January 34 / 39

Pumping Lemma - Applied

Even if a language is nonregular, it might contain strings for which the pumping lemma is
true!

We have to be careful!

INF2080 Lecture :: 25th January 35 / 39

Pumping Lemma - Applied

Even if a language is nonregular, it might contain strings for which the pumping lemma is
true!
We have to be careful!

INF2080 Lecture :: 25th January 35 / 39

Pumping Lemma - Applied

Lemma (Pumping Lemma)

|w | ≥ p,w = xyz , s.t.
1 xy iz ∈ A for every i ≥ 0,
2 |y | > 0,
3 |xy | ≤ p.

Let B = {ω |ω contains an equal number of 0s and 1s}.
Let w = (01)p.

x = ε, y = 01, z = (01)p−1

all conditions are met!

INF2080 Lecture :: 25th January 36 / 39

Pumping Lemma - Applied

Lemma (Pumping Lemma)

|w | ≥ p,w = xyz , s.t.
1 xy iz ∈ A for every i ≥ 0,
2 |y | > 0,
3 |xy | ≤ p.

Let B = {ω |ω contains an equal number of 0s and 1s}.
Let w = (01)p.
x = ε, y = 01, z = (01)p−1

all conditions are met!

INF2080 Lecture :: 25th January 36 / 39

Pumping Lemma - Applied

Lemma (Pumping Lemma)

|w | ≥ p,w = xyz , s.t.
1 xy iz ∈ A for every i ≥ 0,
2 |y | > 0,
3 |xy | ≤ p.

Let B = {ω |ω contains an equal number of 0s and 1s}.
Let w = (01)p.
x = ε, y = 01, z = (01)p−1

all conditions are met!

INF2080 Lecture :: 25th January 36 / 39

Pumping Lemma - Applied

Lemma (Pumping Lemma)

1 xy iz ∈ A for every i ≥ 0,
2 |y | > 0,
3 |xy | ≤ p.

Let B = {ω |ω contains an equal number of 0s and 1s}.
Let s = 0p1p.

x = ε, y = 0p1p, z = ε

looks like it can be pumped, but are all conditions met?
condition 3 ⇒ y must contain only 0s, so it cannot be pumped⇒ B nonregular!

INF2080 Lecture :: 25th January 37 / 39

Pumping Lemma - Applied

Lemma (Pumping Lemma)

1 xy iz ∈ A for every i ≥ 0,
2 |y | > 0,
3 |xy | ≤ p.

Let B = {ω |ω contains an equal number of 0s and 1s}.
Let s = 0p1p.
x = ε, y = 0p1p, z = ε

looks like it can be pumped, but are all conditions met?
condition 3 ⇒ y must contain only 0s, so it cannot be pumped⇒ B nonregular!

INF2080 Lecture :: 25th January 37 / 39

Pumping Lemma - Applied

Lemma (Pumping Lemma)

1 xy iz ∈ A for every i ≥ 0,
2 |y | > 0,
3 |xy | ≤ p.

Let B = {ω |ω contains an equal number of 0s and 1s}.
Let s = 0p1p.
x = ε, y = 0p1p, z = ε

looks like it can be pumped

, but are all conditions met?
condition 3 ⇒ y must contain only 0s, so it cannot be pumped⇒ B nonregular!

INF2080 Lecture :: 25th January 37 / 39

Pumping Lemma - Applied

Lemma (Pumping Lemma)

1 xy iz ∈ A for every i ≥ 0,
2 |y | > 0,
3 |xy | ≤ p.

Let B = {ω |ω contains an equal number of 0s and 1s}.
Let s = 0p1p.
x = ε, y = 0p1p, z = ε

looks like it can be pumped, but are all conditions met?

condition 3 ⇒ y must contain only 0s, so it cannot be pumped⇒ B nonregular!

INF2080 Lecture :: 25th January 37 / 39

Pumping Lemma - Applied

Lemma (Pumping Lemma)

1 xy iz ∈ A for every i ≥ 0,
2 |y | > 0,
3 |xy | ≤ p.

Let B = {ω |ω contains an equal number of 0s and 1s}.
Let s = 0p1p.
x = ε, y = 0p1p, z = ε

looks like it can be pumped, but are all conditions met?
condition 3 ⇒ y must contain only 0s, so it cannot be pumped

⇒ B nonregular!

INF2080 Lecture :: 25th January 37 / 39

Pumping Lemma - Applied

Lemma (Pumping Lemma)

1 xy iz ∈ A for every i ≥ 0,
2 |y | > 0,
3 |xy | ≤ p.

Let B = {ω |ω contains an equal number of 0s and 1s}.
Let s = 0p1p.
x = ε, y = 0p1p, z = ε

looks like it can be pumped, but are all conditions met?
condition 3 ⇒ y must contain only 0s, so it cannot be pumped⇒ B nonregular!

INF2080 Lecture :: 25th January 37 / 39

Pumping Lemma - Applied

A = {0n1n | n ≥ 0}.
B = {ω |ω contains an equal number of 0s and 1s}
Another way of showing B is nonregular is to reduce it to the nonregularity of A:

regular languages are closed under intersection
and A = B ∩ 0∗1∗

if B is regular and since 0∗1∗ is regular, then A must be as well, contradiction!

INF2080 Lecture :: 25th January 38 / 39

Pumping Lemma - Applied

A = {0n1n | n ≥ 0}.
B = {ω |ω contains an equal number of 0s and 1s}
Another way of showing B is nonregular is to reduce it to the nonregularity of A:
regular languages are closed under intersection

and A = B ∩ 0∗1∗

if B is regular and since 0∗1∗ is regular, then A must be as well, contradiction!

INF2080 Lecture :: 25th January 38 / 39

Pumping Lemma - Applied

A = {0n1n | n ≥ 0}.
B = {ω |ω contains an equal number of 0s and 1s}
Another way of showing B is nonregular is to reduce it to the nonregularity of A:
regular languages are closed under intersection
and A = B ∩ 0∗1∗

if B is regular and since 0∗1∗ is regular, then A must be as well, contradiction!

INF2080 Lecture :: 25th January 38 / 39

Pumping Lemma - Applied

A = {0n1n | n ≥ 0}.
B = {ω |ω contains an equal number of 0s and 1s}
Another way of showing B is nonregular is to reduce it to the nonregularity of A:
regular languages are closed under intersection
and A = B ∩ 0∗1∗

if B is regular and since 0∗1∗ is regular, then A must be as well

, contradiction!

INF2080 Lecture :: 25th January 38 / 39

Pumping Lemma - Applied

A = {0n1n | n ≥ 0}.
B = {ω |ω contains an equal number of 0s and 1s}
Another way of showing B is nonregular is to reduce it to the nonregularity of A:
regular languages are closed under intersection
and A = B ∩ 0∗1∗

if B is regular and since 0∗1∗ is regular, then A must be as well, contradiction!

INF2080 Lecture :: 25th January 38 / 39

Summary

regular expressions are shorthand notations for languages

RE = GNFA = DFA = NFA, i.e., regular expressions are shorthand for regular languages
proof involved transforming a DFA to a GNFA then reducing the number of states to 2
while accepting the same language
→ the regular expressions describe the paths in the DFA
every regular language has a pumping length
useful for determining if a language is nonregular

INF2080 Lecture :: 25th January 39 / 39

Summary

regular expressions are shorthand notations for languages
RE = GNFA = DFA = NFA, i.e., regular expressions are shorthand for regular languages

proof involved transforming a DFA to a GNFA then reducing the number of states to 2
while accepting the same language
→ the regular expressions describe the paths in the DFA
every regular language has a pumping length
useful for determining if a language is nonregular

INF2080 Lecture :: 25th January 39 / 39

Summary

regular expressions are shorthand notations for languages
RE = GNFA = DFA = NFA, i.e., regular expressions are shorthand for regular languages
proof involved transforming a DFA to a GNFA then reducing the number of states to 2
while accepting the same language

→ the regular expressions describe the paths in the DFA
every regular language has a pumping length
useful for determining if a language is nonregular

INF2080 Lecture :: 25th January 39 / 39

Summary

regular expressions are shorthand notations for languages
RE = GNFA = DFA = NFA, i.e., regular expressions are shorthand for regular languages
proof involved transforming a DFA to a GNFA then reducing the number of states to 2
while accepting the same language
→ the regular expressions describe the paths in the DFA

every regular language has a pumping length
useful for determining if a language is nonregular

INF2080 Lecture :: 25th January 39 / 39

Summary

regular expressions are shorthand notations for languages
RE = GNFA = DFA = NFA, i.e., regular expressions are shorthand for regular languages
proof involved transforming a DFA to a GNFA then reducing the number of states to 2
while accepting the same language
→ the regular expressions describe the paths in the DFA
every regular language has a pumping length

useful for determining if a language is nonregular

INF2080 Lecture :: 25th January 39 / 39

Summary

regular expressions are shorthand notations for languages
RE = GNFA = DFA = NFA, i.e., regular expressions are shorthand for regular languages
proof involved transforming a DFA to a GNFA then reducing the number of states to 2
while accepting the same language
→ the regular expressions describe the paths in the DFA
every regular language has a pumping length
useful for determining if a language is nonregular

INF2080 Lecture :: 25th January 39 / 39

