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Classes and theorems

We can divide the complexity theory part of the course into two
categories.

After learning about worst-case complexity as a function of input size,
we have looked at classes and at theorems.

Under classes, I put definitions, inclusions, and completeness.

Theorems are big and usually concern many classes.
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Worst-case complexity

Abstraction from M uses x time/space on input w to functions of
input size.

tM(|w|) is the maximum time M uses on strings of length |w|. Same
for space.

Allows comparisons between arbitrary languages and machines.

We compare these functions using asymptotic analysis (loosely, growth
rate).
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Asymptotic behaviour
f(n) = O(g(n)) when there exists n0 and c such that

f(n) 6 c · g(n)

for all n > n0.

f then grows no faster than g, up to a constant factor, and g is an
upper bound for f.

Can augment to f(n) = o(g(n)) by requiring that for all c ∈ R+,

f(n) 6 c · g(n)

or equivalently, that

c · f(n) 6 g(n)

for all n > n0.
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Functions of interest

logn, polynomials nk, and exponentials 2n. All constants equal 2, it
simplifies arithmetic.

Polynomials of logn have also made an appearance.

Using these, we define the deterministic classes TIME(f(n)) and
SPACE(f(n)), as well as the nondeterministic classes NTIME(f(n)) and
NSPACE(f(n)).

Other classes defined using these.

Evgenij Thorstensen Complexity theory, summarized V18 5 / 21



Classes
Space logn:

L = SPACE(logn),

NL = NSPACE(logn),

polyL =
⋃
k∈N

SPACE((logn)k)

Polynomial time and space:

P =
⋃
k∈N

TIME(nk)

NP =
⋃
k∈N

NTIME(nk)

PSPACE =
⋃
k∈N

SPACE(nk)

And exponential time EXP =
⋃
k∈N

TIME(2(n
k))
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co-classes

These classes all have corresponding “complement classes”, that are not
their set complements.

coNP = {L̄ | L ∈ NP}, etc.

Only of interest for nondeterministic classes. Completeness is inherited.
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Theorems about time and space

Space bounds time (configurations argument):
SPACE(f(n)) ⊆ TIME(2cf(n)) for some c.

Hierarchy theorems: For time or space constructable functions,

SPACE(o(f(n))) ⊂ SPACE(f(n))

and

TIME(o(
f(n)

log f(n)
)) ⊂ TIME(f(n))

Proof by simulation/diagonalization over deciders.
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Theorems about space

Savitch: For f(n) > logn, NSPACE(f(n)) ⊆ SPACE(f(n)2)

Proof by algorithm; we divide search problem into two halves, use the
same space for both.

Immermann-Szelepcsényi: For f(n) > logn, SPACE(f(n)) is closed
under complement.

We proved this for NL and coNL, by exhibiting a clever algorithm for
the NOPATH problem using counting.
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Logarithmic space classes

Computation with very limited memory, but as much time as you like.

Allows a fixed number of pointers into the input and counters up to n.

Have to solve problem by looking at fixed-size pieces of the input at a
time.

For NL, prototypical problem is PATH.
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NL-completeness

For the class NL, we use logspace reductions, and write A 6L B if A
reduces to B.

Formally, can output a correct yes/no instance of B given an instance
of A while using only log space working memory.

Allowed to output more than logn bits.

A problem is NL-complete if it is in NL and all problems in NL reduce
to it under 6L.

PATH is such a problem — reduction from TM configuration graph
reachability (universal reduction).
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Properties of L and NL

We have L ⊆ NL = coNL ⊆ P.

Logspace reductions are polynomial-time reductions, and PATH can be
solved in polynomial time.

L is closed under composition and subroutines — by re-computing
relevant bits of other problems, can keep space bound.

Evgenij Thorstensen Complexity theory, summarized V18 12 / 21



Polynomial time classes

Classic problems that can be efficiently computed vs. efficiently
verified.

Polynomials are closed under composition and so forth.

Verifier definition of NP: DTM that accepts yes-instances in
polynomial time for some certificate/proof of membership. Usually this
is a candidate solution.

E.g. for SAT, an assignment, for 3COL a colouring, etc.

Allows us to dispence with nondeterminism.
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NP-completeness

We use polynomial time reducibility 6P. A problem is NP-complete if
it is in NP and all other problems reduce to it under 6P.

Such problems exist, but less obvious than for NL. SAT is the basic
such problem.

Again, universal reduction from polynomial-time NTMs to SAT
formulas encoding acceptance.

We have seen some gadgets for other reductions. More here
https://en.wikipedia.org/wiki/Karp%27s_21_

NP-complete_problems
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coNP

The most interesting co-class. Corresponds to problems with universal,
rather than existential, statements.

Theorem (holds for NL, too): L is coNP-complete if and only if L̄ is
NP-complete.

A language is in coNP when it has a certificate for the NO-instances.

Example: Tautologies and UNSAT. If NOT a tautology, exists a
falsifying assignment. If NOT unsatisfiable, exists a satisfying one.
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P, NP, and coNP

If all three are distinct, we get a rich ecosystem around them.

In particular, we get a whole polynomial hierarchy PH consisting of
problems that can be answered by querying polynomial-time NTMs.

However, it’s hard to seperate classes except by diagonalization, and
that won’t work here.
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Relativization

Oracles machines: TMs with a special “solve this problem in one step”
instruction.

Can be used to define the polynomial hierarchy: Σi = Σ
NP
i−1, and

Σ0 = P.

Can also be used to prove that certain techniques
(diagonalization/simulation) can’t distinguish classes.
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Baker-Gill-Solovay

There exist oracles A and B such that PA = NPA and PB 6= NPB.

Oracle A is PSPACE, oracle B is constructed by diagonalising DTMs
that run in polynomial time.

The oracle “outruns” all these DTMs: They can check only
polynomially many strings, but an NTM can test all strings of a given
length (exponentially many).
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Polynomial space classes

PSPACE and NPSPACE. Thanks to Savitch, can ignore NPSPACE when
reasoning, but use it for proving membership in PSPACE.

Completeness once again wrt. polynomial time reducibility, since
polynomial space reducibility makes everything trivially complete.

The overpowered reduction: Solve the given instance, and output a
tiny yes/no instance depending on answer.

6P avoids this. PSPACE has complete problems, prototypical one is
TQBF.
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PSPACE-completeness

Universal reduction again. We encode reachability between
configurations.

Use Savitch trick and universal quantifier to avoid writing two
formulas.

Bottoms out into SAT formulas with quantifiers on the outside.

NPSPACE computations correspond to and/or trees.
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Odds and ends

Ladner’s theorem: If P 6= NP, there exist problems in NP \ P that are
not NP-complete.

Counting class #P: Number of solutions an NP problem has.

Blum’s speedup theorem: There are problems without an
asymptotically optimal algorithm (can speed up arbitrarily much).
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