
INF2080
Turing Machines

Daniel Lupp

Universitetet i Oslo

22nd February 2018

Department of
Informatics

University of
Oslo

INF2080 Lecture :: 22nd February 1 / 38



So far

So far, our computational models had limited memory:

DFA/NFA: finite memory represented in the states; accepted regular languages
PDA: finite memory in states, restricted infinite memory in a stack; accepted context-free
languages

Last week, we saw the pumping lemma for context-free languages
Saw some examples of languages that PDA’s do not cover!

INF2080 Lecture :: 22nd February 2 / 38



So far

So far, our computational models had limited memory:
DFA/NFA: finite memory represented in the states;

accepted regular languages
PDA: finite memory in states, restricted infinite memory in a stack; accepted context-free
languages

Last week, we saw the pumping lemma for context-free languages
Saw some examples of languages that PDA’s do not cover!

INF2080 Lecture :: 22nd February 2 / 38



So far

So far, our computational models had limited memory:
DFA/NFA: finite memory represented in the states; accepted regular languages

PDA: finite memory in states, restricted infinite memory in a stack; accepted context-free
languages

Last week, we saw the pumping lemma for context-free languages
Saw some examples of languages that PDA’s do not cover!

INF2080 Lecture :: 22nd February 2 / 38



So far

So far, our computational models had limited memory:
DFA/NFA: finite memory represented in the states; accepted regular languages
PDA: finite memory in states, restricted infinite memory in a stack;

accepted context-free
languages

Last week, we saw the pumping lemma for context-free languages
Saw some examples of languages that PDA’s do not cover!

INF2080 Lecture :: 22nd February 2 / 38



So far

So far, our computational models had limited memory:
DFA/NFA: finite memory represented in the states; accepted regular languages
PDA: finite memory in states, restricted infinite memory in a stack; accepted context-free
languages

Last week, we saw the pumping lemma for context-free languages
Saw some examples of languages that PDA’s do not cover!

INF2080 Lecture :: 22nd February 2 / 38



So far

So far, our computational models had limited memory:
DFA/NFA: finite memory represented in the states; accepted regular languages
PDA: finite memory in states, restricted infinite memory in a stack; accepted context-free
languages

Last week, we saw the pumping lemma for context-free languages

Saw some examples of languages that PDA’s do not cover!

INF2080 Lecture :: 22nd February 2 / 38



So far

So far, our computational models had limited memory:
DFA/NFA: finite memory represented in the states; accepted regular languages
PDA: finite memory in states, restricted infinite memory in a stack; accepted context-free
languages

Last week, we saw the pumping lemma for context-free languages
Saw some examples of languages that PDA’s do not cover!

INF2080 Lecture :: 22nd February 2 / 38



Turing Machiens

Today: Introduce computational model underlying most of modern computer science

Finite state machine

A Turing machine is a finite state machine that has access to an infinite tape

INF2080 Lecture :: 22nd February 3 / 38



Turing Machiens

Today: Introduce computational model underlying most of modern computer science

Finite state machine

A Turing machine is a finite state machine that has access to an infinite tape

INF2080 Lecture :: 22nd February 3 / 38



FA vs. TM

Properties of the automata we’ve seen:

could only read input once (and never move backwards over the input)
would only accept after having read the entire input (reject if no computational branches
accept)
either finite memory (DFA), or restricted access to memory (PDA)

Turing machines are a bit different:
can move left and right across it’s tape
if enters accept/reject state, immediately stops computing
unrestricted access to infinite memory

INF2080 Lecture :: 22nd February 4 / 38



FA vs. TM

Properties of the automata we’ve seen:
could only read input once (and never move backwards over the input)

would only accept after having read the entire input (reject if no computational branches
accept)
either finite memory (DFA), or restricted access to memory (PDA)

Turing machines are a bit different:
can move left and right across it’s tape
if enters accept/reject state, immediately stops computing
unrestricted access to infinite memory

INF2080 Lecture :: 22nd February 4 / 38



FA vs. TM

Properties of the automata we’ve seen:
could only read input once (and never move backwards over the input)
would only accept after having read the entire input (reject if no computational branches
accept)

either finite memory (DFA), or restricted access to memory (PDA)
Turing machines are a bit different:

can move left and right across it’s tape
if enters accept/reject state, immediately stops computing
unrestricted access to infinite memory

INF2080 Lecture :: 22nd February 4 / 38



FA vs. TM

Properties of the automata we’ve seen:
could only read input once (and never move backwards over the input)
would only accept after having read the entire input (reject if no computational branches
accept)
either finite memory (DFA), or restricted access to memory (PDA)

Turing machines are a bit different:
can move left and right across it’s tape
if enters accept/reject state, immediately stops computing
unrestricted access to infinite memory

INF2080 Lecture :: 22nd February 4 / 38



FA vs. TM

Properties of the automata we’ve seen:
could only read input once (and never move backwards over the input)
would only accept after having read the entire input (reject if no computational branches
accept)
either finite memory (DFA), or restricted access to memory (PDA)

Turing machines are a bit different:

can move left and right across it’s tape
if enters accept/reject state, immediately stops computing
unrestricted access to infinite memory

INF2080 Lecture :: 22nd February 4 / 38



FA vs. TM

Properties of the automata we’ve seen:
could only read input once (and never move backwards over the input)
would only accept after having read the entire input (reject if no computational branches
accept)
either finite memory (DFA), or restricted access to memory (PDA)

Turing machines are a bit different:
can move left and right across it’s tape

if enters accept/reject state, immediately stops computing
unrestricted access to infinite memory

INF2080 Lecture :: 22nd February 4 / 38



FA vs. TM

Properties of the automata we’ve seen:
could only read input once (and never move backwards over the input)
would only accept after having read the entire input (reject if no computational branches
accept)
either finite memory (DFA), or restricted access to memory (PDA)

Turing machines are a bit different:
can move left and right across it’s tape
if enters accept/reject state, immediately stops computing

unrestricted access to infinite memory

INF2080 Lecture :: 22nd February 4 / 38



FA vs. TM

Properties of the automata we’ve seen:
could only read input once (and never move backwards over the input)
would only accept after having read the entire input (reject if no computational branches
accept)
either finite memory (DFA), or restricted access to memory (PDA)

Turing machines are a bit different:
can move left and right across it’s tape
if enters accept/reject state, immediately stops computing
unrestricted access to infinite memory

INF2080 Lecture :: 22nd February 4 / 38



Turing Machines

A Turing machine starts in the following configuration

w1 w2 w3 . . . wn t

q0

q0 is the start state
w1 · · ·wn is the input string
t is the blank symbol: represents that the cell on tape does not contain any value

INF2080 Lecture :: 22nd February 5 / 38



Turing Machines

A Turing machine starts in the following configuration

w1 w2 w3 . . . wn t

q0

q0 is the start state

w1 · · ·wn is the input string
t is the blank symbol: represents that the cell on tape does not contain any value

INF2080 Lecture :: 22nd February 5 / 38



Turing Machines

A Turing machine starts in the following configuration

w1 w2 w3 . . . wn t

q0

q0 is the start state
w1 · · ·wn is the input string

t is the blank symbol: represents that the cell on tape does not contain any value

INF2080 Lecture :: 22nd February 5 / 38



Turing Machines

A Turing machine starts in the following configuration

w1 w2 w3 . . . wn t

q0

q0 is the start state
w1 · · ·wn is the input string
t is the blank symbol: represents that the cell on tape does not contain any value

INF2080 Lecture :: 22nd February 5 / 38



Turing Machines

Given current state and tape symbol, the Turing machine can write into the current cell,
and move left/right

Say that if M is in state q and reads w2 it writes b and goes to the right:

w1 w2 w3 . . . wn t

q

INF2080 Lecture :: 22nd February 6 / 38



Turing Machines

Given current state and tape symbol, the Turing machine can write into the current cell,
and move left/right
Say that if M is in state q and reads w2 it writes b and goes to the right:

w1 w2 w3 . . . wn t

q

INF2080 Lecture :: 22nd February 6 / 38



Turing Machines

Given current state and tape symbol, the Turing machine can write into the current cell,
and move left/right
Say that if M is in state q and reads w2 it writes b and goes to the right:

w1 w2 w3 . . . wn t

q

INF2080 Lecture :: 22nd February 6 / 38



Turing Machines

Given current state and tape symbol, the Turing machine can write into the current cell,
and move left/right
Say that if M is in state q and reads w2 it writes b and goes to the right:

w1 b w3 . . . wn t

q

INF2080 Lecture :: 22nd February 6 / 38



Turing Machines

Given current state and tape symbol, the Turing machine can write into the current cell,
and move left/right

Say that if M is in state q and reads w1 it writes b and goes to the left:

w1 w2 w3 . . . wn t

q

The machine is at the leftmost cell on the tape!
The machine cannot move left; instead, it performs the write operation and stays in the
same cell

INF2080 Lecture :: 22nd February 7 / 38



Turing Machines

Given current state and tape symbol, the Turing machine can write into the current cell,
and move left/right
Say that if M is in state q and reads w1 it writes b and goes to the left:

w1 w2 w3 . . . wn t

q

The machine is at the leftmost cell on the tape!
The machine cannot move left; instead, it performs the write operation and stays in the
same cell

INF2080 Lecture :: 22nd February 7 / 38



Turing Machines

Given current state and tape symbol, the Turing machine can write into the current cell,
and move left/right
Say that if M is in state q and reads w1 it writes b and goes to the left:

w1 w2 w3 . . . wn t

q

The machine is at the leftmost cell on the tape!
The machine cannot move left; instead, it performs the write operation and stays in the
same cell

INF2080 Lecture :: 22nd February 7 / 38



Turing Machines

Given current state and tape symbol, the Turing machine can write into the current cell,
and move left/right
Say that if M is in state q and reads w1 it writes b and goes to the left:

w1 w2 w3 . . . wn t

q

The machine is at the leftmost cell on the tape!

The machine cannot move left; instead, it performs the write operation and stays in the
same cell

INF2080 Lecture :: 22nd February 7 / 38



Turing Machines

Given current state and tape symbol, the Turing machine can write into the current cell,
and move left/right
Say that if M is in state q and reads w1 it writes b and goes to the left:

w1 w2 w3 . . . wn t

q

The machine is at the leftmost cell on the tape!
The machine cannot move left; instead, it performs the write operation and stays in the
same cell

INF2080 Lecture :: 22nd February 7 / 38



Turing Machines

Given current state and tape symbol, the Turing machine can write into the current cell,
and move left/right
Say that if M is in state q and reads w1 it writes b and goes to the left:

b w2 w3 . . . wn t

q

The machine is at the leftmost cell on the tape!
The machine cannot move left; instead, it performs the write operation and stays in the
same cell

INF2080 Lecture :: 22nd February 7 / 38



Turing Machines

Recall language {ww | w ∈ {0, 1}∗}. Last week we used the pumping lemma to show this is
not context-free.

Let’s try to describe a Turing machine that accepts the similar language
{w#w | w ∈ {0, 1}∗}. How would the tape operations look?

First input symbol must be compared with the first symbol occuring after #.
Each following symbol (before and after #) must be compared as well
If the same symbols occur on both sides, accept. Else, reject.

INF2080 Lecture :: 22nd February 8 / 38



Turing Machines

Recall language {ww | w ∈ {0, 1}∗}. Last week we used the pumping lemma to show this is
not context-free. Let’s try to describe a Turing machine that accepts the similar language
{w#w | w ∈ {0, 1}∗}. How would the tape operations look?

First input symbol must be compared with the first symbol occuring after #.
Each following symbol (before and after #) must be compared as well
If the same symbols occur on both sides, accept. Else, reject.

INF2080 Lecture :: 22nd February 8 / 38



Turing Machines

Recall language {ww | w ∈ {0, 1}∗}. Last week we used the pumping lemma to show this is
not context-free. Let’s try to describe a Turing machine that accepts the similar language
{w#w | w ∈ {0, 1}∗}. How would the tape operations look?

First input symbol must be compared with the first symbol occuring after #.

Each following symbol (before and after #) must be compared as well
If the same symbols occur on both sides, accept. Else, reject.

INF2080 Lecture :: 22nd February 8 / 38



Turing Machines

Recall language {ww | w ∈ {0, 1}∗}. Last week we used the pumping lemma to show this is
not context-free. Let’s try to describe a Turing machine that accepts the similar language
{w#w | w ∈ {0, 1}∗}. How would the tape operations look?

First input symbol must be compared with the first symbol occuring after #.
Each following symbol (before and after #) must be compared as well

If the same symbols occur on both sides, accept. Else, reject.

INF2080 Lecture :: 22nd February 8 / 38



Turing Machines

Recall language {ww | w ∈ {0, 1}∗}. Last week we used the pumping lemma to show this is
not context-free. Let’s try to describe a Turing machine that accepts the similar language
{w#w | w ∈ {0, 1}∗}. How would the tape operations look?

First input symbol must be compared with the first symbol occuring after #.
Each following symbol (before and after #) must be compared as well
If the same symbols occur on both sides, accept. Else, reject.

INF2080 Lecture :: 22nd February 8 / 38



Example

L = {w#w | w ∈ {0, 1}∗}:
Intuitively, we zig-zag across the tape:

Cross off first symbol, move to first symbol after # and cross off if the same symbol occurs
Move back to beginning of tape
If no non-crossed off symbols remain, move past # and check if any non-crossed off
symbols remain on that side. If yes, reject. If no, accept.
Cross off first non-crossed off symbol, move to first non-crossed off symbol after #

If no non-crossed off symbols after # remain or next symbol is not the same, reject. Else,
cross off if equal to the last crossed off symbol

INF2080 Lecture :: 22nd February 9 / 38



Example

L = {w#w | w ∈ {0, 1}∗}:
Intuitively, we zig-zag across the tape:

Cross off first symbol, move to first symbol after # and cross off if the same symbol occurs

Move back to beginning of tape
If no non-crossed off symbols remain, move past # and check if any non-crossed off
symbols remain on that side. If yes, reject. If no, accept.
Cross off first non-crossed off symbol, move to first non-crossed off symbol after #

If no non-crossed off symbols after # remain or next symbol is not the same, reject. Else,
cross off if equal to the last crossed off symbol

INF2080 Lecture :: 22nd February 9 / 38



Example

L = {w#w | w ∈ {0, 1}∗}:
Intuitively, we zig-zag across the tape:

Cross off first symbol, move to first symbol after # and cross off if the same symbol occurs
Move back to beginning of tape

If no non-crossed off symbols remain, move past # and check if any non-crossed off
symbols remain on that side. If yes, reject. If no, accept.
Cross off first non-crossed off symbol, move to first non-crossed off symbol after #

If no non-crossed off symbols after # remain or next symbol is not the same, reject. Else,
cross off if equal to the last crossed off symbol

INF2080 Lecture :: 22nd February 9 / 38



Example

L = {w#w | w ∈ {0, 1}∗}:
Intuitively, we zig-zag across the tape:

Cross off first symbol, move to first symbol after # and cross off if the same symbol occurs
Move back to beginning of tape
If no non-crossed off symbols remain, move past # and check if any non-crossed off
symbols remain on that side. If yes, reject. If no, accept.

Cross off first non-crossed off symbol, move to first non-crossed off symbol after #

If no non-crossed off symbols after # remain or next symbol is not the same, reject. Else,
cross off if equal to the last crossed off symbol

INF2080 Lecture :: 22nd February 9 / 38



Example

L = {w#w | w ∈ {0, 1}∗}:
Intuitively, we zig-zag across the tape:

Cross off first symbol, move to first symbol after # and cross off if the same symbol occurs
Move back to beginning of tape
If no non-crossed off symbols remain, move past # and check if any non-crossed off
symbols remain on that side. If yes, reject. If no, accept.
Cross off first non-crossed off symbol, move to first non-crossed off symbol after #

If no non-crossed off symbols after # remain or next symbol is not the same, reject. Else,
cross off if equal to the last crossed off symbol

INF2080 Lecture :: 22nd February 9 / 38



Example

L = {w#w | w ∈ {0, 1}∗}:
Intuitively, we zig-zag across the tape:

Cross off first symbol, move to first symbol after # and cross off if the same symbol occurs
Move back to beginning of tape
If no non-crossed off symbols remain, move past # and check if any non-crossed off
symbols remain on that side. If yes, reject. If no, accept.
Cross off first non-crossed off symbol, move to first non-crossed off symbol after #

If no non-crossed off symbols after # remain or next symbol is not the same, reject. Else,
cross off if equal to the last crossed off symbol

INF2080 Lecture :: 22nd February 9 / 38



Example

0 1 1 # 0 1 1 t

INF2080 Lecture :: 22nd February 10 / 38



Example

x 1 1 # 0 1 1 t

INF2080 Lecture :: 22nd February 10 / 38



Example

x 1 1 # 0 1 1 t

INF2080 Lecture :: 22nd February 10 / 38



Example

x 1 1 # 0 1 1 t

INF2080 Lecture :: 22nd February 10 / 38



Example

x 1 1 # 0 1 1 t

INF2080 Lecture :: 22nd February 10 / 38



Example

x 1 1 # x 1 1 t

INF2080 Lecture :: 22nd February 10 / 38



Example

x 1 1 # x 1 1 t

INF2080 Lecture :: 22nd February 10 / 38



Example

x 1 1 # x 1 1 t

INF2080 Lecture :: 22nd February 10 / 38



Example

x 1 1 # x 1 1 t

INF2080 Lecture :: 22nd February 10 / 38



Example

x 1 1 # x 1 1 t

INF2080 Lecture :: 22nd February 10 / 38



Example

x x 1 # x 1 1 t

INF2080 Lecture :: 22nd February 10 / 38



Example

x x 1 # x 1 1 t

INF2080 Lecture :: 22nd February 10 / 38



Example

x x 1 # x 1 1 t

INF2080 Lecture :: 22nd February 10 / 38



Example

x x 1 # x 1 1 t

INF2080 Lecture :: 22nd February 10 / 38



Example

x x 1 # x x 1 t

INF2080 Lecture :: 22nd February 10 / 38



Example

x x 1 # x x 1 t

INF2080 Lecture :: 22nd February 10 / 38



Example

x x 1 # x x 1 t

INF2080 Lecture :: 22nd February 10 / 38



Example

x x 1 # x x 1 t

INF2080 Lecture :: 22nd February 10 / 38



Example

x x 1 # x x 1 t

INF2080 Lecture :: 22nd February 10 / 38



Example

x x 1 # x x 1 t

INF2080 Lecture :: 22nd February 10 / 38



Example

x x 1 # x x 1 t

INF2080 Lecture :: 22nd February 10 / 38



Example

x x x # x x 1 t

INF2080 Lecture :: 22nd February 10 / 38



Example

x x x # x x 1 t

INF2080 Lecture :: 22nd February 10 / 38



Example

x x x # x x 1 t

INF2080 Lecture :: 22nd February 10 / 38



Example

x x x # x x 1 t

INF2080 Lecture :: 22nd February 10 / 38



Example

x x x # x x x t

INF2080 Lecture :: 22nd February 10 / 38



Example

x x x # x x x t

INF2080 Lecture :: 22nd February 10 / 38



Example

x x x # x x x t

INF2080 Lecture :: 22nd February 10 / 38



Example

x x x # x x x t

INF2080 Lecture :: 22nd February 10 / 38



Example

x x x # x x x t

INF2080 Lecture :: 22nd February 10 / 38



Example

x x x # x x x t

INF2080 Lecture :: 22nd February 10 / 38



Example

x x x # x x x t

INF2080 Lecture :: 22nd February 10 / 38



Example

x x x # x x x t

INF2080 Lecture :: 22nd February 10 / 38



Example

x x x # x x x t

INF2080 Lecture :: 22nd February 10 / 38



Example

x x x # x x x t

INF2080 Lecture :: 22nd February 10 / 38



Example

x x x # x x x t

INF2080 Lecture :: 22nd February 10 / 38



Example

x x x # x x x t

INF2080 Lecture :: 22nd February 10 / 38



Example

x x x # x x x t

X

INF2080 Lecture :: 22nd February 10 / 38



“Move back to beginning”

We used “move back to beginning of tape”....but how to implement this?

A Turing machine’s head’s view:

x

It cannot see anything outside of its current cell
If after moving the same symbol appears, how does the machine know whether it actually
moved or not?
Multiple options:
write a special symbol at the beginning to encode the beginning of the tape

INF2080 Lecture :: 22nd February 11 / 38



“Move back to beginning”

We used “move back to beginning of tape”....but how to implement this?
A Turing machine’s head’s view:

x

It cannot see anything outside of its current cell
If after moving the same symbol appears, how does the machine know whether it actually
moved or not?
Multiple options:
write a special symbol at the beginning to encode the beginning of the tape

INF2080 Lecture :: 22nd February 11 / 38



“Move back to beginning”

We used “move back to beginning of tape”....but how to implement this?
A Turing machine’s head’s view:

x

It cannot see anything outside of its current cell

If after moving the same symbol appears, how does the machine know whether it actually
moved or not?
Multiple options:
write a special symbol at the beginning to encode the beginning of the tape

INF2080 Lecture :: 22nd February 11 / 38



“Move back to beginning”

We used “move back to beginning of tape”....but how to implement this?
A Turing machine’s head’s view:

x

It cannot see anything outside of its current cell
If after moving the same symbol appears, how does the machine know whether it actually
moved or not?

Multiple options:
write a special symbol at the beginning to encode the beginning of the tape

INF2080 Lecture :: 22nd February 11 / 38



“Move back to beginning”

We used “move back to beginning of tape”....but how to implement this?
A Turing machine’s head’s view:

x

It cannot see anything outside of its current cell
If after moving the same symbol appears, how does the machine know whether it actually
moved or not?
Multiple options:
write a special symbol at the beginning to encode the beginning of the tape

INF2080 Lecture :: 22nd February 11 / 38



“Move back to beginning”

Other option:
when looking for beginning of tape: replace current cell contents x with a new symbol ẋ
to mark where the head was. If after moving left it reads ẋ , it knows it’s at the beginning
of the tape.

Otherwise, go right, replace ẋ with x , go left, repeat.

INF2080 Lecture :: 22nd February 12 / 38



“Move back to beginning”

Other option:
when looking for beginning of tape: replace current cell contents x with a new symbol ẋ
to mark where the head was. If after moving left it reads ẋ , it knows it’s at the beginning
of the tape.
Otherwise, go right, replace ẋ with x , go left, repeat.

INF2080 Lecture :: 22nd February 12 / 38



“Move back to beginning”

Other option:
when looking for beginning of tape: replace current cell contents x with a new symbol ẋ
to mark where the head was. If after moving left it reads ẋ , it knows it’s at the beginning
of the tape.
Otherwise, go right, replace ẋ with x , go left, repeat.

x x x

INF2080 Lecture :: 22nd February 12 / 38



“Move back to beginning”

Other option:
when looking for beginning of tape: replace current cell contents x with a new symbol ẋ
to mark where the head was. If after moving left it reads ẋ , it knows it’s at the beginning
of the tape.
Otherwise, go right, replace ẋ with x , go left, repeat.

x x ẋ

INF2080 Lecture :: 22nd February 12 / 38



“Move back to beginning”

Other option:
when looking for beginning of tape: replace current cell contents x with a new symbol ẋ
to mark where the head was. If after moving left it reads ẋ , it knows it’s at the beginning
of the tape.
Otherwise, go right, replace ẋ with x , go left, repeat.

x x ẋ

INF2080 Lecture :: 22nd February 12 / 38



“Move back to beginning”

Other option:
when looking for beginning of tape: replace current cell contents x with a new symbol ẋ
to mark where the head was. If after moving left it reads ẋ , it knows it’s at the beginning
of the tape.
Otherwise, go right, replace ẋ with x , go left, repeat.

x x x

INF2080 Lecture :: 22nd February 12 / 38



“Move back to beginning”

Other option:
when looking for beginning of tape: replace current cell contents x with a new symbol ẋ
to mark where the head was. If after moving left it reads ẋ , it knows it’s at the beginning
of the tape.
Otherwise, go right, replace ẋ with x , go left, repeat.

x ẋ x

INF2080 Lecture :: 22nd February 12 / 38



“Move back to beginning”

Other option:
when looking for beginning of tape: replace current cell contents x with a new symbol ẋ
to mark where the head was. If after moving left it reads ẋ , it knows it’s at the beginning
of the tape.
Otherwise, go right, replace ẋ with x , go left, repeat.

x ẋ x

INF2080 Lecture :: 22nd February 12 / 38



“Move back to beginning”

Other option:
when looking for beginning of tape: replace current cell contents x with a new symbol ẋ
to mark where the head was. If after moving left it reads ẋ , it knows it’s at the beginning
of the tape.
Otherwise, go right, replace ẋ with x , go left, repeat.

x x x

INF2080 Lecture :: 22nd February 12 / 38



“Move back to beginning”

Other option:
when looking for beginning of tape: replace current cell contents x with a new symbol ẋ
to mark where the head was. If after moving left it reads ẋ , it knows it’s at the beginning
of the tape.
Otherwise, go right, replace ẋ with x , go left, repeat.

ẋ x x

INF2080 Lecture :: 22nd February 12 / 38



“Move back to beginning”

Other option:
when looking for beginning of tape: replace current cell contents x with a new symbol ẋ
to mark where the head was. If after moving left it reads ẋ , it knows it’s at the beginning
of the tape.
Otherwise, go right, replace ẋ with x , go left, repeat.

x x x

INF2080 Lecture :: 22nd February 12 / 38



Example

This was a low-level description of a Turing machine, describing in words how the tape
operates:

M= on input w :
1 Zig-zag across the tape to corresponding positions on either side of #, checking whether

these positions contain the same symbol. If they do not, reject. Cross off corresponding
symbols if equal

2 When all symbols before # have been crossed off, scan symbols after # to see if any
uncrossed symbols remain. If yes, reject, if no, accept.

High-level: “Compare words before and after # and accept if equal, reject if not equal”
Implementation level: giving the formal definition of a Turing machine, with all states and
transitions (we’ll go through some examples tomorrow)

INF2080 Lecture :: 22nd February 13 / 38



Example

This was a low-level description of a Turing machine, describing in words how the tape
operates:
M= on input w :

1 Zig-zag across the tape to corresponding positions on either side of #, checking whether
these positions contain the same symbol. If they do not, reject. Cross off corresponding
symbols if equal

2 When all symbols before # have been crossed off, scan symbols after # to see if any
uncrossed symbols remain. If yes, reject, if no, accept.

High-level: “Compare words before and after # and accept if equal, reject if not equal”
Implementation level: giving the formal definition of a Turing machine, with all states and
transitions (we’ll go through some examples tomorrow)

INF2080 Lecture :: 22nd February 13 / 38



Example

This was a low-level description of a Turing machine, describing in words how the tape
operates:
M= on input w :

1 Zig-zag across the tape to corresponding positions on either side of #, checking whether
these positions contain the same symbol. If they do not, reject. Cross off corresponding
symbols if equal

2 When all symbols before # have been crossed off, scan symbols after # to see if any
uncrossed symbols remain. If yes, reject, if no, accept.

High-level: “Compare words before and after # and accept if equal, reject if not equal”

Implementation level: giving the formal definition of a Turing machine, with all states and
transitions (we’ll go through some examples tomorrow)

INF2080 Lecture :: 22nd February 13 / 38



Example

This was a low-level description of a Turing machine, describing in words how the tape
operates:
M= on input w :

1 Zig-zag across the tape to corresponding positions on either side of #, checking whether
these positions contain the same symbol. If they do not, reject. Cross off corresponding
symbols if equal

2 When all symbols before # have been crossed off, scan symbols after # to see if any
uncrossed symbols remain. If yes, reject, if no, accept.

High-level: “Compare words before and after # and accept if equal, reject if not equal”
Implementation level: giving the formal definition of a Turing machine, with all states and
transitions (we’ll go through some examples tomorrow)

INF2080 Lecture :: 22nd February 13 / 38



TM—A formal definition

Definition
A Turing machine is a 7-tuple (Q,Σ, Γ, δ, q0, qaccept , qreject) where Q,Σ, Γ are finite sets and

1 Q is the set of states,
2 Σ is the input alphabet not containing the blank symbol t
3 Γ is the tape alphabet, where t ∈ Γ and Σ ⊆ Γ,
4 δ : Q \ {qaccept , qreject} × Γ→ Q × Γ× {L,R} is the transition fucntion,
5 q0 ∈ Q is the start state,
6 qaccept ∈ Q is the accept state, and
7 qreject ∈ Q is the reject state.

INF2080 Lecture :: 22nd February 14 / 38



TM—A formal definition

Definition
A Turing machine is a 7-tuple (Q,Σ, Γ, δ, q0, qaccept , qreject) where Q,Σ, Γ are finite sets and

1 Q is the set of states,

2 Σ is the input alphabet not containing the blank symbol t
3 Γ is the tape alphabet, where t ∈ Γ and Σ ⊆ Γ,
4 δ : Q \ {qaccept , qreject} × Γ→ Q × Γ× {L,R} is the transition fucntion,
5 q0 ∈ Q is the start state,
6 qaccept ∈ Q is the accept state, and
7 qreject ∈ Q is the reject state.

INF2080 Lecture :: 22nd February 14 / 38



TM—A formal definition

Definition
A Turing machine is a 7-tuple (Q,Σ, Γ, δ, q0, qaccept , qreject) where Q,Σ, Γ are finite sets and

1 Q is the set of states,
2 Σ is the input alphabet not containing the blank symbol t

3 Γ is the tape alphabet, where t ∈ Γ and Σ ⊆ Γ,
4 δ : Q \ {qaccept , qreject} × Γ→ Q × Γ× {L,R} is the transition fucntion,
5 q0 ∈ Q is the start state,
6 qaccept ∈ Q is the accept state, and
7 qreject ∈ Q is the reject state.

INF2080 Lecture :: 22nd February 14 / 38



TM—A formal definition

Definition
A Turing machine is a 7-tuple (Q,Σ, Γ, δ, q0, qaccept , qreject) where Q,Σ, Γ are finite sets and

1 Q is the set of states,
2 Σ is the input alphabet not containing the blank symbol t
3 Γ is the tape alphabet, where t ∈ Γ and Σ ⊆ Γ,

4 δ : Q \ {qaccept , qreject} × Γ→ Q × Γ× {L,R} is the transition fucntion,
5 q0 ∈ Q is the start state,
6 qaccept ∈ Q is the accept state, and
7 qreject ∈ Q is the reject state.

INF2080 Lecture :: 22nd February 14 / 38



TM—A formal definition

Definition
A Turing machine is a 7-tuple (Q,Σ, Γ, δ, q0, qaccept , qreject) where Q,Σ, Γ are finite sets and

1 Q is the set of states,
2 Σ is the input alphabet not containing the blank symbol t
3 Γ is the tape alphabet, where t ∈ Γ and Σ ⊆ Γ,
4 δ : Q \ {qaccept , qreject} × Γ→ Q × Γ× {L,R} is the transition fucntion,

5 q0 ∈ Q is the start state,
6 qaccept ∈ Q is the accept state, and
7 qreject ∈ Q is the reject state.

INF2080 Lecture :: 22nd February 14 / 38



TM—A formal definition

Definition
A Turing machine is a 7-tuple (Q,Σ, Γ, δ, q0, qaccept , qreject) where Q,Σ, Γ are finite sets and

1 Q is the set of states,
2 Σ is the input alphabet not containing the blank symbol t
3 Γ is the tape alphabet, where t ∈ Γ and Σ ⊆ Γ,
4 δ : Q \ {qaccept , qreject} × Γ→ Q × Γ× {L,R} is the transition fucntion,
5 q0 ∈ Q is the start state,
6 qaccept ∈ Q is the accept state, and
7 qreject ∈ Q is the reject state.

INF2080 Lecture :: 22nd February 14 / 38



Configurations

During each computation step, a TM is in a specific configuration:
current tape contents uv ;
current head position;
current state q.

Notation: uqv encodes that the machine is in state q, pointing at the first symbol in v .
Example:

x x x # x x 1 t

q

Notation: xxx#qxx1

INF2080 Lecture :: 22nd February 15 / 38



Configurations

During each computation step, a TM is in a specific configuration:
current tape contents uv ;
current head position;
current state q.

Notation: uqv encodes that the machine is in state q, pointing at the first symbol in v .
Example:

x x x # x x 1 t

q

Notation: xxx#qxx1

INF2080 Lecture :: 22nd February 15 / 38



Configurations

A configuration C1 yields C2 if TM can legally go from C1 to C2 in a single step:
uaqibv yields uqjacv if δ(qi , b) = (qj , c , L).

. . . a b v1 . . .

qi

INF2080 Lecture :: 22nd February 16 / 38



Configurations

A configuration C1 yields C2 if TM can legally go from C1 to C2 in a single step:
uaqibv yields uqjacv if δ(qi , b) = (qj , c , L).

. . . a b v1 . . .

qi

INF2080 Lecture :: 22nd February 16 / 38



Configurations

A configuration C1 yields C2 if TM can legally go from C1 to C2 in a single step:
uaqibv yields uqjacv if δ(qi , b) = (qj , c , L).

. . . a c v1 . . .

qj

INF2080 Lecture :: 22nd February 16 / 38



Configurations

A configuration C1 yields C2 if TM can legally go from C1 to C2 in a single step:
uaqibv yields uacqjv if δ(qi , b) = (qj , c ,R).

. . . a b v1 . . .

qi

INF2080 Lecture :: 22nd February 17 / 38



Configurations

A configuration C1 yields C2 if TM can legally go from C1 to C2 in a single step:
uaqibv yields uacqjv if δ(qi , b) = (qj , c ,R).

. . . a b v1 . . .

qi

INF2080 Lecture :: 22nd February 17 / 38



Configurations

A configuration C1 yields C2 if TM can legally go from C1 to C2 in a single step:
uaqibv yields uacqjv if δ(qi , b) = (qj , c ,R).

. . . a c v1 . . .

qj

INF2080 Lecture :: 22nd February 17 / 38



Configurations

If the head is at one end of the tape:
If the head is at the leftmost side and it moves left:

qibv yields qjcv if δ(qi , b) = (qj , c, L).

b v1 . . .

qi

If the head is at the rightmost side and it moves right: uqib yields ucqj = ucqjt if
δ(qi , b) = (qj , c ,R).

INF2080 Lecture :: 22nd February 18 / 38



Configurations

If the head is at one end of the tape:
If the head is at the leftmost side and it moves left:

qibv yields qjcv if δ(qi , b) = (qj , c, L). b v1 . . .

qi

If the head is at the rightmost side and it moves right: uqib yields ucqj = ucqjt if
δ(qi , b) = (qj , c ,R).

INF2080 Lecture :: 22nd February 18 / 38



Configurations

If the head is at one end of the tape:
If the head is at the leftmost side and it moves left:

qibv yields qjcv if δ(qi , b) = (qj , c, L).
c v1 . . .

qj

If the head is at the rightmost side and it moves right: uqib yields ucqj = ucqjt if
δ(qi , b) = (qj , c ,R).

INF2080 Lecture :: 22nd February 18 / 38



Configurations

If the head is at one end of the tape:
If the head is at the leftmost side and it moves left:

qibv yields qjcv if δ(qi , b) = (qj , c, L).
c v1 . . .

qj

If the head is at the rightmost side and it moves right: uqib yields ucqj = ucqjt if
δ(qi , b) = (qj , c ,R).

INF2080 Lecture :: 22nd February 18 / 38



Configurations

If the head is at one end of the tape:
If the head is at the leftmost side and it moves left:

qibv yields qjcv if δ(qi , b) = (qj , c, L).
c v1 . . .

qj

If the head is at the rightmost side and it moves right: uqib yields ucqj = ucqjt if

δ(qi , b) = (qj , c ,R).
. . . b t . . .

qi

INF2080 Lecture :: 22nd February 18 / 38



Configurations

If the head is at one end of the tape:
If the head is at the leftmost side and it moves left:

qibv yields qjcv if δ(qi , b) = (qj , c, L).
c v1 . . .

qj

If the head is at the rightmost side and it moves right: uqib yields ucqj = ucqjt if

δ(qi , b) = (qj , c ,R).
. . . c t . . .

qj

INF2080 Lecture :: 22nd February 18 / 38



Configurations

The starting configuration is q0w

An accepting configuration is a configuration where the state is qaccept
A rejecting configuration is a configuration where the state is qreject
A halting configuration is an accepting or a rejecting configuration

Then a Turing machine M accepts a word w if there exists a sequence of configurations
C1, . . . ,Ck such that

1 C1 is the start configuration of M on input w ,
2 each Ci yields Ci+1, and
3 Ck is an accepting configuration.

INF2080 Lecture :: 22nd February 19 / 38



Configurations

The starting configuration is q0w

An accepting configuration is a configuration where the state is qaccept

A rejecting configuration is a configuration where the state is qreject
A halting configuration is an accepting or a rejecting configuration

Then a Turing machine M accepts a word w if there exists a sequence of configurations
C1, . . . ,Ck such that

1 C1 is the start configuration of M on input w ,
2 each Ci yields Ci+1, and
3 Ck is an accepting configuration.

INF2080 Lecture :: 22nd February 19 / 38



Configurations

The starting configuration is q0w

An accepting configuration is a configuration where the state is qaccept
A rejecting configuration is a configuration where the state is qreject

A halting configuration is an accepting or a rejecting configuration

Then a Turing machine M accepts a word w if there exists a sequence of configurations
C1, . . . ,Ck such that

1 C1 is the start configuration of M on input w ,
2 each Ci yields Ci+1, and
3 Ck is an accepting configuration.

INF2080 Lecture :: 22nd February 19 / 38



Configurations

The starting configuration is q0w

An accepting configuration is a configuration where the state is qaccept
A rejecting configuration is a configuration where the state is qreject
A halting configuration is an accepting or a rejecting configuration

Then a Turing machine M accepts a word w if there exists a sequence of configurations
C1, . . . ,Ck such that

1 C1 is the start configuration of M on input w ,
2 each Ci yields Ci+1, and
3 Ck is an accepting configuration.

INF2080 Lecture :: 22nd February 19 / 38



Configurations

The starting configuration is q0w

An accepting configuration is a configuration where the state is qaccept
A rejecting configuration is a configuration where the state is qreject
A halting configuration is an accepting or a rejecting configuration

Then a Turing machine M accepts a word w if there exists a sequence of configurations
C1, . . . ,Ck such that

1 C1 is the start configuration of M on input w ,

2 each Ci yields Ci+1, and
3 Ck is an accepting configuration.

INF2080 Lecture :: 22nd February 19 / 38



Configurations

The starting configuration is q0w

An accepting configuration is a configuration where the state is qaccept
A rejecting configuration is a configuration where the state is qreject
A halting configuration is an accepting or a rejecting configuration

Then a Turing machine M accepts a word w if there exists a sequence of configurations
C1, . . . ,Ck such that

1 C1 is the start configuration of M on input w ,
2 each Ci yields Ci+1,

and
3 Ck is an accepting configuration.

INF2080 Lecture :: 22nd February 19 / 38



Configurations

The starting configuration is q0w

An accepting configuration is a configuration where the state is qaccept
A rejecting configuration is a configuration where the state is qreject
A halting configuration is an accepting or a rejecting configuration

Then a Turing machine M accepts a word w if there exists a sequence of configurations
C1, . . . ,Ck such that

1 C1 is the start configuration of M on input w ,
2 each Ci yields Ci+1, and
3 Ck is an accepting configuration.

INF2080 Lecture :: 22nd February 19 / 38



Languages

For a Turing machine M, the set of words it accepts is the language of M (denoted L(M)) or
the language recognized by M.

Definition
A language is called Turing-recognizable [recursively enumerable] if some Turing machine
recognizes it.

A Turing machine can either halt (accept, reject) on a given input, or loop (never accept
or reject...for example: head always moves to the right, never enters qaccept or qreject).
A Turing machine decides a language A if it accepts all words w ∈ A and rejects all words
w 6∈ A. → it halts on all inputs!

Definition
A language is Turing-decidable [decidable, recursive] if there is a Turing machine that decides it.

INF2080 Lecture :: 22nd February 20 / 38



Languages

For a Turing machine M, the set of words it accepts is the language of M (denoted L(M)) or
the language recognized by M.

Definition
A language is called Turing-recognizable [recursively enumerable] if some Turing machine
recognizes it.

A Turing machine can either halt (accept, reject) on a given input, or loop (never accept
or reject...for example: head always moves to the right, never enters qaccept or qreject).
A Turing machine decides a language A if it accepts all words w ∈ A and rejects all words
w 6∈ A. → it halts on all inputs!

Definition
A language is Turing-decidable [decidable, recursive] if there is a Turing machine that decides it.

INF2080 Lecture :: 22nd February 20 / 38



Languages

For a Turing machine M, the set of words it accepts is the language of M (denoted L(M)) or
the language recognized by M.

Definition
A language is called Turing-recognizable [recursively enumerable] if some Turing machine
recognizes it.

A Turing machine can either halt (accept, reject) on a given input, or loop (never accept
or reject...for example: head always moves to the right, never enters qaccept or qreject).

A Turing machine decides a language A if it accepts all words w ∈ A and rejects all words
w 6∈ A. → it halts on all inputs!

Definition
A language is Turing-decidable [decidable, recursive] if there is a Turing machine that decides it.

INF2080 Lecture :: 22nd February 20 / 38



Languages

For a Turing machine M, the set of words it accepts is the language of M (denoted L(M)) or
the language recognized by M.

Definition
A language is called Turing-recognizable [recursively enumerable] if some Turing machine
recognizes it.

A Turing machine can either halt (accept, reject) on a given input, or loop (never accept
or reject...for example: head always moves to the right, never enters qaccept or qreject).
A Turing machine decides a language A if it accepts all words w ∈ A and rejects all words
w 6∈ A.

→ it halts on all inputs!

Definition
A language is Turing-decidable [decidable, recursive] if there is a Turing machine that decides it.

INF2080 Lecture :: 22nd February 20 / 38



Languages

For a Turing machine M, the set of words it accepts is the language of M (denoted L(M)) or
the language recognized by M.

Definition
A language is called Turing-recognizable [recursively enumerable] if some Turing machine
recognizes it.

A Turing machine can either halt (accept, reject) on a given input, or loop (never accept
or reject...for example: head always moves to the right, never enters qaccept or qreject).
A Turing machine decides a language A if it accepts all words w ∈ A and rejects all words
w 6∈ A. → it halts on all inputs!

Definition
A language is Turing-decidable [decidable, recursive] if there is a Turing machine that decides it.

INF2080 Lecture :: 22nd February 20 / 38



Languages

For a Turing machine M, the set of words it accepts is the language of M (denoted L(M)) or
the language recognized by M.

Definition
A language is called Turing-recognizable [recursively enumerable] if some Turing machine
recognizes it.

A Turing machine can either halt (accept, reject) on a given input, or loop (never accept
or reject...for example: head always moves to the right, never enters qaccept or qreject).
A Turing machine decides a language A if it accepts all words w ∈ A and rejects all words
w 6∈ A. → it halts on all inputs!

Definition
A language is Turing-decidable [decidable, recursive] if there is a Turing machine that decides it.

INF2080 Lecture :: 22nd February 20 / 38



Example

Previous example of language {w#w | w ∈ {0, 1}∗} was recognized by machine:
M= on input w :

1 Zig-zag across the tape to corresponding positions on either side of #, checking whether
these positions contain the same symbol. If they do not, reject. Cross off corresponding
symbols if equal

2 When all symbols before # have been crossed off, scan symbols after # to see if any
uncrossed symbols remain. If yes, reject, if no, accept.

It was, in fact, decided by M!

INF2080 Lecture :: 22nd February 21 / 38



Example

Previous example of language {w#w | w ∈ {0, 1}∗} was recognized by machine:
M= on input w :

1 Zig-zag across the tape to corresponding positions on either side of #, checking whether
these positions contain the same symbol. If they do not, reject. Cross off corresponding
symbols if equal

2 When all symbols before # have been crossed off, scan symbols after # to see if any
uncrossed symbols remain. If yes, reject, if no, accept.

It was, in fact, decided by M!

INF2080 Lecture :: 22nd February 21 / 38



Example 2

A = {02n | n ≥ 0}. Want to construct a TM that recognizes (decides?) it.

words: 0, 00, 0000, 00000000, etc.
all words except 0 have length divisble by 0.
idea: if length=1, accept (if input symbol is correct), otherwise divide length by 2. Repeat

How to divide length by 2?

INF2080 Lecture :: 22nd February 22 / 38



Example 2

A = {02n | n ≥ 0}. Want to construct a TM that recognizes (decides?) it.
words: 0, 00, 0000, 00000000, etc.

all words except 0 have length divisble by 0.
idea: if length=1, accept (if input symbol is correct), otherwise divide length by 2. Repeat

How to divide length by 2?

INF2080 Lecture :: 22nd February 22 / 38



Example 2

A = {02n | n ≥ 0}. Want to construct a TM that recognizes (decides?) it.
words: 0, 00, 0000, 00000000, etc.
all words except 0 have length divisble by 0.

idea: if length=1, accept (if input symbol is correct), otherwise divide length by 2. Repeat
How to divide length by 2?

INF2080 Lecture :: 22nd February 22 / 38



Example 2

A = {02n | n ≥ 0}. Want to construct a TM that recognizes (decides?) it.
words: 0, 00, 0000, 00000000, etc.
all words except 0 have length divisble by 0.
idea: if length=1, accept (if input symbol is correct), otherwise divide length by 2. Repeat

How to divide length by 2?

INF2080 Lecture :: 22nd February 22 / 38



Example 2

A = {02n | n ≥ 0}. Want to construct a TM that recognizes (decides?) it.
M=on input w :

1 replace first 0 with blank symbol t.

2 scan input until you read the next 0. If none is found, accept. If one is found, cross it off
and cross off every other 0 for the remaining input. If the number of 0’s read is odd, reject.

3 Return to head of tape (move left until read t).
4 go to 2.

0 0 0 0 t

→ M decides A!

INF2080 Lecture :: 22nd February 23 / 38



Example 2

A = {02n | n ≥ 0}. Want to construct a TM that recognizes (decides?) it.
M=on input w :

1 replace first 0 with blank symbol t.
2 scan input until you read the next 0. If none is found, accept. If one is found, cross it off

and cross off every other 0 for the remaining input. If the number of 0’s read is odd, reject.

3 Return to head of tape (move left until read t).
4 go to 2.

0 0 0 0 t

→ M decides A!

INF2080 Lecture :: 22nd February 23 / 38



Example 2

A = {02n | n ≥ 0}. Want to construct a TM that recognizes (decides?) it.
M=on input w :

1 replace first 0 with blank symbol t.
2 scan input until you read the next 0. If none is found, accept. If one is found, cross it off

and cross off every other 0 for the remaining input. If the number of 0’s read is odd, reject.
3 Return to head of tape (move left until read t).

4 go to 2.

0 0 0 0 t

→ M decides A!

INF2080 Lecture :: 22nd February 23 / 38



Example 2

A = {02n | n ≥ 0}. Want to construct a TM that recognizes (decides?) it.
M=on input w :

1 replace first 0 with blank symbol t.
2 scan input until you read the next 0. If none is found, accept. If one is found, cross it off

and cross off every other 0 for the remaining input. If the number of 0’s read is odd, reject.
3 Return to head of tape (move left until read t).
4 go to 2.

0 0 0 0 t

→ M decides A!

INF2080 Lecture :: 22nd February 23 / 38



Example 2

A = {02n | n ≥ 0}. Want to construct a TM that recognizes (decides?) it.
M=on input w :

1 replace first 0 with blank symbol t.
2 scan input until you read the next 0. If none is found, accept. If one is found, cross it off

and cross off every other 0 for the remaining input. If the number of 0’s read is odd, reject.
3 Return to head of tape (move left until read t).
4 go to 2.

0 0 0 0 t

→ M decides A!

INF2080 Lecture :: 22nd February 23 / 38



Example 2

A = {02n | n ≥ 0}. Want to construct a TM that recognizes (decides?) it.
M=on input w :

1 replace first 0 with blank symbol t.
2 scan input until you read the next 0. If none is found, accept. If one is found, cross it off

and cross off every other 0 for the remaining input. If the number of 0’s read is odd, reject.
3 Return to head of tape (move left until read t).
4 go to 2.

t 0 0 0 t

→ M decides A!

INF2080 Lecture :: 22nd February 23 / 38



Example 2

A = {02n | n ≥ 0}. Want to construct a TM that recognizes (decides?) it.
M=on input w :

1 replace first 0 with blank symbol t.
2 scan input until you read the next 0. If none is found, accept. If one is found, cross it off

and cross off every other 0 for the remaining input. If the number of 0’s read is odd, reject.
3 Return to head of tape (move left until read t).
4 go to 2.

t x 0 0 t

→ M decides A!

INF2080 Lecture :: 22nd February 23 / 38



Example 2

A = {02n | n ≥ 0}. Want to construct a TM that recognizes (decides?) it.
M=on input w :

1 replace first 0 with blank symbol t.
2 scan input until you read the next 0. If none is found, accept. If one is found, cross it off

and cross off every other 0 for the remaining input. If the number of 0’s read is odd, reject.
3 Return to head of tape (move left until read t).
4 go to 2.

t x 0 0 t

→ M decides A!

INF2080 Lecture :: 22nd February 23 / 38



Example 2

A = {02n | n ≥ 0}. Want to construct a TM that recognizes (decides?) it.
M=on input w :

1 replace first 0 with blank symbol t.
2 scan input until you read the next 0. If none is found, accept. If one is found, cross it off

and cross off every other 0 for the remaining input. If the number of 0’s read is odd, reject.
3 Return to head of tape (move left until read t).
4 go to 2.

t x 0 x t

→ M decides A!

INF2080 Lecture :: 22nd February 23 / 38



Example 2

A = {02n | n ≥ 0}. Want to construct a TM that recognizes (decides?) it.
M=on input w :

1 replace first 0 with blank symbol t.
2 scan input until you read the next 0. If none is found, accept. If one is found, cross it off

and cross off every other 0 for the remaining input. If the number of 0’s read is odd, reject.
3 Return to head of tape (move left until read t).
4 go to 2.

t x 0 x t

→ M decides A!

INF2080 Lecture :: 22nd February 23 / 38



Example 2

A = {02n | n ≥ 0}. Want to construct a TM that recognizes (decides?) it.
M=on input w :

1 replace first 0 with blank symbol t.
2 scan input until you read the next 0. If none is found, accept. If one is found, cross it off

and cross off every other 0 for the remaining input. If the number of 0’s read is odd, reject.
3 Return to head of tape (move left until read t).
4 go to 2.

t x 0 x t

→ M decides A!

INF2080 Lecture :: 22nd February 23 / 38



Example 2

A = {02n | n ≥ 0}. Want to construct a TM that recognizes (decides?) it.
M=on input w :

1 replace first 0 with blank symbol t.
2 scan input until you read the next 0. If none is found, accept. If one is found, cross it off

and cross off every other 0 for the remaining input. If the number of 0’s read is odd, reject.
3 Return to head of tape (move left until read t).
4 go to 2.

t x 0 x t

→ M decides A!

INF2080 Lecture :: 22nd February 23 / 38



Example 2

A = {02n | n ≥ 0}. Want to construct a TM that recognizes (decides?) it.
M=on input w :

1 replace first 0 with blank symbol t.
2 scan input until you read the next 0. If none is found, accept. If one is found, cross it off

and cross off every other 0 for the remaining input. If the number of 0’s read is odd, reject.
3 Return to head of tape (move left until read t).
4 go to 2.

t x 0 x t

→ M decides A!

INF2080 Lecture :: 22nd February 23 / 38



Example 2

A = {02n | n ≥ 0}. Want to construct a TM that recognizes (decides?) it.
M=on input w :

1 replace first 0 with blank symbol t.
2 scan input until you read the next 0. If none is found, accept. If one is found, cross it off

and cross off every other 0 for the remaining input. If the number of 0’s read is odd, reject.
3 Return to head of tape (move left until read t).
4 go to 2.

t x 0 x t

→ M decides A!

INF2080 Lecture :: 22nd February 23 / 38



Example 2

A = {02n | n ≥ 0}. Want to construct a TM that recognizes (decides?) it.
M=on input w :

1 replace first 0 with blank symbol t.
2 scan input until you read the next 0. If none is found, accept. If one is found, cross it off

and cross off every other 0 for the remaining input. If the number of 0’s read is odd, reject.
3 Return to head of tape (move left until read t).
4 go to 2.

t x 0 x t

→ M decides A!

INF2080 Lecture :: 22nd February 23 / 38



Example 2

A = {02n | n ≥ 0}. Want to construct a TM that recognizes (decides?) it.
M=on input w :

1 replace first 0 with blank symbol t.
2 scan input until you read the next 0. If none is found, accept. If one is found, cross it off

and cross off every other 0 for the remaining input. If the number of 0’s read is odd, reject.
3 Return to head of tape (move left until read t).
4 go to 2.

t x x x t

→ M decides A!

INF2080 Lecture :: 22nd February 23 / 38



Example 2

A = {02n | n ≥ 0}. Want to construct a TM that recognizes (decides?) it.
M=on input w :

1 replace first 0 with blank symbol t.
2 scan input until you read the next 0. If none is found, accept. If one is found, cross it off

and cross off every other 0 for the remaining input. If the number of 0’s read is odd, reject.
3 Return to head of tape (move left until read t).
4 go to 2.

t x x x t

→ M decides A!

INF2080 Lecture :: 22nd February 23 / 38



Example 2

A = {02n | n ≥ 0}. Want to construct a TM that recognizes (decides?) it.
M=on input w :

1 replace first 0 with blank symbol t.
2 scan input until you read the next 0. If none is found, accept. If one is found, cross it off

and cross off every other 0 for the remaining input. If the number of 0’s read is odd, reject.
3 Return to head of tape (move left until read t).
4 go to 2.

t x x x t

→ M decides A!

INF2080 Lecture :: 22nd February 23 / 38



Example 2

A = {02n | n ≥ 0}. Want to construct a TM that recognizes (decides?) it.
M=on input w :

1 replace first 0 with blank symbol t.
2 scan input until you read the next 0. If none is found, accept. If one is found, cross it off

and cross off every other 0 for the remaining input. If the number of 0’s read is odd, reject.
3 Return to head of tape (move left until read t).
4 go to 2.

t x x x t

→ M decides A!

INF2080 Lecture :: 22nd February 23 / 38



Example 2

A = {02n | n ≥ 0}. Want to construct a TM that recognizes (decides?) it.
M=on input w :

1 replace first 0 with blank symbol t.
2 scan input until you read the next 0. If none is found, accept. If one is found, cross it off

and cross off every other 0 for the remaining input. If the number of 0’s read is odd, reject.
3 Return to head of tape (move left until read t).
4 go to 2.

t x x x t

→ M decides A!

INF2080 Lecture :: 22nd February 23 / 38



Example 2

A = {02n | n ≥ 0}. Want to construct a TM that recognizes (decides?) it.
M=on input w :

1 replace first 0 with blank symbol t.
2 scan input until you read the next 0. If none is found, accept. If one is found, cross it off

and cross off every other 0 for the remaining input. If the number of 0’s read is odd, reject.
3 Return to head of tape (move left until read t).
4 go to 2.

t x x x t

→ M decides A!

INF2080 Lecture :: 22nd February 23 / 38



Example 2

A = {02n | n ≥ 0}. Want to construct a TM that recognizes (decides?) it.
M=on input w :

1 replace first 0 with blank symbol t.
2 scan input until you read the next 0. If none is found, accept. If one is found, cross it off

and cross off every other 0 for the remaining input. If the number of 0’s read is odd, reject.
3 Return to head of tape (move left until read t).
4 go to 2.

t x x x t

→ M decides A!

INF2080 Lecture :: 22nd February 23 / 38



Example 2

A = {02n | n ≥ 0}. Want to construct a TM that recognizes (decides?) it.
M=on input w :

1 replace first 0 with blank symbol t.
2 scan input until you read the next 0. If none is found, accept. If one is found, cross it off

and cross off every other 0 for the remaining input. If the number of 0’s read is odd, reject.
3 Return to head of tape (move left until read t).
4 go to 2.

t x x x t

→ M decides A!

INF2080 Lecture :: 22nd February 23 / 38



Example 2

A = {02n | n ≥ 0}. Want to construct a TM that recognizes (decides?) it.
M=on input w :

1 replace first 0 with blank symbol t.
2 scan input until you read the next 0. If none is found, accept. If one is found, cross it off

and cross off every other 0 for the remaining input. If the number of 0’s read is odd, reject.
3 Return to head of tape (move left until read t).
4 go to 2.

t x x x t

→ M decides A!

INF2080 Lecture :: 22nd February 23 / 38



Example 2

A = {02n | n ≥ 0}. Want to construct a TM that recognizes (decides?) it.
M=on input w :

1 replace first 0 with blank symbol t.
2 scan input until you read the next 0. If none is found, accept. If one is found, cross it off

and cross off every other 0 for the remaining input. If the number of 0’s read is odd, reject.
3 Return to head of tape (move left until read t).
4 go to 2.

t x x x t

X

→ M decides A!

INF2080 Lecture :: 22nd February 23 / 38



Example 2

A = {02n | n ≥ 0}. Want to construct a TM that recognizes (decides?) it.
M=on input w :

1 replace first 0 with blank symbol t.
2 scan input until you read the next 0. If none is found, accept. If one is found, cross it off

and cross off every other 0 for the remaining input. If the number of 0’s read is odd, reject.
3 Return to head of tape (move left until read t).
4 go to 2.

0 0 0 0 0 t

→ M decides A!

INF2080 Lecture :: 22nd February 23 / 38



Example 2

A = {02n | n ≥ 0}. Want to construct a TM that recognizes (decides?) it.
M=on input w :

1 replace first 0 with blank symbol t.
2 scan input until you read the next 0. If none is found, accept. If one is found, cross it off

and cross off every other 0 for the remaining input. If the number of 0’s read is odd, reject.
3 Return to head of tape (move left until read t).
4 go to 2.

t 0 0 0 0 t

→ M decides A!

INF2080 Lecture :: 22nd February 23 / 38



Example 2

A = {02n | n ≥ 0}. Want to construct a TM that recognizes (decides?) it.
M=on input w :

1 replace first 0 with blank symbol t.
2 scan input until you read the next 0. If none is found, accept. If one is found, cross it off

and cross off every other 0 for the remaining input. If the number of 0’s read is odd, reject.
3 Return to head of tape (move left until read t).
4 go to 2.

t x 0 0 0 t

→ M decides A!

INF2080 Lecture :: 22nd February 23 / 38



Example 2

A = {02n | n ≥ 0}. Want to construct a TM that recognizes (decides?) it.
M=on input w :

1 replace first 0 with blank symbol t.
2 scan input until you read the next 0. If none is found, accept. If one is found, cross it off

and cross off every other 0 for the remaining input. If the number of 0’s read is odd, reject.
3 Return to head of tape (move left until read t).
4 go to 2.

t x 0 0 0 t

→ M decides A!

INF2080 Lecture :: 22nd February 23 / 38



Example 2

A = {02n | n ≥ 0}. Want to construct a TM that recognizes (decides?) it.
M=on input w :

1 replace first 0 with blank symbol t.
2 scan input until you read the next 0. If none is found, accept. If one is found, cross it off

and cross off every other 0 for the remaining input. If the number of 0’s read is odd, reject.
3 Return to head of tape (move left until read t).
4 go to 2.

t x 0 x 0 t

→ M decides A!

INF2080 Lecture :: 22nd February 23 / 38



Example 2

A = {02n | n ≥ 0}. Want to construct a TM that recognizes (decides?) it.
M=on input w :

1 replace first 0 with blank symbol t.
2 scan input until you read the next 0. If none is found, accept. If one is found, cross it off

and cross off every other 0 for the remaining input. If the number of 0’s read is odd, reject.
3 Return to head of tape (move left until read t).
4 go to 2.

t x 0 x 0 t

X

→ M decides A!

INF2080 Lecture :: 22nd February 23 / 38



Example 2

A = {02n | n ≥ 0}. Want to construct a TM that recognizes (decides?) it.
M=on input w :

1 replace first 0 with blank symbol t.
2 scan input until you read the next 0. If none is found, accept. If one is found, cross it off

and cross off every other 0 for the remaining input. If the number of 0’s read is odd, reject.
3 Return to head of tape (move left until read t).
4 go to 2.

→ M decides A!

INF2080 Lecture :: 22nd February 23 / 38



Alternative Turing machines

Not surprisingly, Turing machines are very powerful!

Can we make it even more expressive by, e.g., allowing the machine to also stay put , i.e.,
not move left or right?

Definition
A LRS Turing machine is a Turing machine with a transition function is defined as

δ : Q \ {qaccept , qreject} × Γ→ Q × Γ× {L,R,S}

INF2080 Lecture :: 22nd February 24 / 38



Alternative Turing machines

Not surprisingly, Turing machines are very powerful!
Can we make it even more expressive by, e.g., allowing the machine to also stay put , i.e.,
not move left or right?

Definition
A LRS Turing machine is a Turing machine with a transition function is defined as

δ : Q \ {qaccept , qreject} × Γ→ Q × Γ× {L,R,S}

INF2080 Lecture :: 22nd February 24 / 38



LRS TM

We can model stay put by adding an extra transition: first move left, then right.

For each δ(qi , b) = (qj , c ,S), we can rewrite this as δ(qi , b) = (q′, c , L) and
δ(q′, ∗) = (qj , ∗,R) where ∗ is any tape symbol.
So, equally expressive as a normal TM!

INF2080 Lecture :: 22nd February 25 / 38



LRS TM

We can model stay put by adding an extra transition: first move left, then right.
For each δ(qi , b) = (qj , c ,S), we can rewrite this as δ(qi , b) = (q′, c , L) and
δ(q′, ∗) = (qj , ∗,R) where ∗ is any tape symbol.

So, equally expressive as a normal TM!

INF2080 Lecture :: 22nd February 25 / 38



LRS TM

We can model stay put by adding an extra transition: first move left, then right.
For each δ(qi , b) = (qj , c ,S), we can rewrite this as δ(qi , b) = (q′, c , L) and
δ(q′, ∗) = (qj , ∗,R) where ∗ is any tape symbol.
So, equally expressive as a normal TM!

INF2080 Lecture :: 22nd February 25 / 38



Alternative Turing machines

Can we make it even more expressive by, e.g., adding more tapes?

Definition
A multitape Turing machine is a turing machine with k ≥ 2 tapes, i.e., its transition function is
defined as

δ : Q \ {qaccept , qreject} × Γk → Q × Γk × {L,R}

INF2080 Lecture :: 22nd February 26 / 38



Multitape Turing machines

b a a a b a

a b c

c 1 f g

The machine has access to multiple
tapes
Can this be modelled on a single tape?

Yes!

Idea: encode content of each tape on
one tape, using a symbol (#) to
separate the different tapes
in each tape block (space between two
#), one symbol is marked (represents
where the head is on that tape)

# b a a a ḃ a # a ḃ c # c 1 ḟ g #

INF2080 Lecture :: 22nd February 27 / 38



Multitape Turing machines

b a a a b a

a b c

c 1 f g

The machine has access to multiple
tapes
Can this be modelled on a single tape?
Yes!

Idea: encode content of each tape on
one tape, using a symbol (#) to
separate the different tapes

in each tape block (space between two
#), one symbol is marked (represents
where the head is on that tape)

# b a a a ḃ a # a ḃ c # c 1 ḟ g #

INF2080 Lecture :: 22nd February 27 / 38



Multitape Turing machines

b a a a b a

a b c

c 1 f g

The machine has access to multiple
tapes
Can this be modelled on a single tape?
Yes!
Idea: encode content of each tape on
one tape, using a symbol (#) to
separate the different tapes

in each tape block (space between two
#), one symbol is marked (represents
where the head is on that tape)

# b a a a ḃ a # a ḃ c # c 1 ḟ g #

INF2080 Lecture :: 22nd February 27 / 38



Multitape Turing machines

b a a a b a

a b c

c 1 f g

The machine has access to multiple
tapes
Can this be modelled on a single tape?
Yes!
Idea: encode content of each tape on
one tape, using a symbol (#) to
separate the different tapes

in each tape block (space between two
#), one symbol is marked (represents
where the head is on that tape)

# b a a a ḃ a # a ḃ c # c 1 ḟ g #

INF2080 Lecture :: 22nd February 27 / 38



Multitape Turing machines

b a a a b a

a b c

c 1 f g

The machine has access to multiple
tapes
Can this be modelled on a single tape?
Yes!
Idea: encode content of each tape on
one tape, using a symbol (#) to
separate the different tapes
in each tape block (space between two
#), one symbol is marked (represents
where the head is on that tape)

# b a a a ḃ a # a ḃ c # c 1 ḟ g #

INF2080 Lecture :: 22nd February 27 / 38



Multitape Turing Machines

More formally:
S= on input w :

1 Put S into the following format to model k tapes:

#ẇ1 . . .wn#ṫ#ṫ# . . .#

2 To simulate a single move in the multitape TM, S scans from first # to (k + 1)st # to
determine symbols under the virtual heads (“check which cells are dotted”). S then makes
a second pass over tape and updates cells according to M’s transitions.

3 If S moves one of virtual heads on to #, this means M has moved on to a previously
unread blank symbol on one of the tapes. S then writes blank symbol into that cell, shifts
cell contents from this cell to the rightmost # one to the right. Go to 2.

INF2080 Lecture :: 22nd February 28 / 38



Multitape Turing Machines

More formally:
S= on input w :

1 Put S into the following format to model k tapes:

#ẇ1 . . .wn#ṫ#ṫ# . . .#

2 To simulate a single move in the multitape TM, S scans from first # to (k + 1)st # to
determine symbols under the virtual heads (“check which cells are dotted”). S then makes
a second pass over tape and updates cells according to M’s transitions.

3 If S moves one of virtual heads on to #, this means M has moved on to a previously
unread blank symbol on one of the tapes. S then writes blank symbol into that cell, shifts
cell contents from this cell to the rightmost # one to the right. Go to 2.

INF2080 Lecture :: 22nd February 28 / 38



Multitape Turing Machines

More formally:
S= on input w :

1 Put S into the following format to model k tapes:

#ẇ1 . . .wn#ṫ#ṫ# . . .#

2 To simulate a single move in the multitape TM, S scans from first # to (k + 1)st # to
determine symbols under the virtual heads (“check which cells are dotted”). S then makes
a second pass over tape and updates cells according to M’s transitions.

3 If S moves one of virtual heads on to #, this means M has moved on to a previously
unread blank symbol on one of the tapes. S then writes blank symbol into that cell, shifts
cell contents from this cell to the rightmost # one to the right. Go to 2.

INF2080 Lecture :: 22nd February 28 / 38



Multitape Turing Machines

More formally:
S= on input w :

1 Put S into the following format to model k tapes:

#ẇ1 . . .wn#ṫ#ṫ# . . .#

2 To simulate a single move in the multitape TM, S scans from first # to (k + 1)st # to
determine symbols under the virtual heads (“check which cells are dotted”). S then makes
a second pass over tape and updates cells according to M’s transitions.

3 If S moves one of virtual heads on to #, this means M has moved on to a previously
unread blank symbol on one of the tapes. S then writes blank symbol into that cell, shifts
cell contents from this cell to the rightmost # one to the right. Go to 2.

INF2080 Lecture :: 22nd February 28 / 38



Multitape Turing Machines

b a a t

a b c

c 1 f g

INF2080 Lecture :: 22nd February 29 / 38



Multitape Turing Machines

b a h t

a b c

c 1 f g

INF2080 Lecture :: 22nd February 29 / 38



Multitape Turing Machines

b a h t

a b c

c 1 f g

# b a ȧ # a ḃ c # c 1 ḟ g #

INF2080 Lecture :: 22nd February 29 / 38



Multitape Turing Machines

b a h t

a b c

c 1 f g

# b a h #̇ a ḃ c # c 1 ḟ g #

INF2080 Lecture :: 22nd February 29 / 38



Multitape Turing Machines

b a h t

a b c

c 1 f g

# b a h ṫ a ḃ c # c 1 ḟ g #

INF2080 Lecture :: 22nd February 29 / 38



Multitape Turing Machines

b a h t

a b c

c 1 f g

# b a h ṫ # ḃ c # c 1 ḟ g #

INF2080 Lecture :: 22nd February 29 / 38



Multitape Turing Machines

b a h t

a b c

c 1 f g

# b a h ṫ # a c # c 1 ḟ g #

INF2080 Lecture :: 22nd February 29 / 38



Multitape Turing Machines

b a h t

a b c

c 1 f g

# b a h ṫ # a ḃ # c 1 ḟ g #

INF2080 Lecture :: 22nd February 29 / 38



Multitape Turing Machines

b a h t

a b c

c 1 f g

# b a h ṫ # a ḃ c # c 1 ḟ g #

INF2080 Lecture :: 22nd February 29 / 38



Multitape Turing machiens

Theorem
A language is Turing recognizable [decidable] if and only if some multitape Turing machine
recognizes [decides] it.

INF2080 Lecture :: 22nd February 30 / 38



Turing Machine alternatives

OK...what about nondeterministic Turing machines? Do they let us do anything a deterministic
TM cannot?

Definition
A nondeterministic Turing machine has a transition function of the form

δ : Q \ {qaccept , qreject} × Γ→ P(Q × Γ× {L,R})

INF2080 Lecture :: 22nd February 31 / 38



Turing Machine alternatives

OK...what about nondeterministic Turing machines? Do they let us do anything a deterministic
TM cannot?

Definition
A nondeterministic Turing machine has a transition function of the form

δ : Q \ {qaccept , qreject} × Γ→ P(Q × Γ× {L,R})

INF2080 Lecture :: 22nd February 31 / 38



Nondeterministic TM

We can model a nondeterministic Turing machine N with a deterministic Turing machine M!

Idea: we use a multitape Turing machine (which we’ve seen is equivalent to a deterministic,
single-tape Turing machine).

We use 3 tapes: input tape, simulation tape, address tape
input tape: contains input, will never be altered;
simulation tape: “where the magic happens”...tape simulating current computational
branch in N;
address tape: tells us which choices to make in the computational tree of N

INF2080 Lecture :: 22nd February 32 / 38



Nondeterministic TM

We can model a nondeterministic Turing machine N with a deterministic Turing machine M!
Idea: we use a multitape Turing machine (which we’ve seen is equivalent to a deterministic,
single-tape Turing machine).

We use 3 tapes: input tape, simulation tape, address tape
input tape: contains input, will never be altered;
simulation tape: “where the magic happens”...tape simulating current computational
branch in N;
address tape: tells us which choices to make in the computational tree of N

INF2080 Lecture :: 22nd February 32 / 38



Nondeterministic TM

We can model a nondeterministic Turing machine N with a deterministic Turing machine M!
Idea: we use a multitape Turing machine (which we’ve seen is equivalent to a deterministic,
single-tape Turing machine).

We use 3 tapes: input tape, simulation tape, address tape

input tape: contains input, will never be altered;
simulation tape: “where the magic happens”...tape simulating current computational
branch in N;
address tape: tells us which choices to make in the computational tree of N

INF2080 Lecture :: 22nd February 32 / 38



Nondeterministic TM

We can model a nondeterministic Turing machine N with a deterministic Turing machine M!
Idea: we use a multitape Turing machine (which we’ve seen is equivalent to a deterministic,
single-tape Turing machine).

We use 3 tapes: input tape, simulation tape, address tape
input tape: contains input, will never be altered;

simulation tape: “where the magic happens”...tape simulating current computational
branch in N;
address tape: tells us which choices to make in the computational tree of N

INF2080 Lecture :: 22nd February 32 / 38



Nondeterministic TM

We can model a nondeterministic Turing machine N with a deterministic Turing machine M!
Idea: we use a multitape Turing machine (which we’ve seen is equivalent to a deterministic,
single-tape Turing machine).

We use 3 tapes: input tape, simulation tape, address tape
input tape: contains input, will never be altered;
simulation tape: “where the magic happens”...tape simulating current computational
branch in N;

address tape: tells us which choices to make in the computational tree of N

INF2080 Lecture :: 22nd February 32 / 38



Nondeterministic TM

We can model a nondeterministic Turing machine N with a deterministic Turing machine M!
Idea: we use a multitape Turing machine (which we’ve seen is equivalent to a deterministic,
single-tape Turing machine).

We use 3 tapes: input tape, simulation tape, address tape
input tape: contains input, will never be altered;
simulation tape: “where the magic happens”...tape simulating current computational
branch in N;
address tape: tells us which choices to make in the computational tree of N

INF2080 Lecture :: 22nd February 32 / 38



Nondeterministic TM

More on the address tape:

For each Configuration Ci in N, there are multiple possibilities for following configurations.

Let b be the largest number of possible following configurations in δ.
Then a string over {1, . . . b} represents a sequence of choices; e.g., 143 represents that we
choose Option 1 after start configuration, then Option 4, then Option 3.
To ensure that we do not loop before reaching a possible accept configuration, we parse
the computational tree with breadth first search:
we order the addresses (strings over {1, . . . b}) as follows (lexicographic ordering):
1, 2, . . . , b, 11, 12, 13, . . . , 1b, 21, 22, . . . , bb, 111, . . .

INF2080 Lecture :: 22nd February 33 / 38



Nondeterministic TM

More on the address tape:

For each Configuration Ci in N, there are multiple possibilities for following configurations.
Let b be the largest number of possible following configurations in δ.

Then a string over {1, . . . b} represents a sequence of choices; e.g., 143 represents that we
choose Option 1 after start configuration, then Option 4, then Option 3.
To ensure that we do not loop before reaching a possible accept configuration, we parse
the computational tree with breadth first search:
we order the addresses (strings over {1, . . . b}) as follows (lexicographic ordering):
1, 2, . . . , b, 11, 12, 13, . . . , 1b, 21, 22, . . . , bb, 111, . . .

INF2080 Lecture :: 22nd February 33 / 38



Nondeterministic TM

More on the address tape:

For each Configuration Ci in N, there are multiple possibilities for following configurations.
Let b be the largest number of possible following configurations in δ.
Then a string over {1, . . . b} represents a sequence of choices; e.g., 143 represents that we
choose Option 1 after start configuration, then Option 4, then Option 3.

To ensure that we do not loop before reaching a possible accept configuration, we parse
the computational tree with breadth first search:
we order the addresses (strings over {1, . . . b}) as follows (lexicographic ordering):
1, 2, . . . , b, 11, 12, 13, . . . , 1b, 21, 22, . . . , bb, 111, . . .

INF2080 Lecture :: 22nd February 33 / 38



Nondeterministic TM

More on the address tape:

For each Configuration Ci in N, there are multiple possibilities for following configurations.
Let b be the largest number of possible following configurations in δ.
Then a string over {1, . . . b} represents a sequence of choices; e.g., 143 represents that we
choose Option 1 after start configuration, then Option 4, then Option 3.
To ensure that we do not loop before reaching a possible accept configuration, we parse
the computational tree with breadth first search:

we order the addresses (strings over {1, . . . b}) as follows (lexicographic ordering):
1, 2, . . . , b, 11, 12, 13, . . . , 1b, 21, 22, . . . , bb, 111, . . .

INF2080 Lecture :: 22nd February 33 / 38



Nondeterministic TM

More on the address tape:

For each Configuration Ci in N, there are multiple possibilities for following configurations.
Let b be the largest number of possible following configurations in δ.
Then a string over {1, . . . b} represents a sequence of choices; e.g., 143 represents that we
choose Option 1 after start configuration, then Option 4, then Option 3.
To ensure that we do not loop before reaching a possible accept configuration, we parse
the computational tree with breadth first search:
we order the addresses (strings over {1, . . . b}) as follows (lexicographic ordering):
1, 2, . . . , b, 11, 12, 13, . . . , 1b, 21, 22, . . . , bb, 111, . . .

INF2080 Lecture :: 22nd February 33 / 38



Nondeterministic TM

Given NTM N, we construct a 3-tape TM M as follows:
M=on input w :

1 Initiate input tape with input w , simulation and address tapes are empty.

2 Copy input tape to simulation tape, initialize address tape to ε.
3 Use simulation tape to simulate N with input w . For each computation step, consult next

symbol on address for which option to choose. If address is invalid (number corresponds to
a nonexistent option), or this leads to a rejecting configuration, go to 4. If accepting
configuration, accept.

4 Replace address tape’s contents with next address according to our ordering. Go to 2.

INF2080 Lecture :: 22nd February 34 / 38



Nondeterministic TM

Given NTM N, we construct a 3-tape TM M as follows:
M=on input w :

1 Initiate input tape with input w , simulation and address tapes are empty.
2 Copy input tape to simulation tape, initialize address tape to ε.

3 Use simulation tape to simulate N with input w . For each computation step, consult next
symbol on address for which option to choose. If address is invalid (number corresponds to
a nonexistent option), or this leads to a rejecting configuration, go to 4. If accepting
configuration, accept.

4 Replace address tape’s contents with next address according to our ordering. Go to 2.

INF2080 Lecture :: 22nd February 34 / 38



Nondeterministic TM

Given NTM N, we construct a 3-tape TM M as follows:
M=on input w :

1 Initiate input tape with input w , simulation and address tapes are empty.
2 Copy input tape to simulation tape, initialize address tape to ε.
3 Use simulation tape to simulate N with input w . For each computation step, consult next

symbol on address for which option to choose. If address is invalid (number corresponds to
a nonexistent option), or this leads to a rejecting configuration, go to 4. If accepting
configuration, accept.

4 Replace address tape’s contents with next address according to our ordering. Go to 2.

INF2080 Lecture :: 22nd February 34 / 38



Nondeterministic TM

Given NTM N, we construct a 3-tape TM M as follows:
M=on input w :

1 Initiate input tape with input w , simulation and address tapes are empty.
2 Copy input tape to simulation tape, initialize address tape to ε.
3 Use simulation tape to simulate N with input w . For each computation step, consult next

symbol on address for which option to choose. If address is invalid (number corresponds to
a nonexistent option), or this leads to a rejecting configuration, go to 4. If accepting
configuration, accept.

4 Replace address tape’s contents with next address according to our ordering. Go to 2.

INF2080 Lecture :: 22nd February 34 / 38



Nondeterministic TM

Theorem
A language is Turing recognizable [decidable] if and only if some nondeterministic Turing
machine recognizes [decides] it.

A little extra work needed for decidability result! → Exercise 3.3 in book!

INF2080 Lecture :: 22nd February 35 / 38



Nondeterministic TM

Theorem
A language is Turing recognizable [decidable] if and only if some nondeterministic Turing
machine recognizes [decides] it.

A little extra work needed for decidability result! → Exercise 3.3 in book!

INF2080 Lecture :: 22nd February 35 / 38



Enumerators

State control

Printer

Tape An enumerator is a slightly altered
Turing machine:
It has a working tape and an attached
printer
initializes with an empty working tape,
taking no input
throughout its computation, it can
output strings using the printer
If the enumerator does not halt, it can
potentially output infinitely many strings

INF2080 Lecture :: 22nd February 36 / 38



Enumerators

An enumerator enumerates a word iff at some point it prints it.

Theorem
A language is Turing-recognizable iff there exists an enumerator that enumerates it.

Proof:
Assume we have an enumerator E . We want to construct a Turing machine A that
accepts all the words that E enumerates.

A = On input w
1. Run E . Every time E prints a string, compare to w .

2. If w appears in the output of E , accept.

INF2080 Lecture :: 22nd February 37 / 38



Enumerators

An enumerator enumerates a word iff at some point it prints it.

Theorem
A language is Turing-recognizable iff there exists an enumerator that enumerates it.

Proof:
Assume we have an enumerator E . We want to construct a Turing machine A that
accepts all the words that E enumerates.

A = On input w
1. Run E . Every time E prints a string, compare to w .

2. If w appears in the output of E , accept.

INF2080 Lecture :: 22nd February 37 / 38



Enumerators

An enumerator enumerates a word iff at some point it prints it.

Theorem
A language is Turing-recognizable iff there exists an enumerator that enumerates it.

Proof:
Assume we have an enumerator E . We want to construct a Turing machine A that
accepts all the words that E enumerates.

A = On input w
1. Run E . Every time E prints a string, compare to w .

2. If w appears in the output of E , accept.

INF2080 Lecture :: 22nd February 37 / 38



Enumerators

An enumerator enumerates a word iff at some point it prints it.

Theorem
A language is Turing-recognizable iff there exists an enumerator that enumerates it.

Proof:
Assume we have an enumerator E . We want to construct a Turing machine A that
accepts all the words that E enumerates.

A = On input w
1. Run E . Every time E prints a string, compare to w .

2. If w appears in the output of E , accept.

INF2080 Lecture :: 22nd February 37 / 38



Enumerators

Theorem
A language is Turing-recognizable iff there exists an enumerator that enumerates it.

Proof:
Now, let A be a Turing machine. We want to construct an enumerator that enumerates
L(A).

Le Σ be the alphabet of L(A). Then we can order all strings in Σ∗ (first list all strings of
length 1, then of length 2, etc). Label them s1, s2, s3, . . .. Then we can construct an
enumerator:

E = Ingore input
1. Repeat for i = 1, 2, 3, . . . .
2. Run A on s1, . . . , si for i steps.
3. If any computation accepts, print corresponding sj .

INF2080 Lecture :: 22nd February 38 / 38



Enumerators

Theorem
A language is Turing-recognizable iff there exists an enumerator that enumerates it.

Proof:
Now, let A be a Turing machine. We want to construct an enumerator that enumerates
L(A).
Le Σ be the alphabet of L(A). Then we can order all strings in Σ∗ (first list all strings of
length 1, then of length 2, etc).

Label them s1, s2, s3, . . .. Then we can construct an
enumerator:

E = Ingore input
1. Repeat for i = 1, 2, 3, . . . .
2. Run A on s1, . . . , si for i steps.
3. If any computation accepts, print corresponding sj .

INF2080 Lecture :: 22nd February 38 / 38



Enumerators

Theorem
A language is Turing-recognizable iff there exists an enumerator that enumerates it.

Proof:
Now, let A be a Turing machine. We want to construct an enumerator that enumerates
L(A).
Le Σ be the alphabet of L(A). Then we can order all strings in Σ∗ (first list all strings of
length 1, then of length 2, etc). Label them s1, s2, s3, . . .. Then we can construct an
enumerator:

E = Ingore input
1. Repeat for i = 1, 2, 3, . . . .
2. Run A on s1, . . . , si for i steps.
3. If any computation accepts, print corresponding sj .

INF2080 Lecture :: 22nd February 38 / 38


