
INF2080
Repetition

Daniel Lupp

Universitetet i Oslo

9th March 2018

Department of
Informatics

University of
Oslo

INF2080 Lecture :: 9th March 1 / 38

Today

wrap-up of last week Friday
repetition of course so far

INF2080 Lecture :: 9th March 2 / 38

Wrap-up: Reducibility

Idea: Convert a problem A into a second problem B in such a way that a solution for B gives
us a solution for A.

Example: Last week’s bad mathematician joke:
A mathematician and an engineer go camping. After setting up camp, they go back to
their car to get their pots, go to the river to fetch water, put the water on the fire to boil.
the next morning, they both need to boil water. The engineer fills up one pot with water
and begins heating it up.
The mathematician reduces the current problem (“boil water after a night camping”) to a
problem with a known solution. The mathematician (1) brings the pot back to the car, (2)
goes back to camp. Thus the problem has been reduced to the problem solved the day
before: how to get boiling water when the pot is in the car.

INF2080 Lecture :: 9th March 3 / 38

Wrap-up: Reducibility

Idea: Convert a problem A into a second problem B in such a way that a solution for B gives
us a solution for A.
Example: Last week’s bad mathematician joke:

A mathematician and an engineer go camping. After setting up camp, they go back to
their car to get their pots, go to the river to fetch water, put the water on the fire to boil.

the next morning, they both need to boil water. The engineer fills up one pot with water
and begins heating it up.
The mathematician reduces the current problem (“boil water after a night camping”) to a
problem with a known solution. The mathematician (1) brings the pot back to the car, (2)
goes back to camp. Thus the problem has been reduced to the problem solved the day
before: how to get boiling water when the pot is in the car.

INF2080 Lecture :: 9th March 3 / 38

Wrap-up: Reducibility

Idea: Convert a problem A into a second problem B in such a way that a solution for B gives
us a solution for A.
Example: Last week’s bad mathematician joke:

A mathematician and an engineer go camping. After setting up camp, they go back to
their car to get their pots, go to the river to fetch water, put the water on the fire to boil.
the next morning, they both need to boil water. The engineer fills up one pot with water
and begins heating it up.

The mathematician reduces the current problem (“boil water after a night camping”) to a
problem with a known solution. The mathematician (1) brings the pot back to the car, (2)
goes back to camp. Thus the problem has been reduced to the problem solved the day
before: how to get boiling water when the pot is in the car.

INF2080 Lecture :: 9th March 3 / 38

Wrap-up: Reducibility

Idea: Convert a problem A into a second problem B in such a way that a solution for B gives
us a solution for A.
Example: Last week’s bad mathematician joke:

A mathematician and an engineer go camping. After setting up camp, they go back to
their car to get their pots, go to the river to fetch water, put the water on the fire to boil.
the next morning, they both need to boil water. The engineer fills up one pot with water
and begins heating it up.
The mathematician reduces the current problem (“boil water after a night camping”) to a
problem with a known solution.

The mathematician (1) brings the pot back to the car, (2)
goes back to camp. Thus the problem has been reduced to the problem solved the day
before: how to get boiling water when the pot is in the car.

INF2080 Lecture :: 9th March 3 / 38

Wrap-up: Reducibility

Idea: Convert a problem A into a second problem B in such a way that a solution for B gives
us a solution for A.
Example: Last week’s bad mathematician joke:

A mathematician and an engineer go camping. After setting up camp, they go back to
their car to get their pots, go to the river to fetch water, put the water on the fire to boil.
the next morning, they both need to boil water. The engineer fills up one pot with water
and begins heating it up.
The mathematician reduces the current problem (“boil water after a night camping”) to a
problem with a known solution. The mathematician (1) brings the pot back to the car,

(2)
goes back to camp. Thus the problem has been reduced to the problem solved the day
before: how to get boiling water when the pot is in the car.

INF2080 Lecture :: 9th March 3 / 38

Wrap-up: Reducibility

Idea: Convert a problem A into a second problem B in such a way that a solution for B gives
us a solution for A.
Example: Last week’s bad mathematician joke:

A mathematician and an engineer go camping. After setting up camp, they go back to
their car to get their pots, go to the river to fetch water, put the water on the fire to boil.
the next morning, they both need to boil water. The engineer fills up one pot with water
and begins heating it up.
The mathematician reduces the current problem (“boil water after a night camping”) to a
problem with a known solution. The mathematician (1) brings the pot back to the car, (2)
goes back to camp.

Thus the problem has been reduced to the problem solved the day
before: how to get boiling water when the pot is in the car.

INF2080 Lecture :: 9th March 3 / 38

Wrap-up: Reducibility

Idea: Convert a problem A into a second problem B in such a way that a solution for B gives
us a solution for A.
Example: Last week’s bad mathematician joke:

A mathematician and an engineer go camping. After setting up camp, they go back to
their car to get their pots, go to the river to fetch water, put the water on the fire to boil.
the next morning, they both need to boil water. The engineer fills up one pot with water
and begins heating it up.
The mathematician reduces the current problem (“boil water after a night camping”) to a
problem with a known solution. The mathematician (1) brings the pot back to the car, (2)
goes back to camp. Thus the problem has been reduced to the problem solved the day
before: how to get boiling water when the pot is in the car.

INF2080 Lecture :: 9th March 3 / 38

Wrap-up: Reducibility

We used this to show various decidability and undecidability results, e.g.,

HALTTM = {〈M,w〉 | M is a TM that halts on input w} is undecidable (reduction from
ATM)

ETM = {〈M〉 | M is a TM accepts no input} is undecidable (reduction from ATM)
REGULARTM = {〈M〉 | M is a TM that accepts a regular language} is undecidable
(reduction from ATM)
Rice’s theorem: checking any nontrivial property of a Turing machine (if it’s regular,
context-free, etc.) is undecidable!
...

INF2080 Lecture :: 9th March 4 / 38

Wrap-up: Reducibility

We used this to show various decidability and undecidability results, e.g.,

HALTTM = {〈M,w〉 | M is a TM that halts on input w} is undecidable (reduction from
ATM)
ETM = {〈M〉 | M is a TM accepts no input} is undecidable (reduction from ATM)

REGULARTM = {〈M〉 | M is a TM that accepts a regular language} is undecidable
(reduction from ATM)
Rice’s theorem: checking any nontrivial property of a Turing machine (if it’s regular,
context-free, etc.) is undecidable!
...

INF2080 Lecture :: 9th March 4 / 38

Wrap-up: Reducibility

We used this to show various decidability and undecidability results, e.g.,

HALTTM = {〈M,w〉 | M is a TM that halts on input w} is undecidable (reduction from
ATM)
ETM = {〈M〉 | M is a TM accepts no input} is undecidable (reduction from ATM)
REGULARTM = {〈M〉 | M is a TM that accepts a regular language} is undecidable
(reduction from ATM)

Rice’s theorem: checking any nontrivial property of a Turing machine (if it’s regular,
context-free, etc.) is undecidable!
...

INF2080 Lecture :: 9th March 4 / 38

Wrap-up: Reducibility

We used this to show various decidability and undecidability results, e.g.,

HALTTM = {〈M,w〉 | M is a TM that halts on input w} is undecidable (reduction from
ATM)
ETM = {〈M〉 | M is a TM accepts no input} is undecidable (reduction from ATM)
REGULARTM = {〈M〉 | M is a TM that accepts a regular language} is undecidable
(reduction from ATM)
Rice’s theorem: checking any nontrivial property of a Turing machine (if it’s regular,
context-free, etc.) is undecidable!

...

INF2080 Lecture :: 9th March 4 / 38

Wrap-up: Reducibility

We used this to show various decidability and undecidability results, e.g.,

HALTTM = {〈M,w〉 | M is a TM that halts on input w} is undecidable (reduction from
ATM)
ETM = {〈M〉 | M is a TM accepts no input} is undecidable (reduction from ATM)
REGULARTM = {〈M〉 | M is a TM that accepts a regular language} is undecidable
(reduction from ATM)
Rice’s theorem: checking any nontrivial property of a Turing machine (if it’s regular,
context-free, etc.) is undecidable!
...

INF2080 Lecture :: 9th March 4 / 38

Wrap-up: Reducibility

We formalized reducibility as follows:

Definition
Language A is mapping reducible to language B , written A ≤m B , if there exists a computable
function f : Σ∗ → Σ∗ such that for every w

w ∈ A ⇐⇒ f (w) ∈ B

Recall: a function f : Σ∗ → Σ∗ is computable if there exists a Turing machine M that for every
input w halts with just f (w) on its tape.

INF2080 Lecture :: 9th March 5 / 38

Wrap-up: Reducibility

We formalized reducibility as follows:

Definition
Language A is mapping reducible to language B , written A ≤m B , if there exists a computable
function f : Σ∗ → Σ∗ such that for every w

w ∈ A ⇐⇒ f (w) ∈ B

Recall: a function f : Σ∗ → Σ∗ is computable if there exists a Turing machine M that for every
input w halts with just f (w) on its tape.

INF2080 Lecture :: 9th March 5 / 38

Wrap-up: Reducibility

Definition
Language A is mapping reducible to language B , written A ≤m B , if there exists a computable
function f : Σ∗ → Σ∗ such that for every w

w ∈ A ⇐⇒ f (w) ∈ B

By this definition: A ≤m B ⇐⇒ A ≤m B (useful tool we will use soon).

INF2080 Lecture :: 9th March 6 / 38

Wrap-up: Reducibility

Theorem
If A ≤m B and B is decidable [Turing-recognizable], then A is decidable [Turing-recognizable].

Theorem
If A ≤m B and A is undecidable [non-Turing-recognizable], then B is undecidable
[non-Turing-recognizable].

INF2080 Lecture :: 9th March 7 / 38

Wrap-up: Reducibility

Theorem
If A ≤m B and B is decidable [Turing-recognizable], then A is decidable [Turing-recognizable].

Theorem
If A ≤m B and A is undecidable [non-Turing-recognizable], then B is undecidable
[non-Turing-recognizable].

INF2080 Lecture :: 9th March 7 / 38

Wrap-up: Reducibility

We can use this to show:

Theorem
The language EQTM = {〈M1,M2〉 | M1,M2 are TMs with L(M1) = L(M2)} is neither
Turing-recognizable nor co-Turing-recognizable.

Proof: Let’s show that EQTM is not Turing recognizable. We show a mapping reduction from
ATM , i.e., ATM ≤m EQTM .

This is the same as showing ATM ≤m EQTM . The computable
function is described by the following Turing machine:
F = on input 〈M,w〉:

1 Construct the following two machines M1 and M2:
M1 : on any input, reject
M2 : on any input, run M on w . If it accepts, accept.

2 Output 〈M1,M2〉.

INF2080 Lecture :: 9th March 8 / 38

Wrap-up: Reducibility

We can use this to show:

Theorem
The language EQTM = {〈M1,M2〉 | M1,M2 are TMs with L(M1) = L(M2)} is neither
Turing-recognizable nor co-Turing-recognizable.

Proof: Let’s show that EQTM is not Turing recognizable. We show a mapping reduction from
ATM , i.e., ATM ≤m EQTM . This is the same as showing ATM ≤m EQTM .

The computable
function is described by the following Turing machine:
F = on input 〈M,w〉:

1 Construct the following two machines M1 and M2:
M1 : on any input, reject
M2 : on any input, run M on w . If it accepts, accept.

2 Output 〈M1,M2〉.

INF2080 Lecture :: 9th March 8 / 38

Wrap-up: Reducibility

We can use this to show:

Theorem
The language EQTM = {〈M1,M2〉 | M1,M2 are TMs with L(M1) = L(M2)} is neither
Turing-recognizable nor co-Turing-recognizable.

Proof: Let’s show that EQTM is not Turing recognizable. We show a mapping reduction from
ATM , i.e., ATM ≤m EQTM . This is the same as showing ATM ≤m EQTM . The computable
function is described by the following Turing machine:
F = on input 〈M,w〉:

1 Construct the following two machines M1 and M2:
M1 : on any input, reject
M2 : on any input, run M on w . If it accepts, accept.

2 Output 〈M1,M2〉.

INF2080 Lecture :: 9th March 8 / 38

Wrap-up: Reducibility

Theorem
The language EQTM = {〈M1,M2〉 | M1,M2 are TMs with L(M1) = L(M2)} is neither
Turing-recognizable nor co-Turing-recognizable.

Proof:
F = on input 〈M,w〉:

1 Construct the following two machines M1 and M2:
M1 : on any input, reject
M2 : on any input, run M on w . If it accepts, accept.

2 Output 〈M1,M2〉.

L(M2) = ∅ if M does not accept w .
L(M2) = Σ∗ if M accepts w .
Thus, L(M1) 6= L(M2) iff M accepts w , and ATM ≤m EQTM

INF2080 Lecture :: 9th March 9 / 38

Wrap-up: Reducibility

Theorem
The language EQTM = {〈M1,M2〉 | M1,M2 are TMs with L(M1) = L(M2)} is neither
Turing-recognizable nor co-Turing-recognizable.

Proof:
F = on input 〈M,w〉:

1 Construct the following two machines M1 and M2:
M1 : on any input, reject
M2 : on any input, run M on w . If it accepts, accept.

2 Output 〈M1,M2〉.

L(M2) = ∅ if M does not accept w .

L(M2) = Σ∗ if M accepts w .
Thus, L(M1) 6= L(M2) iff M accepts w , and ATM ≤m EQTM

INF2080 Lecture :: 9th March 9 / 38

Wrap-up: Reducibility

Theorem
The language EQTM = {〈M1,M2〉 | M1,M2 are TMs with L(M1) = L(M2)} is neither
Turing-recognizable nor co-Turing-recognizable.

Proof:
F = on input 〈M,w〉:

1 Construct the following two machines M1 and M2:
M1 : on any input, reject
M2 : on any input, run M on w . If it accepts, accept.

2 Output 〈M1,M2〉.

L(M2) = ∅ if M does not accept w .
L(M2) = Σ∗ if M accepts w .

Thus, L(M1) 6= L(M2) iff M accepts w , and ATM ≤m EQTM

INF2080 Lecture :: 9th March 9 / 38

Wrap-up: Reducibility

Theorem
The language EQTM = {〈M1,M2〉 | M1,M2 are TMs with L(M1) = L(M2)} is neither
Turing-recognizable nor co-Turing-recognizable.

Proof:
F = on input 〈M,w〉:

1 Construct the following two machines M1 and M2:
M1 : on any input, reject
M2 : on any input, run M on w . If it accepts, accept.

2 Output 〈M1,M2〉.

L(M2) = ∅ if M does not accept w .
L(M2) = Σ∗ if M accepts w .
Thus, L(M1) 6= L(M2) iff M accepts w , and ATM ≤m EQTM

INF2080 Lecture :: 9th March 9 / 38

Wrap-up: Reducibility

Theorem
The language EQTM = {〈M1,M2〉 | M1,M2 are TMs with L(M1) = L(M2)} is neither
Turing-recognizable nor co-Turing-recognizable.

Proof: Next show that EQTM is not co-Turing recognizable. We show a mapping reduction
from ATM , i.e., ATM ≤m EQTM .

This is the same as showing ATM ≤m EQTM . The
computable function is described by the following Turing machine:
F = on input 〈M,w〉:

1 Construct the following two machines M1 and M2:
M1 : on any input, accept
M2 : on any input, run M on w . If it accepts, accept.

2 Output 〈M1,M2〉.

INF2080 Lecture :: 9th March 10 / 38

Wrap-up: Reducibility

Theorem
The language EQTM = {〈M1,M2〉 | M1,M2 are TMs with L(M1) = L(M2)} is neither
Turing-recognizable nor co-Turing-recognizable.

Proof: Next show that EQTM is not co-Turing recognizable. We show a mapping reduction
from ATM , i.e., ATM ≤m EQTM . This is the same as showing ATM ≤m EQTM .

The
computable function is described by the following Turing machine:
F = on input 〈M,w〉:

1 Construct the following two machines M1 and M2:
M1 : on any input, accept
M2 : on any input, run M on w . If it accepts, accept.

2 Output 〈M1,M2〉.

INF2080 Lecture :: 9th March 10 / 38

Wrap-up: Reducibility

Theorem
The language EQTM = {〈M1,M2〉 | M1,M2 are TMs with L(M1) = L(M2)} is neither
Turing-recognizable nor co-Turing-recognizable.

Proof: Next show that EQTM is not co-Turing recognizable. We show a mapping reduction
from ATM , i.e., ATM ≤m EQTM . This is the same as showing ATM ≤m EQTM . The
computable function is described by the following Turing machine:
F = on input 〈M,w〉:

1 Construct the following two machines M1 and M2:
M1 : on any input, accept
M2 : on any input, run M on w . If it accepts, accept.

2 Output 〈M1,M2〉.

INF2080 Lecture :: 9th March 10 / 38

Wrap-up: Reducibility

Theorem
The language EQTM = {〈M1,M2〉 | M1,M2 are TMs with L(M1) = L(M2)} is neither
Turing-recognizable nor co-Turing-recognizable.

Proof:
F = on input 〈M,w〉:

1 Construct the following two machines M1 and M2:
M1 : on any input, accept
M2 : on any input, run M on w . If it accepts, accept.

2 Output 〈M1,M2〉.

L(M2) = ∅ if M does not accept w
L(M2) = Σ∗ if M accepts w .
Thus, L(M1) = L(M2) iff M accepts w , and ATM ≤m EQTM

INF2080 Lecture :: 9th March 11 / 38

Wrap-up: Reducibility

Theorem
The language EQTM = {〈M1,M2〉 | M1,M2 are TMs with L(M1) = L(M2)} is neither
Turing-recognizable nor co-Turing-recognizable.

Proof:
F = on input 〈M,w〉:

1 Construct the following two machines M1 and M2:
M1 : on any input, accept
M2 : on any input, run M on w . If it accepts, accept.

2 Output 〈M1,M2〉.

L(M2) = ∅ if M does not accept w

L(M2) = Σ∗ if M accepts w .
Thus, L(M1) = L(M2) iff M accepts w , and ATM ≤m EQTM

INF2080 Lecture :: 9th March 11 / 38

Wrap-up: Reducibility

Theorem
The language EQTM = {〈M1,M2〉 | M1,M2 are TMs with L(M1) = L(M2)} is neither
Turing-recognizable nor co-Turing-recognizable.

Proof:
F = on input 〈M,w〉:

1 Construct the following two machines M1 and M2:
M1 : on any input, accept
M2 : on any input, run M on w . If it accepts, accept.

2 Output 〈M1,M2〉.

L(M2) = ∅ if M does not accept w
L(M2) = Σ∗ if M accepts w .

Thus, L(M1) = L(M2) iff M accepts w , and ATM ≤m EQTM

INF2080 Lecture :: 9th March 11 / 38

Wrap-up: Reducibility

Theorem
The language EQTM = {〈M1,M2〉 | M1,M2 are TMs with L(M1) = L(M2)} is neither
Turing-recognizable nor co-Turing-recognizable.

Proof:
F = on input 〈M,w〉:

1 Construct the following two machines M1 and M2:
M1 : on any input, accept
M2 : on any input, run M on w . If it accepts, accept.

2 Output 〈M1,M2〉.

L(M2) = ∅ if M does not accept w
L(M2) = Σ∗ if M accepts w .
Thus, L(M1) = L(M2) iff M accepts w , and ATM ≤m EQTM

INF2080 Lecture :: 9th March 11 / 38

Wrap-up: Reducibility

Let’s consider the implications:

We have seen that Turing machines capture the expressivity of any computational model
that has unlimited access to infinite memory that is allowed to do finite work per step

There exist languages that are not algorithmically solvable, i.e., membership and
non-membership determined after a finite number of steps (undecidable, e.g., HALTTM)
There exist languages that are not recognizable, i.e., no Turing machine can check
membership after finite steps (non-Turing-recognizable, e.g., ATM)
There exist languages that are neither recognizable nor co-recognizable, i.e., no such
computational model can check membership or non-membership! (e.g., EQTM)

INF2080 Lecture :: 9th March 12 / 38

Wrap-up: Reducibility

Let’s consider the implications:

We have seen that Turing machines capture the expressivity of any computational model
that has unlimited access to infinite memory that is allowed to do finite work per step
There exist languages that are not algorithmically solvable, i.e., membership and
non-membership determined after a finite number of steps (undecidable, e.g., HALTTM)

There exist languages that are not recognizable, i.e., no Turing machine can check
membership after finite steps (non-Turing-recognizable, e.g., ATM)
There exist languages that are neither recognizable nor co-recognizable, i.e., no such
computational model can check membership or non-membership! (e.g., EQTM)

INF2080 Lecture :: 9th March 12 / 38

Wrap-up: Reducibility

Let’s consider the implications:

We have seen that Turing machines capture the expressivity of any computational model
that has unlimited access to infinite memory that is allowed to do finite work per step
There exist languages that are not algorithmically solvable, i.e., membership and
non-membership determined after a finite number of steps (undecidable, e.g., HALTTM)
There exist languages that are not recognizable, i.e., no Turing machine can check
membership after finite steps (non-Turing-recognizable, e.g., ATM)

There exist languages that are neither recognizable nor co-recognizable, i.e., no such
computational model can check membership or non-membership! (e.g., EQTM)

INF2080 Lecture :: 9th March 12 / 38

Wrap-up: Reducibility

Let’s consider the implications:

We have seen that Turing machines capture the expressivity of any computational model
that has unlimited access to infinite memory that is allowed to do finite work per step
There exist languages that are not algorithmically solvable, i.e., membership and
non-membership determined after a finite number of steps (undecidable, e.g., HALTTM)
There exist languages that are not recognizable, i.e., no Turing machine can check
membership after finite steps (non-Turing-recognizable, e.g., ATM)
There exist languages that are neither recognizable nor co-recognizable, i.e., no such
computational model can check membership or non-membership! (e.g., EQTM)

INF2080 Lecture :: 9th March 12 / 38

Regular Languages

Determininstic Finite Automata (DFA): an automata with a finite number of states where
for every state and input there is precisely one transition leading to another state.

start

0

1

0

contain a start state, possibly multiple accepting states. If after starting in the start state,
parsing an input and following correct transitions the automaton ends in an accept state,
the input is accepted
The set of inputs accepted by a DFA is called a regular language

INF2080 Lecture :: 9th March 13 / 38

Regular Languages

Determininstic Finite Automata (DFA): an automata with a finite number of states where
for every state and input there is precisely one transition leading to another state.

start

0

1

0

contain a start state, possibly multiple accepting states. If after starting in the start state,
parsing an input and following correct transitions the automaton ends in an accept state,
the input is accepted

The set of inputs accepted by a DFA is called a regular language

INF2080 Lecture :: 9th March 13 / 38

Regular Languages

Determininstic Finite Automata (DFA): an automata with a finite number of states where
for every state and input there is precisely one transition leading to another state.

start

0

1

0

contain a start state, possibly multiple accepting states. If after starting in the start state,
parsing an input and following correct transitions the automaton ends in an accept state,
the input is accepted
The set of inputs accepted by a DFA is called a regular language

INF2080 Lecture :: 9th March 13 / 38

Regular Languages

We can add nondeterminism: given a state and a current input symbol, multiple possible
following states:

start

0

0, 1

0

NFA’s accept the same languages as DFA’s, i.e., a language is regular iff an NFA accepts it
proof idea: Given an NFA N with state set Q, we define a DFA D with state set P(Q),
where the state Q ∈ P(Q) in D represents that N could be in any state q ∈ Q.

INF2080 Lecture :: 9th March 14 / 38

Regular Languages

We can add nondeterminism: given a state and a current input symbol, multiple possible
following states:

start

0

0, 1

0

NFA’s accept the same languages as DFA’s, i.e., a language is regular iff an NFA accepts it

proof idea: Given an NFA N with state set Q, we define a DFA D with state set P(Q),
where the state Q ∈ P(Q) in D represents that N could be in any state q ∈ Q.

INF2080 Lecture :: 9th March 14 / 38

Regular Languages

We can add nondeterminism: given a state and a current input symbol, multiple possible
following states:

start

0

0, 1

0

NFA’s accept the same languages as DFA’s, i.e., a language is regular iff an NFA accepts it
proof idea: Given an NFA N with state set Q, we define a DFA D with state set P(Q),
where the state Q ∈ P(Q) in D represents that N could be in any state q ∈ Q.

INF2080 Lecture :: 9th March 14 / 38

Regular Languages

Another way of encoding regular languages are regular expressions: strings constructed from
symbols from the alphabet Σ and the operations: Kleene star(∗), union (∪), and concatanation.

Order of operations: Kleene star binds stronger than concatanation, which binds stronger
than union:
Example: 0 ∪ 10∗ = (0) ∪ (1(0∗))
→ remember to use parentheses when necessary!!
The expressivity of regular languages is precisely that of DFA/NFA. To show this, we
introduced GNFA (generalized finite automata), NFA’s with RE’s as labels instead of
symbols.

start

0

01∗

0

INF2080 Lecture :: 9th March 15 / 38

Regular Languages

Another way of encoding regular languages are regular expressions: strings constructed from
symbols from the alphabet Σ and the operations: Kleene star(∗), union (∪), and concatanation.

Order of operations: Kleene star binds stronger than concatanation, which binds stronger
than union:
Example: 0 ∪ 10∗ = (0) ∪ (1(0∗))

→ remember to use parentheses when necessary!!
The expressivity of regular languages is precisely that of DFA/NFA. To show this, we
introduced GNFA (generalized finite automata), NFA’s with RE’s as labels instead of
symbols.

start

0

01∗

0

INF2080 Lecture :: 9th March 15 / 38

Regular Languages

Another way of encoding regular languages are regular expressions: strings constructed from
symbols from the alphabet Σ and the operations: Kleene star(∗), union (∪), and concatanation.

Order of operations: Kleene star binds stronger than concatanation, which binds stronger
than union:
Example: 0 ∪ 10∗ = (0) ∪ (1(0∗))
→ remember to use parentheses when necessary!!

The expressivity of regular languages is precisely that of DFA/NFA. To show this, we
introduced GNFA (generalized finite automata), NFA’s with RE’s as labels instead of
symbols.

start

0

01∗

0

INF2080 Lecture :: 9th March 15 / 38

Regular Languages

Another way of encoding regular languages are regular expressions: strings constructed from
symbols from the alphabet Σ and the operations: Kleene star(∗), union (∪), and concatanation.

Order of operations: Kleene star binds stronger than concatanation, which binds stronger
than union:
Example: 0 ∪ 10∗ = (0) ∪ (1(0∗))
→ remember to use parentheses when necessary!!
The expressivity of regular languages is precisely that of DFA/NFA. To show this, we
introduced GNFA (generalized finite automata), NFA’s with RE’s as labels instead of
symbols.

start

0

01∗

0

INF2080 Lecture :: 9th March 15 / 38

Regular Languages

Proof idea that RE=DFA: Consider a DFA as a GNFA. Then iteratively remove nodes, and
encode paths through that node in other edges:

X

R2 R4

R3

R1

→
R1 ∪ (R2R

∗
3R4)

INF2080 Lecture :: 9th March 16 / 38

Regular Languages

Proof idea that RE=DFA: Consider a DFA as a GNFA. Then iteratively remove nodes, and
encode paths through that node in other edges:

X

R2 R4

R3

R1

→
R1 ∪ (R2R

∗
3R4)

INF2080 Lecture :: 9th March 16 / 38

Pumping Lemma - Regular Languages

Lemma (Pumping Lemma)

If A is a regular language, then there is a number p, called the pumping length, where if w is a
word in A of length ≥ p then w can be divided into three parts, w = xyz , such that

1 xy iz ∈ A for every i ≥ 0,
2 |y | > 0,
3 |xy | ≤ p.

Use the fact that regular languages only have finite memory
An automaton’s memory is represented by the states, i.e., if a word is longer than the
number of states (=available memory), some state must be repeated twice in the
accepting path. → cycle!
Then this accepting path can be divided up into three parts: x (leading to the cycle), y
(the cycle), z (path from cycle to accept)

INF2080 Lecture :: 9th March 17 / 38

Pumping Lemma - Regular Languages

Lemma (Pumping Lemma)

If A is a regular language, then there is a number p, called the pumping length, where if w is a
word in A of length ≥ p then w can be divided into three parts, w = xyz , such that

1 xy iz ∈ A for every i ≥ 0,
2 |y | > 0,
3 |xy | ≤ p.

Use the fact that regular languages only have finite memory

An automaton’s memory is represented by the states, i.e., if a word is longer than the
number of states (=available memory), some state must be repeated twice in the
accepting path. → cycle!
Then this accepting path can be divided up into three parts: x (leading to the cycle), y
(the cycle), z (path from cycle to accept)

INF2080 Lecture :: 9th March 17 / 38

Pumping Lemma - Regular Languages

Lemma (Pumping Lemma)

If A is a regular language, then there is a number p, called the pumping length, where if w is a
word in A of length ≥ p then w can be divided into three parts, w = xyz , such that

1 xy iz ∈ A for every i ≥ 0,
2 |y | > 0,
3 |xy | ≤ p.

Use the fact that regular languages only have finite memory
An automaton’s memory is represented by the states, i.e., if a word is longer than the
number of states (=available memory), some state must be repeated twice in the
accepting path. → cycle!

Then this accepting path can be divided up into three parts: x (leading to the cycle), y
(the cycle), z (path from cycle to accept)

INF2080 Lecture :: 9th March 17 / 38

Pumping Lemma - Regular Languages

Lemma (Pumping Lemma)

If A is a regular language, then there is a number p, called the pumping length, where if w is a
word in A of length ≥ p then w can be divided into three parts, w = xyz , such that

1 xy iz ∈ A for every i ≥ 0,
2 |y | > 0,
3 |xy | ≤ p.

Use the fact that regular languages only have finite memory
An automaton’s memory is represented by the states, i.e., if a word is longer than the
number of states (=available memory), some state must be repeated twice in the
accepting path. → cycle!
Then this accepting path can be divided up into three parts: x (leading to the cycle), y
(the cycle), z (path from cycle to accept)

INF2080 Lecture :: 9th March 17 / 38

Pumping Lemma - Regular Languages

Lemma (Pumping Lemma)

If A is a regular language, then there is a number p, called the pumping length, where if w is a
word in A of length ≥ p then w can be divided into three parts, w = xyz , such that

1 xy iz ∈ A for every i ≥ 0,
2 |y | > 0,
3 |xy | ≤ p.

Use the fact that regular languages only have finite memory
An automaton’s memory is represented by the states, i.e., if a word is longer than the
number of states (=available memory), some state must be repeated twice in the
accepting path. → cycle!
Then this accepting path can be divided up into three parts: x (leading to the cycle), y
(the cycle), z (path from cycle to accept)

INF2080 Lecture :: 9th March 17 / 38

Pumping Lemma - Regular Languages

useful tool for showing that a language is nonregular

Example: {anbn | n ≥ 0}
NOT useful for showing a language is regular:

{canbn | n ≥ 0} ∪ {ckw | k 6= 1,w ∈ Σ∗ does not start with c}

a language that is nonregular, yet every word can be pumped according to pumping
lemma! → sometimes other tools are required (see, e.g., oblig 2)

INF2080 Lecture :: 9th March 18 / 38

Pumping Lemma - Regular Languages

useful tool for showing that a language is nonregular
Example: {anbn | n ≥ 0}

NOT useful for showing a language is regular:

{canbn | n ≥ 0} ∪ {ckw | k 6= 1,w ∈ Σ∗ does not start with c}

a language that is nonregular, yet every word can be pumped according to pumping
lemma! → sometimes other tools are required (see, e.g., oblig 2)

INF2080 Lecture :: 9th March 18 / 38

Pumping Lemma - Regular Languages

useful tool for showing that a language is nonregular
Example: {anbn | n ≥ 0}
NOT useful for showing a language is regular:

{canbn | n ≥ 0} ∪ {ckw | k 6= 1,w ∈ Σ∗ does not start with c}

a language that is nonregular, yet every word can be pumped according to pumping
lemma! → sometimes other tools are required (see, e.g., oblig 2)

INF2080 Lecture :: 9th March 18 / 38

Pumping Lemma - Regular Languages

useful tool for showing that a language is nonregular
Example: {anbn | n ≥ 0}
NOT useful for showing a language is regular:

{canbn | n ≥ 0} ∪ {ckw | k 6= 1,w ∈ Σ∗ does not start with c}

a language that is nonregular, yet every word can be pumped according to pumping
lemma! → sometimes other tools are required (see, e.g., oblig 2)

INF2080 Lecture :: 9th March 18 / 38

Context-free languages

defined context-free grammars: essentialy, a set of rules of the form

A→ w

where A is a variable and w is a string of variables and terminals

a grammar G generates a word w if starting with the start variable S the word w can be
obtained by sequential application of rules in G

a word w is ambiguously generated if there are two or more leftmost derivations of w
E

E

a

+ E

E

a

× E

a

Intuitively corresponds to a + (a× a)

E

E

E

a

+ E

a

× E

a

Intuitively corresponds to (a + a)× a

INF2080 Lecture :: 9th March 19 / 38

Context-free languages

defined context-free grammars: essentialy, a set of rules of the form

A→ w

where A is a variable and w is a string of variables and terminals
a grammar G generates a word w if starting with the start variable S the word w can be
obtained by sequential application of rules in G

a word w is ambiguously generated if there are two or more leftmost derivations of w
E

E

a

+ E

E

a

× E

a

Intuitively corresponds to a + (a× a)

E

E

E

a

+ E

a

× E

a

Intuitively corresponds to (a + a)× a

INF2080 Lecture :: 9th March 19 / 38

Context-free languages

defined context-free grammars: essentialy, a set of rules of the form

A→ w

where A is a variable and w is a string of variables and terminals
a grammar G generates a word w if starting with the start variable S the word w can be
obtained by sequential application of rules in G

a word w is ambiguously generated if there are two or more leftmost derivations of w

E

E

a

+ E

E

a

× E

a

Intuitively corresponds to a + (a× a)

E

E

E

a

+ E

a

× E

a

Intuitively corresponds to (a + a)× a

INF2080 Lecture :: 9th March 19 / 38

Context-free languages

defined context-free grammars: essentialy, a set of rules of the form

A→ w

where A is a variable and w is a string of variables and terminals
a grammar G generates a word w if starting with the start variable S the word w can be
obtained by sequential application of rules in G

a word w is ambiguously generated if there are two or more leftmost derivations of w
E

E

a

+ E

E

a

× E

a

Intuitively corresponds to a + (a× a)

E

E

E

a

+ E

a

× E

a

Intuitively corresponds to (a + a)× a

INF2080 Lecture :: 9th March 19 / 38

Context-free languages

Context-free languages are accepted by pushdown automata: an NFA with an additional
stack

in each transition, we are allowed to pop off and/or push on to the stack.

q1start q2
ε, ε→ $

0, ε→ 0

q3

1, 0→ ε

1, 0→ ε

q4
ε, $→ ε

INF2080 Lecture :: 9th March 20 / 38

Context-free languages

Context-free languages are accepted by pushdown automata: an NFA with an additional
stack
in each transition, we are allowed to pop off and/or push on to the stack.

q1start q2
ε, ε→ $

0, ε→ 0

q3

1, 0→ ε

1, 0→ ε

q4
ε, $→ ε

INF2080 Lecture :: 9th March 20 / 38

Context-free languages

Context-free languages are accepted by pushdown automata: an NFA with an additional
stack
in each transition, we are allowed to pop off and/or push on to the stack.

q1start q2
ε, ε→ $

0, ε→ 0

q3

1, 0→ ε

1, 0→ ε

q4
ε, $→ ε

INF2080 Lecture :: 9th March 20 / 38

Context-free languages

converting a CFG to a PDA: use the stack to store intermediate strings of a derivation.
The PDA nondeterministically guesses which rule to apply next

converting PDA to CFG: much more involved. General idea: For each pair of states p, q in
PDA, add a variable Apq to G that generates all strings that take the PDA from p to q
with empty stacks (i.e., stack when arriving at p is equal to the stack when arriving at q).
Add certain rules according to transition function δ.
So, CFG=PDA
noteworthy: deterministic PDA (DPDA) is not equal to PDA, though we haven’t covered
this in the lecture

INF2080 Lecture :: 9th March 21 / 38

Context-free languages

converting a CFG to a PDA: use the stack to store intermediate strings of a derivation.
The PDA nondeterministically guesses which rule to apply next
converting PDA to CFG: much more involved. General idea: For each pair of states p, q in
PDA, add a variable Apq to G that generates all strings that take the PDA from p to q
with empty stacks (i.e., stack when arriving at p is equal to the stack when arriving at q).
Add certain rules according to transition function δ.

So, CFG=PDA
noteworthy: deterministic PDA (DPDA) is not equal to PDA, though we haven’t covered
this in the lecture

INF2080 Lecture :: 9th March 21 / 38

Context-free languages

converting a CFG to a PDA: use the stack to store intermediate strings of a derivation.
The PDA nondeterministically guesses which rule to apply next
converting PDA to CFG: much more involved. General idea: For each pair of states p, q in
PDA, add a variable Apq to G that generates all strings that take the PDA from p to q
with empty stacks (i.e., stack when arriving at p is equal to the stack when arriving at q).
Add certain rules according to transition function δ.
So, CFG=PDA

noteworthy: deterministic PDA (DPDA) is not equal to PDA, though we haven’t covered
this in the lecture

INF2080 Lecture :: 9th March 21 / 38

Context-free languages

converting a CFG to a PDA: use the stack to store intermediate strings of a derivation.
The PDA nondeterministically guesses which rule to apply next
converting PDA to CFG: much more involved. General idea: For each pair of states p, q in
PDA, add a variable Apq to G that generates all strings that take the PDA from p to q
with empty stacks (i.e., stack when arriving at p is equal to the stack when arriving at q).
Add certain rules according to transition function δ.
So, CFG=PDA
noteworthy: deterministic PDA (DPDA) is not equal to PDA, though we haven’t covered
this in the lecture

INF2080 Lecture :: 9th March 21 / 38

Context-free languages

Every CFG can be rewritten into a grammar in Chomsky normal form:

Definition
A grammar is in Chomsky Normal Form if every rule is of the form:

A→ BC

A→ a

where a is any terminal, A is any variable, B,C are any variables that are not the start variable.
In addition the rule S → ε is permitted.

INF2080 Lecture :: 9th March 22 / 38

Pumping Lemma - CFL

Lemma (Pumping Lemma for CFLs)

For every context-free language A there exists a number p (called the pumping length) where,
if s is a word in A of length ≥ p, then s can be divided into five parts, s = uvxyz , satisfying the
following conditions:

1 uv ixy iz ∈ A for all i ≥ 0,
2 |vy | > 0,
3 |vxy | ≤ p.

similar to RL, we exploit the limited memory of CFL’s
If a word is “long enough”, the smallest parse tree will contain two occurences of the same
variable

INF2080 Lecture :: 9th March 23 / 38

Pumping Lemma - CFLs

T

R

R

u v x y z

INF2080 Lecture :: 9th March 24 / 38

Pumping Lemma - CFLs

T

R

R

u v x y z

INF2080 Lecture :: 9th March 24 / 38

Pumping Lemma - CFLs

T

R

u x z

→ uv0xy0z = uxz

INF2080 Lecture :: 9th March 25 / 38

Pumping Lemma - CFLs

T

R

u x z

→ uv0xy0z = uxz

INF2080 Lecture :: 9th March 25 / 38

Pumping Lemma - CFLs

T

R

R

u v x y z

INF2080 Lecture :: 9th March 26 / 38

Pumping Lemma - CFLs

T

R

R

R
u v

v x

y

y

z

→ uv2xy2z , and so on

all valid parse trees in G

INF2080 Lecture :: 9th March 27 / 38

Pumping Lemma - CFLs

T

R

R

R
u v

v x

y

y

z

→ uv2xy2z , and so on

all valid parse trees in G

INF2080 Lecture :: 9th March 27 / 38

Pumping Lemma - CFLs

Once again, useful tool for determining if a language is not context-free

However, just like in the regular case, there exist languages that are not context-free that
can be pumped. (analogous to the regular case)
Thus, we have so far seen {RL}({CFL}, and that there exist non-context-free languages

INF2080 Lecture :: 9th March 28 / 38

Pumping Lemma - CFLs

Once again, useful tool for determining if a language is not context-free
However, just like in the regular case, there exist languages that are not context-free that
can be pumped. (analogous to the regular case)

Thus, we have so far seen {RL}({CFL}, and that there exist non-context-free languages

INF2080 Lecture :: 9th March 28 / 38

Pumping Lemma - CFLs

Once again, useful tool for determining if a language is not context-free
However, just like in the regular case, there exist languages that are not context-free that
can be pumped. (analogous to the regular case)
Thus, we have so far seen {RL}({CFL}, and that there exist non-context-free languages

INF2080 Lecture :: 9th March 28 / 38

Turing Machines

Defined Turing machines:

Finite state machine

a finite state machine with access to an infinite tape
modelled by having a read/write head that can move left or right over the tape

INF2080 Lecture :: 9th March 29 / 38

Turing Machines

Defined Turing machines:

Finite state machine

a finite state machine with access to an infinite tape

modelled by having a read/write head that can move left or right over the tape

INF2080 Lecture :: 9th March 29 / 38

Turing Machines

Defined Turing machines:

Finite state machine

a finite state machine with access to an infinite tape
modelled by having a read/write head that can move left or right over the tape

INF2080 Lecture :: 9th March 29 / 38

Turing Machines

each of the computational models we had seen so far were special cases of Turing machines

different description levels of Turing machiens: high-level (“algorithmic” description, no
fine-grained detail on tape operations), low-level (description of how the head operates on
tape), implementation level (formal definition of the Turing machine)
It is important to remember how high-level things can be implemented by tape
manipulation, however formal definitions of Turing machines can be cumbersome

INF2080 Lecture :: 9th March 30 / 38

Turing Machines

each of the computational models we had seen so far were special cases of Turing machines
different description levels of Turing machiens: high-level (“algorithmic” description, no
fine-grained detail on tape operations),

low-level (description of how the head operates on
tape), implementation level (formal definition of the Turing machine)
It is important to remember how high-level things can be implemented by tape
manipulation, however formal definitions of Turing machines can be cumbersome

INF2080 Lecture :: 9th March 30 / 38

Turing Machines

each of the computational models we had seen so far were special cases of Turing machines
different description levels of Turing machiens: high-level (“algorithmic” description, no
fine-grained detail on tape operations), low-level (description of how the head operates on
tape),

implementation level (formal definition of the Turing machine)
It is important to remember how high-level things can be implemented by tape
manipulation, however formal definitions of Turing machines can be cumbersome

INF2080 Lecture :: 9th March 30 / 38

Turing Machines

each of the computational models we had seen so far were special cases of Turing machines
different description levels of Turing machiens: high-level (“algorithmic” description, no
fine-grained detail on tape operations), low-level (description of how the head operates on
tape), implementation level (formal definition of the Turing machine)
It is important to remember how high-level things can be implemented by tape
manipulation, however formal definitions of Turing machines can be cumbersome

INF2080 Lecture :: 9th March 30 / 38

Turing Machines

Turing machines are a bit different from the other automata:
DFA/PDA:

could only read input once (and never move backwards over the input)

would only accept after having read the entire input (reject if no computational branches
accept)
either finite memory (DFA), or restricted access to memory (PDA)

TM:
can move left and right across it’s tape
if enters accept/reject state, immediately stops computing
unrestricted access to infinite memory

INF2080 Lecture :: 9th March 31 / 38

Turing Machines

Turing machines are a bit different from the other automata:
DFA/PDA:

could only read input once (and never move backwards over the input)
would only accept after having read the entire input (reject if no computational branches
accept)

either finite memory (DFA), or restricted access to memory (PDA)
TM:

can move left and right across it’s tape
if enters accept/reject state, immediately stops computing
unrestricted access to infinite memory

INF2080 Lecture :: 9th March 31 / 38

Turing Machines

Turing machines are a bit different from the other automata:
DFA/PDA:

could only read input once (and never move backwards over the input)
would only accept after having read the entire input (reject if no computational branches
accept)
either finite memory (DFA), or restricted access to memory (PDA)

TM:
can move left and right across it’s tape
if enters accept/reject state, immediately stops computing
unrestricted access to infinite memory

INF2080 Lecture :: 9th March 31 / 38

Turing Machines

Turing machines are a bit different from the other automata:
DFA/PDA:

could only read input once (and never move backwards over the input)
would only accept after having read the entire input (reject if no computational branches
accept)
either finite memory (DFA), or restricted access to memory (PDA)

TM:
can move left and right across it’s tape

if enters accept/reject state, immediately stops computing
unrestricted access to infinite memory

INF2080 Lecture :: 9th March 31 / 38

Turing Machines

Turing machines are a bit different from the other automata:
DFA/PDA:

could only read input once (and never move backwards over the input)
would only accept after having read the entire input (reject if no computational branches
accept)
either finite memory (DFA), or restricted access to memory (PDA)

TM:
can move left and right across it’s tape
if enters accept/reject state, immediately stops computing

unrestricted access to infinite memory

INF2080 Lecture :: 9th March 31 / 38

Turing Machines

Turing machines are a bit different from the other automata:
DFA/PDA:

could only read input once (and never move backwards over the input)
would only accept after having read the entire input (reject if no computational branches
accept)
either finite memory (DFA), or restricted access to memory (PDA)

TM:
can move left and right across it’s tape
if enters accept/reject state, immediately stops computing
unrestricted access to infinite memory

INF2080 Lecture :: 9th March 31 / 38

Turing Machines

A language accepted by a Turing machine is called Turing-recognizable. If the machine halts on
every input, then the language it recognizes is called decidable.

INF2080 Lecture :: 9th March 32 / 38

Turing Machines

Have looked at Turing machine variants, seen that they are equivalent:
the LRS Turing machine (the head can move left, right, or stay put)
the multitape Turing machine (multiple tapes, multiple heads)
the nondeterministic Turing machine
the enumerator
NFA with two stacks
...

All computational models with unlimited access to infinite memory that can perform finite work
in one step are equivalent to a Turing machine!

INF2080 Lecture :: 9th March 33 / 38

Church-Turing Thesis

Church and Turing independently formalized the notion of algorithm

Previous, intuitive notion: a method according to which after a finite number of
operations an answer is given (paraphrased, many formulations)
Formal: an algorithm is a decidable Turing machine (deciders)
Church Turing thesis: each intuitive definition of algorithms can be described by decidable
Turing machines

INF2080 Lecture :: 9th March 34 / 38

Church-Turing Thesis

Church and Turing independently formalized the notion of algorithm
Previous, intuitive notion: a method according to which after a finite number of
operations an answer is given (paraphrased, many formulations)

Formal: an algorithm is a decidable Turing machine (deciders)
Church Turing thesis: each intuitive definition of algorithms can be described by decidable
Turing machines

INF2080 Lecture :: 9th March 34 / 38

Church-Turing Thesis

Church and Turing independently formalized the notion of algorithm
Previous, intuitive notion: a method according to which after a finite number of
operations an answer is given (paraphrased, many formulations)
Formal: an algorithm is a decidable Turing machine (deciders)

Church Turing thesis: each intuitive definition of algorithms can be described by decidable
Turing machines

INF2080 Lecture :: 9th March 34 / 38

Church-Turing Thesis

Church and Turing independently formalized the notion of algorithm
Previous, intuitive notion: a method according to which after a finite number of
operations an answer is given (paraphrased, many formulations)
Formal: an algorithm is a decidable Turing machine (deciders)
Church Turing thesis: each intuitive definition of algorithms can be described by decidable
Turing machines

INF2080 Lecture :: 9th March 34 / 38

Decidability

Considered acceptance, emptiness, and equivalence problems for computational models, e.g.:

ATM = {〈M,w〉 | M is a Turing machine that accepts w}

We showed various decidability/undecidability results for languages:

x ∈ L L = ∅ L = Σ∗ L = K
regular X X X X
CFL X X X X
LBA X X X X
decidable X X X X
Turing-rec. X X X X

INF2080 Lecture :: 9th March 35 / 38

Decidability

Considered acceptance, emptiness, and equivalence problems for computational models, e.g.:

ATM = {〈M,w〉 | M is a Turing machine that accepts w}

We showed various decidability/undecidability results for languages:

x ∈ L L = ∅ L = Σ∗ L = K
regular X X X X
CFL X X X X
LBA X X X X
decidable X X X X
Turing-rec. X X X X

INF2080 Lecture :: 9th March 35 / 38

Undecidability

Considered the halting problem:

HALTTM = {〈M,w〉 | M is a TM that halts on input w}

HALTTM is undecidable.
Thus, it is algorithmically unsolvable to determine whether a given problem will terminate!
saw PCP yesterday: given a set of dominoes, does there exist a match?
also undecidable.

→ decidability relates to more things than just Turing machines!

INF2080 Lecture :: 9th March 36 / 38

Undecidability

Considered the halting problem:

HALTTM = {〈M,w〉 | M is a TM that halts on input w}

HALTTM is undecidable.

Thus, it is algorithmically unsolvable to determine whether a given problem will terminate!
saw PCP yesterday: given a set of dominoes, does there exist a match?
also undecidable.

→ decidability relates to more things than just Turing machines!

INF2080 Lecture :: 9th March 36 / 38

Undecidability

Considered the halting problem:

HALTTM = {〈M,w〉 | M is a TM that halts on input w}

HALTTM is undecidable.
Thus, it is algorithmically unsolvable to determine whether a given problem will terminate!

saw PCP yesterday: given a set of dominoes, does there exist a match?
also undecidable.

→ decidability relates to more things than just Turing machines!

INF2080 Lecture :: 9th March 36 / 38

Undecidability

Considered the halting problem:

HALTTM = {〈M,w〉 | M is a TM that halts on input w}

HALTTM is undecidable.
Thus, it is algorithmically unsolvable to determine whether a given problem will terminate!
saw PCP yesterday: given a set of dominoes, does there exist a match?

also undecidable.
→ decidability relates to more things than just Turing machines!

INF2080 Lecture :: 9th March 36 / 38

Undecidability

Considered the halting problem:

HALTTM = {〈M,w〉 | M is a TM that halts on input w}

HALTTM is undecidable.
Thus, it is algorithmically unsolvable to determine whether a given problem will terminate!
saw PCP yesterday: given a set of dominoes, does there exist a match?
also undecidable.

→ decidability relates to more things than just Turing machines!

INF2080 Lecture :: 9th March 36 / 38

Undecidability

Considered the halting problem:

HALTTM = {〈M,w〉 | M is a TM that halts on input w}

HALTTM is undecidable.
Thus, it is algorithmically unsolvable to determine whether a given problem will terminate!
saw PCP yesterday: given a set of dominoes, does there exist a match?
also undecidable.

→ decidability relates to more things than just Turing machines!

INF2080 Lecture :: 9th March 36 / 38

Wrap-up

Connecting Chomsky and Turing, the Chomsky hierarchy:

Type-0: recursively enumerable, i.e., Turing-recognizable languages.
Type-1: context-sensitive languages.
Type-2: context-free languages.
Type-3: regular languages.

We haven’t gone through Type-1 (extra lecture at the end of the semester, if desired), however
we have seen the computational model that accepts them: linear bounded automata (LBA) and
seen that these are decidable.

INF2080 Lecture :: 9th March 37 / 38

Wrap-up

Connecting Chomsky and Turing, the Chomsky hierarchy:

Type-0: recursively enumerable, i.e., Turing-recognizable languages.
Type-1: context-sensitive languages.
Type-2: context-free languages.
Type-3: regular languages.

We haven’t gone through Type-1 (extra lecture at the end of the semester, if desired), however
we have seen the computational model that accepts them: linear bounded automata (LBA) and
seen that these are decidable.

INF2080 Lecture :: 9th March 37 / 38

Wrap-up

Connecting Chomsky and Turing, the Chomsky hierarchy:

Type-0: recursively enumerable, i.e., Turing-recognizable languages.
Type-1: context-sensitive languages.
Type-2: context-free languages.
Type-3: regular languages.

We haven’t gone through Type-1 (extra lecture at the end of the semester, if desired), however
we have seen the computational model that accepts them: linear bounded automata (LBA) and
seen that these are decidable.

INF2080 Lecture :: 9th March 37 / 38

What’s next?

Complexity!
not so much about decidability vs. undecidability...most of what we’ll consider will be
decidable, i.e., algorithmically solvable.

...but how hard are these problems? How can they be compared with one another
related to reducibility, computable functions
highly relevant for anything within computer science, be it crypto/security, programming,
theoretical work (AI, databases)

INF2080 Lecture :: 9th March 38 / 38

What’s next?

Complexity!
not so much about decidability vs. undecidability...most of what we’ll consider will be
decidable, i.e., algorithmically solvable.
...but how hard are these problems? How can they be compared with one another

related to reducibility, computable functions
highly relevant for anything within computer science, be it crypto/security, programming,
theoretical work (AI, databases)

INF2080 Lecture :: 9th March 38 / 38

What’s next?

Complexity!
not so much about decidability vs. undecidability...most of what we’ll consider will be
decidable, i.e., algorithmically solvable.
...but how hard are these problems? How can they be compared with one another
related to reducibility, computable functions

highly relevant for anything within computer science, be it crypto/security, programming,
theoretical work (AI, databases)

INF2080 Lecture :: 9th March 38 / 38

What’s next?

Complexity!
not so much about decidability vs. undecidability...most of what we’ll consider will be
decidable, i.e., algorithmically solvable.
...but how hard are these problems? How can they be compared with one another
related to reducibility, computable functions
highly relevant for anything within computer science, be it crypto/security, programming,
theoretical work (AI, databases)

INF2080 Lecture :: 9th March 38 / 38

