INF2080
Turing Machines

INF2080

C

Daniel Lupp

Universitetet i Oslo

22nd February 2018

Department of
Informatics

University of
Oslo

Lecture :: 22nd February 1/38

So far

So far, our computational models had limited memory:

INF2080 Lecture :: 22nd February 2 /38

So far

So far, our computational models had limited memory:

e DFA/NFA: finite memory represented in the states;

INF2080 Lecture :: 22nd February 2 /38

So far

So far, our computational models had limited memory:

e DFA/NFA: finite memory represented in the states; accepted regular languages

INF2080 Lecture :: 22nd February 2 /38

So far

So far, our computational models had limited memory:
e DFA/NFA: finite memory represented in the states; accepted regular languages

@ PDA: finite memory in states, restricted infinite memory in a stack;

INF2080 Lecture :: 22nd February 2 /38

So far

So far, our computational models had limited memory:
e DFA/NFA: finite memory represented in the states; accepted regular languages

@ PDA: finite memory in states, restricted infinite memory in a stack; accepted context-free
languages

INF2080 Lecture :: 22nd February 2 /38

So far

So far, our computational models had limited memory:
e DFA/NFA: finite memory represented in the states; accepted regular languages

@ PDA: finite memory in states, restricted infinite memory in a stack; accepted context-free
languages

Last week, we saw the pumping lemma for context-free languages

INF2080 Lecture :: 22nd February 2 /38

So far

So far, our computational models had limited memory:
e DFA/NFA: finite memory represented in the states; accepted regular languages

@ PDA: finite memory in states, restricted infinite memory in a stack; accepted context-free
languages

Last week, we saw the pumping lemma for context-free languages
Saw some examples of languages that PDA's do not cover!

INF2080 Lecture :: 22nd February 2 /38

__
Turing Machiens

Today: Introduce computational model underlying most of modern computer science

INF2080 Lecture :: 22nd February 3 /38

__
Turing Machiens

Today: Introduce computational model underlying most of modern computer science

Finite state machine

A Turing machine is a finite state machine that has access to an infinite tape

INF2080 Lecture :: 22nd February 3 /38

o
FA vs. TM

Properties of the automata we've seen:

INF2080 Lecture :: 22nd February 4 /38

o
FA vs. TM

Properties of the automata we've seen:

@ could only read input once (and never move backwards over the input)

INF2080 Lecture :: 22nd February 4 /38

o
FA vs. TM

Properties of the automata we've seen:
@ could only read input once (and never move backwards over the input)

@ would only accept after having read the entire input (reject if no computational branches
accept)

INF2080 Lecture :: 22nd February 4 /38

o
FA vs. TM

Properties of the automata we've seen:
@ could only read input once (and never move backwards over the input)

@ would only accept after having read the entire input (reject if no computational branches
accept)

@ either finite memory (DFA), or restricted access to memory (PDA)

INF2080 Lecture :: 22nd February 4 /38

o
FA vs. TM

Properties of the automata we've seen:
@ could only read input once (and never move backwards over the input)

@ would only accept after having read the entire input (reject if no computational branches
accept)

@ either finite memory (DFA), or restricted access to memory (PDA)

Turing machines are a bit different:

INF2080 Lecture :: 22nd February 4 /38

o
FA vs. TM

Properties of the automata we've seen:
@ could only read input once (and never move backwards over the input)

@ would only accept after having read the entire input (reject if no computational branches
accept)

@ either finite memory (DFA), or restricted access to memory (PDA)
Turing machines are a bit different:

@ can move left and right across it's tape

INF2080 Lecture :: 22nd February 4 /38

o
FA vs. TM

Properties of the automata we've seen:
@ could only read input once (and never move backwards over the input)

@ would only accept after having read the entire input (reject if no computational branches
accept)

@ either finite memory (DFA), or restricted access to memory (PDA)
Turing machines are a bit different:
@ can move left and right across it's tape

e if enters accept/reject state, immediately stops computing

INF2080 Lecture :: 22nd February 4 /38

o
FA vs. TM

Properties of the automata we've seen:
@ could only read input once (and never move backwards over the input)

@ would only accept after having read the entire input (reject if no computational branches
accept)

@ either finite memory (DFA), or restricted access to memory (PDA)
Turing machines are a bit different:

@ can move left and right across it's tape

e if enters accept/reject state, immediately stops computing

@ unrestricted access to infinite memory

INF2080 Lecture :: 22nd February 4 /38

__
Turing Machines

A Turing machine starts in the following configuration

qdo

wy |we |wW3 |- | Wp|LJ

INF2080 Lecture :: 22nd February 5/ 38

__
Turing Machines

A Turing machine starts in the following configuration

qdo

wy |we |wW3 |- | Wp|LJ

@ (o is the start state

INF2080 Lecture :: 22nd February 5/ 38

__
Turing Machines

A Turing machine starts in the following configuration

qdo

wy |we |wW3 |- | Wp|LJ

@ (o is the start state

@ wy - - w, is the input string

INF2080 Lecture :: 22nd February 5/ 38

__
Turing Machines

A Turing machine starts in the following configuration

qdo

wy |we |wW3 |- | Wp|LJ

@ qo is the start state
@ wy - - w, is the input string

@ Ll is the blank symbol: represents that the cell on tape does not contain any value

INF2080 Lecture :: 22nd February 5/ 38

__
Turing Machines

@ Given current state and tape symbol, the Turing machine can write into the current cell,
and move left/right

INF2080 Lecture :: 22nd February 6 /38

__
Turing Machines

@ Given current state and tape symbol, the Turing machine can write into the current cell,
and move left/right

@ Say that if M is in state g and reads w» it writes b and goes to the right:

INF2080 Lecture :: 22nd February 6 /38

__
Turing Machines

@ Given current state and tape symbol, the Turing machine can write into the current cell,
and move left/right

@ Say that if M is in state g and reads w» it writes b and goes to the right:

wy|wp |ws |- | Wp|LJ

INF2080 Lecture :: 22nd February 6 /38

__
Turing Machines

@ Given current state and tape symbol, the Turing machine can write into the current cell,
and move left/right

@ Say that if M is in state g and reads w» it writes b and goes to the right:

q

Wil b |W3|---|Wn| U

INF2080 Lecture :: 22nd February 6 /38

__
Turing Machines

@ Given current state and tape symbol, the Turing machine can write into the current cell,
and move left/right

INF2080 Lecture :: 22nd February 7/ 38

__
Turing Machines

@ Given current state and tape symbol, the Turing machine can write into the current cell,
and move left/right

@ Say that if M is in state g and reads w; it writes b and goes to the left:

INF2080 Lecture :: 22nd February 7/ 38

__
Turing Machines

@ Given current state and tape symbol, the Turing machine can write into the current cell,
and move left/right

@ Say that if M is in state g and reads w; it writes b and goes to the left:

wi | wo | ws |- Wy L

INF2080 Lecture :: 22nd February 7/ 38

__
Turing Machines

@ Given current state and tape symbol, the Turing machine can write into the current cell,
and move left/right
@ Say that if M is in state g and reads w; it writes b and goes to the left:

wi | wo | ws |- Wy L

@ The machine is at the leftmost cell on the tape!

INF2080 Lecture :: 22nd February 7/ 38

__
Turing Machines

@ Given current state and tape symbol, the Turing machine can write into the current cell,
and move left/right

@ Say that if M is in state g and reads w; it writes b and goes to the left:

wi | wo | ws |- Wy L

@ The machine is at the leftmost cell on the tape!

@ The machine cannot move left; instead, it performs the write operation and stays in the
same cell

INF2080 Lecture :: 22nd February 7/ 38

__
Turing Machines

@ Given current state and tape symbol, the Turing machine can write into the current cell,
and move left/right

@ Say that if M is in state g and reads w; it writes b and goes to the left:

q

Y

b |W2 w3 || Wp| LI

@ The machine is at the leftmost cell on the tapel!

@ The machine cannot move left; instead, it performs the write operation and stays in the
same cell

INF2080 Lecture :: 22nd February 7/ 38

__
Turing Machines

Recall language {ww | w € {0,1}*}. Last week we used the pumping lemma to show this is
not context-free.

INF2080 Lecture :: 22nd February 8 /38

__
Turing Machines

Recall language {ww | w € {0,1}*}. Last week we used the pumping lemma to show this is
not context-free. Let's try to describe a Turing machine that accepts the similar language
{w#w | w € {0,1}*}. How would the tape operations look?

INF2080 Lecture :: 22nd February 8 /38

__
Turing Machines

Recall language {ww | w € {0,1}*}. Last week we used the pumping lemma to show this is
not context-free. Let's try to describe a Turing machine that accepts the similar language
{w#w | w € {0,1}*}. How would the tape operations look?

@ First input symbol must be compared with the first symbol occuring after #.

INF2080 Lecture :: 22nd February 8 /38

__
Turing Machines

Recall language {ww | w € {0,1}*}. Last week we used the pumping lemma to show this is
not context-free. Let's try to describe a Turing machine that accepts the similar language
{w#w | w € {0,1}*}. How would the tape operations look?

@ First input symbol must be compared with the first symbol occuring after #.

@ Each following symbol (before and after #) must be compared as well

INF2080 Lecture :: 22nd February 8 /38

__
Turing Machines

Recall language {ww | w € {0,1}*}. Last week we used the pumping lemma to show this is
not context-free. Let's try to describe a Turing machine that accepts the similar language
{w#w | w € {0,1}*}. How would the tape operations look?

@ First input symbol must be compared with the first symbol occuring after #.

@ Each following symbol (before and after #) must be compared as well

@ If the same symbols occur on both sides, accept. Else, reject.

INF2080 Lecture :: 22nd February 8 /38

-
Example

L={w#w|we{0,1}*}:
Intuitively, we zig-zag across the tape:

INF2080 Lecture :: 22nd February 9 /38

-
Example

L={w#w|we{0,1}*}:
Intuitively, we zig-zag across the tape:

@ Cross off first symbol, move to first symbol after # and cross off if the same symbol occurs

INF2080 Lecture :: 22nd February 9 /38

-
Example

L={w#w|we{0,1}*}:
Intuitively, we zig-zag across the tape:
@ Cross off first symbol, move to first symbol after # and cross off if the same symbol occurs

@ Move back to beginning of tape

INF2080 Lecture :: 22nd February 9 /38

Example

L={w#w|we{0,1}*}:
Intuitively, we zig-zag across the tape:

@ Cross off first symbol, move to first symbol after # and cross off if the same symbol occurs
@ Move back to beginning of tape

@ If no non-crossed off symbols remain, move past # and check if any non-crossed off
symbols remain on that side. If yes, reject. If no, accept.

INF2080 Lecture :: 22nd February 9 /38

-
Example

L={w#w|we{0,1}*}:

Intuitively, we zig-zag across the tape:
@ Cross off first symbol, move to first symbol after # and cross off if the same symbol occurs
@ Move back to beginning of tape

@ If no non-crossed off symbols remain, move past # and check if any non-crossed off
symbols remain on that side. If yes, reject. If no, accept.

Cross off first non-crossed off symbol, move to first non-crossed off symbol after #

INF2080 Lecture :: 22nd February 9 /38

-
Example

L={w#w|we{0,1}*}:
Intuitively, we zig-zag across the tape:

INF2080

Cross off first symbol, move to first symbol after # and cross off if the same symbol occurs
Move back to beginning of tape

If no non-crossed off symbols remain, move past # and check if any non-crossed off
symbols remain on that side. If yes, reject. If no, accept.

Cross off first non-crossed off symbol, move to first non-crossed off symbol after #

If no non-crossed off symbols after # remain or next symbol is not the same, reject. Else,
cross off if equal to the last crossed off symbol

Lecture :: 22nd February 9 /38

-
Example

INF2080 Lecture :: 22nd February 10 / 38

-
Example

INF2080 Lecture :: 22nd February 10 / 38

-
Example

INF2080 Lecture :: 22nd February 10 / 38

-
Example

INF2080 Lecture :: 22nd February 10 / 38

-
Example

INF2080 Lecture :: 22nd February 10 / 38

-
Example

INF2080 Lecture :: 22nd February 10 / 38

-
Example

INF2080 Lecture :: 22nd February 10 / 38

-
Example

INF2080 Lecture :: 22nd February 10 / 38

-
Example

INF2080 Lecture :: 22nd February 10 / 38

-
Example

INF2080 Lecture :: 22nd February 10 / 38

-
Example

INF2080 Lecture :: 22nd February 10 / 38

-
Example

INF2080 Lecture :: 22nd February 10 / 38

-
Example

INF2080 Lecture :: 22nd February 10 / 38

-
Example

INF2080 Lecture :: 22nd February 10 / 38

-
Example

INF2080 Lecture :: 22nd February 10 / 38

-
Example

INF2080 Lecture :: 22nd February 10 / 38

-
Example

INF2080 Lecture :: 22nd February 10 / 38

-
Example

INF2080 Lecture :: 22nd February 10 / 38

-
Example

INF2080 Lecture :: 22nd February 10 / 38

-
Example

INF2080 Lecture :: 22nd February 10 / 38

-
Example

INF2080 Lecture :: 22nd February 10 / 38

Example
—
X|x|x|#|x|x|1|U
INF2080 Lecture :: 22nd February 10 / 38

Example
—
X|X|x|#|x|x|1|U
INF2080 Lecture :: 22nd February 10 / 38

Example
—
X|x|x|#|x|x|1|U
INF2080 Lecture :: 22nd February 10 / 38

Example
-—
X|X|x|#|x|x|1|U
INF2080 Lecture :: 22nd February 10 / 38

-
Example

INF2080 Lecture :: 22nd February 10 / 38

-
Example

INF2080 Lecture :: 22nd February 10 / 38

-
Example

INF2080 Lecture :: 22nd February 10 / 38

-
Example

INF2080 Lecture :: 22nd February 10 / 38

-
Example

INF2080 Lecture :: 22nd February 10 / 38

-
Example

INF2080 Lecture :: 22nd February 10 / 38

-
Example

INF2080 Lecture :: 22nd February 10 / 38

-
Example

INF2080 Lecture :: 22nd February 10 / 38

-
Example

INF2080 Lecture :: 22nd February 10 / 38

-
Example

INF2080 Lecture :: 22nd February 10 / 38

-
Example

INF2080 Lecture :: 22nd February 10 / 38

-
Example

INF2080 Lecture :: 22nd February 10 / 38

-
Example

C— <]

INF2080 Lecture :: 22nd February 10 / 38

-
“Move back to beginning”

@ We used “move back to beginning of tape”....but how to implement this?

INF2080 Lecture :: 22nd February 11 / 38

-
“Move back to beginning”

@ We used “move back to beginning of tape”....but how to implement this?

@ A Turing machine's head’s view:

INF2080 Lecture :: 22nd February 11 / 38

-
“Move back to beginning”

@ We used “move back to beginning of tape”....but how to implement this?

@ It cannot see anything outside of its current cell

@ A Turing machine's head’s view:

INF2080 Lecture :: 22nd February 11 / 38

-
“Move back to beginning”

@ We used “move back to beginning of tape”....but how to implement this?

@ It cannot see anything outside of its current cell

@ A Turing machine's head’s view:

o If after moving the same symbol appears, how does the machine know whether it actually
moved or not?

INF2080 Lecture :: 22nd February 11 / 38

-
“Move back to beginning”

We used “move back to beginning of tape”....but how to implement this?

It cannot see anything outside of its current cell

A Turing machine's head's view:

If after moving the same symbol appears, how does the machine know whether it actually
moved or not?

Multiple options:

write a special symbol at the beginning to encode the beginning of the tape

INF2080 Lecture :: 22nd February 11 / 38

-
“Move back to beginning”

Other option:

@ when looking for beginning of tape: replace current cell contents x with a new symbol x
to mark where the head was. If after moving left it reads x, it knows it's at the beginning
of the tape.

INF2080 Lecture :: 22nd February 12 / 38

“Move back to beginning”

Other option:

@ when looking for beginning of tape: replace current cell contents x with a new symbol x
to mark where the head was. If after moving left it reads x, it knows it's at the beginning
of the tape.

o Otherwise, go right, replace x with x, go left, repeat.

INF2080 Lecture :: 22nd February 12 / 38

“Move back to beginning”

Other option:

@ when looking for beginning of tape: replace current cell contents x with a new symbol x
to mark where the head was. If after moving left it reads x, it knows it's at the beginning
of the tape.

e Otherwise, go right, replace x with x, go left, repeat.

T

X|X|X

INF2080 Lecture :: 22nd February 12 / 38

“Move back to beginning”

Other option:

@ when looking for beginning of tape: replace current cell contents x with a new symbol x
to mark where the head was. If after moving left it reads x, it knows it's at the beginning
of the tape.

e Otherwise, go right, replace x with x, go left, repeat.

T

x| x| x

INF2080 Lecture :: 22nd February 12 / 38

“Move back to beginning”

Other option:

@ when looking for beginning of tape: replace current cell contents x with a new symbol x
to mark where the head was. If after moving left it reads x, it knows it's at the beginning
of the tape.

e Otherwise, go right, replace x with x, go left, repeat.

T

x| x|x

INF2080 Lecture :: 22nd February 12 / 38

“Move back to beginning”

Other option:

@ when looking for beginning of tape: replace current cell contents x with a new symbol x
to mark where the head was. If after moving left it reads x, it knows it's at the beginning
of the tape.

e Otherwise, go right, replace x with x, go left, repeat.

T

X | X|X

INF2080 Lecture :: 22nd February 12 / 38

“Move back to beginning”

Other option:

@ when looking for beginning of tape: replace current cell contents x with a new symbol x
to mark where the head was. If after moving left it reads x, it knows it's at the beginning
of the tape.

e Otherwise, go right, replace x with x, go left, repeat.

T

X | x|x

INF2080 Lecture :: 22nd February 12 / 38

“Move back to beginning”

Other option:

@ when looking for beginning of tape: replace current cell contents x with a new symbol x
to mark where the head was. If after moving left it reads x, it knows it's at the beginning
of the tape.

e Otherwise, go right, replace x with x, go left, repeat.

T

X | x|x

INF2080 Lecture :: 22nd February 12 / 38

“Move back to beginning”

Other option:

@ when looking for beginning of tape: replace current cell contents x with a new symbol x
to mark where the head was. If after moving left it reads x, it knows it's at the beginning
of the tape.

e Otherwise, go right, replace x with x, go left, repeat.

T

X | X|X

INF2080 Lecture :: 22nd February 12 / 38

“Move back to beginning”

Other option:

@ when looking for beginning of tape: replace current cell contents x with a new symbol x
to mark where the head was. If after moving left it reads x, it knows it's at the beginning
of the tape.

e Otherwise, go right, replace x with x, go left, repeat.

-

x| x|x

INF2080 Lecture :: 22nd February 12 / 38

“Move back to beginning”

Other option:

@ when looking for beginning of tape: replace current cell contents x with a new symbol x
to mark where the head was. If after moving left it reads x, it knows it's at the beginning
of the tape.

e Otherwise, go right, replace x with x, go left, repeat.

T

X | X|X

INF2080 Lecture :: 22nd February 12 / 38

-
Example

@ This was a low-level description of a Turing machine, describing in words how the tape
operates:

INF2080 Lecture :: 22nd February 13 / 38

-
Example

@ This was a low-level description of a Turing machine, describing in words how the tape
operates:
M= on input w:
© Zig-zag across the tape to corresponding positions on either side of #, checking whether
these positions contain the same symbol. If they do not, reject. Cross off corresponding
symbols if equal
@ When all symbols before # have been crossed off, scan symbols after # to see if any
uncrossed symbols remain. If yes, reject, if no, accept.

INF2080 Lecture :: 22nd February 13 / 38

Example

@ This was a low-level description of a Turing machine, describing in words how the tape
operates:
M= on input w:
© Zig-zag across the tape to corresponding positions on either side of #, checking whether

these positions contain the same symbol. If they do not, reject. Cross off corresponding
symbols if equal

@ When all symbols before # have been crossed off, scan symbols after # to see if any
uncrossed symbols remain. If yes, reject, if no, accept.

e High-level: “Compare words before and after # and accept if equal, reject if not equal”

INF2080 Lecture :: 22nd February 13 / 38

Example

@ This was a low-level description of a Turing machine, describing in words how the tape
operates:
M= on input w:
© Zig-zag across the tape to corresponding positions on either side of #, checking whether

these positions contain the same symbol. If they do not, reject. Cross off corresponding
symbols if equal

@ When all symbols before # have been crossed off, scan symbols after # to see if any
uncrossed symbols remain. If yes, reject, if no, accept.

e High-level: “Compare words before and after # and accept if equal, reject if not equal”

@ Implementation level: giving the formal definition of a Turing machine, with all states and
transitions (we'll go through some examples tomorrow)

INF2080 Lecture :: 22nd February 13 / 38

-
TM—A formal definition

Definition

A Turing machine is a 7-tuple (Q, X, T, 8, qo, Gaccept, Greject) Where Q, X, T are finite sets and

INF2080 Lecture :: 22nd February 14 / 38

-
TM—A formal definition

Definition
A Turing machine is a 7-tuple (Q, X, T, 8, qo, Gaccept, Greject) Where Q, X, T are finite sets and
@ Q is the set of states,

INF2080 Lecture :: 22nd February 14 / 38

-
TM—A formal definition

Definition

A Turing machine is a 7-tuple (Q, X, T, 8, qo, Gaccept, Greject) Where Q, X, T are finite sets and
O Q is the set of states,
© X is the input alphabet not containing the blank symbol LI

INF2080 Lecture :: 22nd February 14 / 38

-
TM—A formal definition

Definition

A Turing machine is a 7-tuple (Q, X, T, 8, qo, Gaccept, Greject) Where Q, X, T are finite sets and
O Q is the set of states,
© X is the input alphabet not containing the blank symbol LI
© I is the tape alphabet, where LI €I and X C T,

INF2080 Lecture :: 22nd February 14 / 38

-
TM—A formal definition

Definition
A Turing machine is a 7-tuple (Q, X, T, 8, qo, Gaccept, Greject) Where Q, X, T are finite sets and
O Q is the set of states,
© X is the input alphabet not containing the blank symbol LI
© I is the tape alphabet, where LI €I and X C T,
Q 0: Q\ {Gaccepts Greject} X I = Q x I x {L, R} is the transition fucntion,

INF2080 Lecture :: 22nd February 14 / 38

-
TM—A formal definition

Definition
A Turing machine is a 7-tuple (Q, X, T, 8, qo, Gaccept, Greject) Where Q, X, T are finite sets and
O Q is the set of states,
© X is the input alphabet not containing the blank symbol LI
© I is the tape alphabet, where LI €I and X C T,
Q 0: Q\ {Gaccepts Greject} X I = Q x I x {L, R} is the transition fucntion,
Q@ o € Q is the start state,
Q Guccept € Q is the accept state, and
@ Greject € Q is the reject state.

INF2080 Lecture :: 22nd February 14 / 38

-
Configurations

During each computation step, a TM is in a specific configuration:
@ current tape contents uv;
@ current head position;

@ current state q.

INF2080 Lecture :: 22nd February 15 / 38

-
Configurations

During each computation step, a TM is in a specific configuration:
@ current tape contents uv;
@ current head position;
@ current state q.

Notation: ugv encodes that the machine is in state g, pointing at the first symbol in v.
Example:

Notation: xxx#qgxx1

INF2080 Lecture :: 22nd February 15 / 38

-
Configurations

A configuration Cy yields C, if TM can legally go from C; to G, in a single step:
@ uagq;bv yields ugjacv if §(q;, b) = (qj, c, L).

INF2080 Lecture :: 22nd February 16 / 38

-
Configurations

A configuration Cy yields C, if TM can legally go from C; to G, in a single step:
@ uagq;bv yields ugjacv if §(q;, b) = (qj, c, L).

ai

INF2080 Lecture :: 22nd February 16 / 38

-
Configurations

A configuration Cy yields C, if TM can legally go from C; to G, in a single step:
@ uagq;bv yields ugjacv if §(q;, b) = (qj, c, L).

gj

INF2080 Lecture :: 22nd February 16 / 38

-
Configurations

A configuration Cy yields C, if TM can legally go from C; to G, in a single step:
@ uagq;bv yields vacqgjv if §(qj, b) = (qj, ¢, R).

INF2080 Lecture :: 22nd February 17 / 38

-
Configurations

A configuration Cy yields C, if TM can legally go from C; to G, in a single step:
@ uagq;bv yields vacqgjv if §(qj, b) = (qj, ¢, R).

ai

INF2080 Lecture :: 22nd February 17 / 38

-
Configurations

A configuration Cy yields C, if TM can legally go from C; to G, in a single step:
@ uagq;bv yields vacqgjv if §(qj, b) = (qj, ¢, R).

qj

7

ajc|wv

INF2080 Lecture :: 22nd February 17 / 38

-
Configurations

If the head is at one end of the tape:

o If the head is at the leftmost side and it moves left:

gibv yields gjev if §(qi, b) = (g, ¢, L).

INF2080 Lecture :: 22nd February 18 / 38

-
Configurations

If the head is at one end of the tape:

o If the head is at the leftmost side and it moves left:

bl

gibv yields gjev if §(qi, b) = (g, ¢, L).

INF2080 Lecture :: 22nd February 18 / 38

-
Configurations

If the head is at one end of the tape:

o If the head is at the leftmost side and it moves left:

gibv yields gjev if §(qi, b) = (g, ¢, L).

INF2080 Lecture :: 22nd February 18 / 38

-
Configurations

If the head is at one end of the tape:

o If the head is at the leftmost side and it moves left:

c|vi

qgibv yields gjcv if 0(q;, b) = (gj, ¢, L).

o If the head is at the rightmost side and it moves right: uq;b yields ucq; = ucq;Ll if
5(qi7 b) = (q17 G, R)

INF2080 Lecture :: 22nd February 18 / 38

-
Configurations

If the head is at one end of the tape:

o If the head is at the leftmost side and it moves left:

c|vi

qgibv yields gjcv if 6(q;, b) = (gj, ¢, L).

o If the head is at the rightmost side and it moves right: uq;b yields ucq; = ucq;Ll if

—_—

blul---

(5(q,-, b) = (qj, C, R).

INF2080 Lecture :: 22nd February 18 / 38

-
Configurations

If the head is at one end of the tape:

o If the head is at the leftmost side and it moves left:

c|vi

qgibv yields gjcv if 6(q;, b) = (gj, ¢, L).

o If the head is at the rightmost side and it moves right: uq;b yields ucq; = ucq;Ll if
qj

(5(q,-, b) = (qj, C, R).

INF2080 Lecture :: 22nd February 18 / 38

-
Configurations

o The starting configuration is qow

INF2080 Lecture :: 22nd February 19 / 38

-
Configurations

o The starting configuration is qow

@ An accepting configuration is a configuration where the state is gaccept

INF2080 Lecture :: 22nd February 19 / 38

-
Configurations

o The starting configuration is qow
@ An accepting configuration is a configuration where the state is gaccept

@ A rejecting configuration is a configuration where the state is greject

INF2080 Lecture :: 22nd February 19 / 38

-
Configurations

o The starting configuration is qow
@ An accepting configuration is a configuration where the state is gaccept
@ A rejecting configuration is a configuration where the state is greject

@ A halting configuration is an accepting or a rejecting configuration

INF2080 Lecture :: 22nd February 19 / 38

-
Configurations

o The starting configuration is qow

@ An accepting configuration is a configuration where the state is gaccept

@ A rejecting configuration is a configuration where the state is greject

@ A halting configuration is an accepting or a rejecting configuration
Then a Turing machine M accepts a word w if there exists a sequence of configurations
Ci, ..., Cx such that

© (; is the start configuration of M on input w,

INF2080 Lecture :: 22nd February 19 / 38

-
Configurations

o The starting configuration is qow

@ An accepting configuration is a configuration where the state is gaccept

@ A rejecting configuration is a configuration where the state is greject

@ A halting configuration is an accepting or a rejecting configuration
Then a Turing machine M accepts a word w if there exists a sequence of configurations
Ci, ..., Cx such that

© (; is the start configuration of M on input w,

@ each G yields Ciy1,

INF2080 Lecture :: 22nd February 19 / 38

-
Configurations

o The starting configuration is qow

@ An accepting configuration is a configuration where the state is gaccept

@ A rejecting configuration is a configuration where the state is greject

@ A halting configuration is an accepting or a rejecting configuration
Then a Turing machine M accepts a word w if there exists a sequence of configurations
Ci, ..., Cx such that

© (; is the start configuration of M on input w,

@ each (; yields Ciy1, and

© C is an accepting configuration.

INF2080 Lecture :: 22nd February 19 / 38

__
Languages

For a Turing machine M, the set of words it accepts is the language of M (denoted L(M)) or
the language recognized by M.

INF2080 Lecture :: 22nd February 20 / 38

Languages

For a Turing machine M, the set of words it accepts is the language of M (denoted L(M)) or
the language recognized by M.

Definition

A language is called Turing-recognizable [recursively enumerable] if some Turing machine
recognizes it.

INF2080 Lecture :: 22nd February 20 / 38

Languages

For a Turing machine M, the set of words it accepts is the language of M (denoted L(M)) or
the language recognized by M.

Definition

A language is called Turing-recognizable [recursively enumerable] if some Turing machine
recognizes it.

@ A Turing machine can either halt (accept, reject) on a given input, or loop (never accept
or reject...for example: head always moves to the right, never enters gaccept OF Greject)-

INF2080 Lecture :: 22nd February 20 / 38

__
Languages
For a Turing machine M, the set of words it accepts is the language of M (denoted L(M)) or
the language recognized by M.
Definition

A language is called Turing-recognizable [recursively enumerable] if some Turing machine
recognizes it.

@ A Turing machine can either halt (accept, reject) on a given input, or loop (never accept
or reject...for example: head always moves to the right, never enters gaccept OF Greject)-

@ A Turing machine decides a language A if it accepts all words w € A and rejects all words
w ¢ A.

INF2080 Lecture :: 22nd February 20 / 38

__
Languages
For a Turing machine M, the set of words it accepts is the language of M (denoted L(M)) or
the language recognized by M.
Definition

A language is called Turing-recognizable [recursively enumerable] if some Turing machine
recognizes it.

@ A Turing machine can either halt (accept, reject) on a given input, or loop (never accept
or reject...for example: head always moves to the right, never enters gaccept OF Greject)-

@ A Turing machine decides a language A if it accepts all words w € A and rejects all words
w ¢ A. — it halts on all inputs!

INF2080 Lecture :: 22nd February 20 / 38

__
Languages
For a Turing machine M, the set of words it accepts is the language of M (denoted L(M)) or
the language recognized by M.
Definition

A language is called Turing-recognizable [recursively enumerable] if some Turing machine
recognizes it.

@ A Turing machine can either halt (accept, reject) on a given input, or loop (never accept
or reject...for example: head always moves to the right, never enters gaccept OF Greject)-

@ A Turing machine decides a language A if it accepts all words w € A and rejects all words
w ¢ A. — it halts on all inputs!

Definition

A language is Turing-decidable [decidable, recursive] if there is a Turing machine that decides it.J

INF2080 Lecture :: 22nd February 20 / 38

-
Example

Previous example of language {w#w | w € {0,1}*} was recognized by machine:
M= on input w:

@ Zig-zag across the tape to corresponding positions on either side of #, checking whether
these positions contain the same symbol. If they do not, reject. Cross off corresponding
symbols if equal

@ When all symbols before # have been crossed off, scan symbols after # to see if any
uncrossed symbols remain. If yes, reject, if no, accept.

INF2080 Lecture :: 22nd February 21 / 38

Example

Previous example of language {w#w | w € {0,1}*} was recognized by machine:
M= on input w:
@ Zig-zag across the tape to corresponding positions on either side of #, checking whether

these positions contain the same symbol. If they do not, reject. Cross off corresponding
symbols if equal

@ When all symbols before # have been crossed off, scan symbols after # to see if any
uncrossed symbols remain. If yes, reject, if no, accept.
It was, in fact, decided by M!

INF2080 Lecture :: 22nd February 21 / 38

__
Example 2

A= {0%" | n>0}. Want to construct a TM that recognizes (decides?) it.

INF2080 Lecture :: 22nd February 22 / 38

__
Example 2

A= {0%" | n>0}. Want to construct a TM that recognizes (decides?) it.
e words: 0, 00, 0000, 00000000, etc.

INF2080 Lecture :: 22nd February 22 / 38

__
Example 2

A= {0%" | n>0}. Want to construct a TM that recognizes (decides?) it.
e words: 0, 00, 0000, 00000000, etc.
@ all words except 0 have length divisble by 0.

INF2080 Lecture :: 22nd February 22 / 38

__
Example 2

A ={0%"| n>0}. Want to construct a TM that recognizes (decides?) it.

e words: 0, 00, 0000, 00000000, etc.

@ all words except 0 have length divisble by 0.

@ idea: if length=1, accept (if input symbol is correct), otherwise divide length by 2. Repeat
How to divide length by 27

INF2080 Lecture :: 22nd February 22 / 38

__
Example 2

A= {0%"| n>0}. Want to construct a TM that recognizes (decides?) it.
M=on input w:
@ replace first 0 with blank symbol L.

INF2080 Lecture :: 22nd February 23 / 38

__
Example 2

A= {0%"| n>0}. Want to construct a TM that recognizes (decides?) it.
M=on input w:
@ replace first 0 with blank symbol LI.

@ scan input until you read the next 0. If none is found, accept. If one is found, cross it off
and cross off every other 0 for the remaining input. If the number of 0's read is odd, reject.

INF2080 Lecture :: 22nd February 23 / 38

__
Example 2

A= {0%"| n>0}. Want to construct a TM that recognizes (decides?) it.
M=on input w:
@ replace first 0 with blank symbol LI.
@ scan input until you read the next 0. If none is found, accept. If one is found, cross it off
and cross off every other 0 for the remaining input. If the number of 0's read is odd, reject.

© Return to head of tape (move left until read LJ).

INF2080 Lecture :: 22nd February 23 / 38

__
Example 2

A= {0%"| n>0}. Want to construct a TM that recognizes (decides?) it.
M=on input w:
@ replace first 0 with blank symbol LI.

@ scan input until you read the next 0. If none is found, accept. If one is found, cross it off
and cross off every other 0 for the remaining input. If the number of 0's read is odd, reject.

© Return to head of tape (move left until read LJ).
Q goto 2.

INF2080 Lecture :: 22nd February 23 / 38

__
Example 2

A= {0%"| n>0}. Want to construct a TM that recognizes (decides?) it.
M=on input w:
@ replace first 0 with blank symbol LI.

@ scan input until you read the next 0. If none is found, accept. If one is found, cross it off
and cross off every other 0 for the remaining input. If the number of 0's read is odd, reject.

© Return to head of tape (move left until read LJ).
Q goto 2.

INF2080 Lecture :: 22nd February 23 / 38

__
Example 2

A= {0%"| n>0}. Want to construct a TM that recognizes (decides?) it.
M=on input w:
@ replace first 0 with blank symbol LI.

@ scan input until you read the next 0. If none is found, accept. If one is found, cross it off
and cross off every other 0 for the remaining input. If the number of 0's read is odd, reject.

© Return to head of tape (move left until read LJ).
Q goto 2.

INF2080 Lecture :: 22nd February 23 / 38

__
Example 2

A= {0%"| n>0}. Want to construct a TM that recognizes (decides?) it.
M=on input w:
@ replace first 0 with blank symbol LI.

@ scan input until you read the next 0. If none is found, accept. If one is found, cross it off
and cross off every other 0 for the remaining input. If the number of 0's read is odd, reject.

© Return to head of tape (move left until read LJ).
Q goto 2.

INF2080 Lecture :: 22nd February 23 / 38

__
Example 2

A= {0%"| n>0}. Want to construct a TM that recognizes (decides?) it.
M=on input w:
@ replace first 0 with blank symbol LI.

@ scan input until you read the next 0. If none is found, accept. If one is found, cross it off
and cross off every other 0 for the remaining input. If the number of 0's read is odd, reject.

© Return to head of tape (move left until read LJ).
Q goto 2.

TH

Uix{olo|u

INF2080 Lecture :: 22nd February 23 / 38

__
Example 2

A= {0%"| n>0}. Want to construct a TM that recognizes (decides?) it.
M=on input w:
@ replace first 0 with blank symbol LI.

@ scan input until you read the next 0. If none is found, accept. If one is found, cross it off
and cross off every other 0 for the remaining input. If the number of 0's read is odd, reject.

© Return to head of tape (move left until read LJ).
Q goto 2.

INF2080 Lecture :: 22nd February 23 / 38

__
Example 2

A= {0%"| n>0}. Want to construct a TM that recognizes (decides?) it.
M=on input w:
@ replace first 0 with blank symbol LI.

@ scan input until you read the next 0. If none is found, accept. If one is found, cross it off
and cross off every other 0 for the remaining input. If the number of 0's read is odd, reject.

© Return to head of tape (move left until read LJ).
Q goto 2.

INF2080 Lecture :: 22nd February 23 / 38

__
Example 2

A= {0%"| n>0}. Want to construct a TM that recognizes (decides?) it.
M=on input w:
@ replace first 0 with blank symbol LI.

@ scan input until you read the next 0. If none is found, accept. If one is found, cross it off
and cross off every other 0 for the remaining input. If the number of 0's read is odd, reject.

© Return to head of tape (move left until read LJ).
Q goto 2.

INF2080 Lecture :: 22nd February 23 / 38

__
Example 2

A= {0%"| n>0}. Want to construct a TM that recognizes (decides?) it.
M=on input w:
@ replace first 0 with blank symbol LI.

@ scan input until you read the next 0. If none is found, accept. If one is found, cross it off
and cross off every other 0 for the remaining input. If the number of 0's read is odd, reject.

© Return to head of tape (move left until read LJ).
Q goto 2.

INF2080 Lecture :: 22nd February 23 / 38

__
Example 2

A= {0%"| n>0}. Want to construct a TM that recognizes (decides?) it.
M=on input w:
@ replace first 0 with blank symbol LI.

@ scan input until you read the next 0. If none is found, accept. If one is found, cross it off
and cross off every other 0 for the remaining input. If the number of 0's read is odd, reject.

© Return to head of tape (move left until read LJ).
Q goto 2.

INF2080 Lecture :: 22nd February 23 / 38

__
Example 2

A= {0%"| n>0}. Want to construct a TM that recognizes (decides?) it.
M=on input w:
@ replace first 0 with blank symbol LI.

@ scan input until you read the next 0. If none is found, accept. If one is found, cross it off
and cross off every other 0 for the remaining input. If the number of 0's read is odd, reject.

© Return to head of tape (move left until read LJ).
Q goto 2.

INF2080 Lecture :: 22nd February 23 / 38

__
Example 2

A= {0%"| n>0}. Want to construct a TM that recognizes (decides?) it.
M=on input w:
@ replace first 0 with blank symbol LI.

@ scan input until you read the next 0. If none is found, accept. If one is found, cross it off
and cross off every other 0 for the remaining input. If the number of 0's read is odd, reject.

© Return to head of tape (move left until read LJ).
Q goto 2.

INF2080 Lecture :: 22nd February 23 / 38

__
Example 2

A= {0%"| n>0}. Want to construct a TM that recognizes (decides?) it.
M=on input w:
@ replace first 0 with blank symbol LI.

@ scan input until you read the next 0. If none is found, accept. If one is found, cross it off
and cross off every other 0 for the remaining input. If the number of 0's read is odd, reject.

© Return to head of tape (move left until read LJ).
Q goto 2.

TH

Ulx|x|x|U

INF2080 Lecture :: 22nd February 23 / 38

__
Example 2

A= {0%"| n>0}. Want to construct a TM that recognizes (decides?) it.
M=on input w:
@ replace first 0 with blank symbol LI.

@ scan input until you read the next 0. If none is found, accept. If one is found, cross it off
and cross off every other 0 for the remaining input. If the number of 0's read is odd, reject.

© Return to head of tape (move left until read LJ).
Q goto 2.

INF2080 Lecture :: 22nd February 23 / 38

__
Example 2

A= {0%"| n>0}. Want to construct a TM that recognizes (decides?) it.
M=on input w:
@ replace first 0 with blank symbol LI.

@ scan input until you read the next 0. If none is found, accept. If one is found, cross it off
and cross off every other 0 for the remaining input. If the number of 0's read is odd, reject.

© Return to head of tape (move left until read LJ).
Q goto 2.

INF2080 Lecture :: 22nd February 23 / 38

__
Example 2

A= {0%"| n>0}. Want to construct a TM that recognizes (decides?) it.
M=on input w:
@ replace first 0 with blank symbol LI.

@ scan input until you read the next 0. If none is found, accept. If one is found, cross it off
and cross off every other 0 for the remaining input. If the number of 0's read is odd, reject.

© Return to head of tape (move left until read LJ).
Q goto 2.

INF2080 Lecture :: 22nd February 23 / 38

__
Example 2

A= {0%"| n>0}. Want to construct a TM that recognizes (decides?) it.
M=on input w:
@ replace first 0 with blank symbol LI.

@ scan input until you read the next 0. If none is found, accept. If one is found, cross it off
and cross off every other 0 for the remaining input. If the number of 0's read is odd, reject.

© Return to head of tape (move left until read LJ).
Q goto 2.

INF2080 Lecture :: 22nd February 23 / 38

__
Example 2

A= {0%"| n>0}. Want to construct a TM that recognizes (decides?) it.
M=on input w:
@ replace first 0 with blank symbol LI.

@ scan input until you read the next 0. If none is found, accept. If one is found, cross it off
and cross off every other 0 for the remaining input. If the number of 0's read is odd, reject.

© Return to head of tape (move left until read LJ).
Q goto 2.

INF2080 Lecture :: 22nd February 23 / 38

__
Example 2

A= {0%"| n>0}. Want to construct a TM that recognizes (decides?) it.
M=on input w:
@ replace first 0 with blank symbol LI.

@ scan input until you read the next 0. If none is found, accept. If one is found, cross it off
and cross off every other 0 for the remaining input. If the number of 0's read is odd, reject.

© Return to head of tape (move left until read LJ).
Q goto 2.

INF2080 Lecture :: 22nd February 23 / 38

__
Example 2

A= {0%"| n>0}. Want to construct a TM that recognizes (decides?) it.
M=on input w:
@ replace first 0 with blank symbol LI.

@ scan input until you read the next 0. If none is found, accept. If one is found, cross it off
and cross off every other 0 for the remaining input. If the number of 0's read is odd, reject.

© Return to head of tape (move left until read LJ).
Q goto 2.

INF2080 Lecture :: 22nd February 23 / 38

__
Example 2

A= {0%"| n>0}. Want to construct a TM that recognizes (decides?) it.
M=on input w:
@ replace first 0 with blank symbol LI.

@ scan input until you read the next 0. If none is found, accept. If one is found, cross it off
and cross off every other 0 for the remaining input. If the number of 0's read is odd, reject.

© Return to head of tape (move left until read LJ).
Q goto 2.

TH

Ulx|x|{x|U

INF2080 Lecture :: 22nd February 23 / 38

__
Example 2

A= {0%"| n>0}. Want to construct a TM that recognizes (decides?) it.
M=on input w:
@ replace first 0 with blank symbol LI.

@ scan input until you read the next 0. If none is found, accept. If one is found, cross it off
and cross off every other 0 for the remaining input. If the number of 0's read is odd, reject.

© Return to head of tape (move left until read LJ).
Q goto 2.

INF2080 Lecture :: 22nd February 23 / 38

__
Example 2

A= {0%"| n>0}. Want to construct a TM that recognizes (decides?) it.
M=on input w:
@ replace first 0 with blank symbol LI.

@ scan input until you read the next 0. If none is found, accept. If one is found, cross it off
and cross off every other 0 for the remaining input. If the number of 0's read is odd, reject.

© Return to head of tape (move left until read LJ).
Q goto 2.

INF2080 Lecture :: 22nd February 23 / 38

__
Example 2

A= {0%"| n>0}. Want to construct a TM that recognizes (decides?) it.
M=on input w:
@ replace first 0 with blank symbol LI.

@ scan input until you read the next 0. If none is found, accept. If one is found, cross it off
and cross off every other 0 for the remaining input. If the number of 0's read is odd, reject.

© Return to head of tape (move left until read LJ).
Q goto 2.

INF2080 Lecture :: 22nd February 23 / 38

__
Example 2

A= {0%"| n>0}. Want to construct a TM that recognizes (decides?) it.
M=on input w:
@ replace first 0 with blank symbol LI.

@ scan input until you read the next 0. If none is found, accept. If one is found, cross it off
and cross off every other 0 for the remaining input. If the number of 0's read is odd, reject.

© Return to head of tape (move left until read LJ).
Q goto 2.

INF2080 Lecture :: 22nd February 23 / 38

__
Example 2

A= {0%"| n>0}. Want to construct a TM that recognizes (decides?) it.
M=on input w:
@ replace first 0 with blank symbol LI.

@ scan input until you read the next 0. If none is found, accept. If one is found, cross it off
and cross off every other 0 for the remaining input. If the number of 0's read is odd, reject.

© Return to head of tape (move left until read LJ).
Q goto 2.

INF2080 Lecture :: 22nd February 23 / 38

__
Example 2

A= {0%"| n>0}. Want to construct a TM that recognizes (decides?) it.
M=on input w:
@ replace first 0 with blank symbol LI.

@ scan input until you read the next 0. If none is found, accept. If one is found, cross it off
and cross off every other 0 for the remaining input. If the number of 0's read is odd, reject.

© Return to head of tape (move left until read LJ).
Q goto 2.

TH

Uix|0olx|{0|lu

INF2080 Lecture :: 22nd February 23 / 38

__
Example 2

A= {0%"| n>0}. Want to construct a TM that recognizes (decides?) it.
M=on input w:
@ replace first 0 with blank symbol LI.

@ scan input until you read the next 0. If none is found, accept. If one is found, cross it off
and cross off every other 0 for the remaining input. If the number of 0's read is odd, reject.

© Return to head of tape (move left until read LJ).
Q goto 2.

:

INF2080 Lecture :: 22nd February 23 / 38

__
Example 2

A= {0%" | n>0}. Want to construct a TM that recognizes (decides?) it.
M=on input w:
@ replace first 0 with blank symbol LI.

@ scan input until you read the next 0. If none is found, accept. If one is found, cross it off
and cross off every other 0 for the remaining input. If the number of 0's read is odd, reject.

© Return to head of tape (move left until read LJ).
Q go to 2.

— M decides Al

INF2080 Lecture :: 22nd February 23 / 38

-
Alternative Turing machines

@ Not surprisingly, Turing machines are very powerful!

INF2080 Lecture :: 22nd February 24 / 38

-
Alternative Turing machines

@ Not surprisingly, Turing machines are very powerful!

o Can we make it even more expressive by, e.g., allowing the machine to also stay put , i.e.,
not move left or right?

Definition

A LRS Turing machine is a Turing machine with a transition function is defined as

0 Q\{qacceptyqreject} xI— QxTI x {L, R, 5}

INF2080 Lecture :: 22nd February 24 / 38

LRS TM

We can model stay put by adding an extra transition: first move left, then right.

INF2080 Lecture :: 22nd February 25 / 38

LRS TM

We can model stay put by adding an extra transition: first move left, then right.
For each 6(q;, b) = (qj, ¢, S), we can rewrite this as §(qj, b) = (¢, ¢, L) and
3(q’,*) = (qj,*, R) where x is any tape symbol.

INF2080 Lecture :: 22nd February 25 / 38

LRS TM

We can model stay put by adding an extra transition: first move left, then right.
For each 6(q;, b) = (qj, ¢, S), we can rewrite this as §(qj, b) = (¢, ¢, L) and
3(q’,*) = (qj,*, R) where x is any tape symbol.

So, equally expressive as a normal TM!

INF2080 Lecture :: 22nd February 25 / 38

-
Alternative Turing machines

e Can we make it even more expressive by, e.g., adding more tapes?

Definition
A multitape Turing machine is a turing machine with k > 2 tapes, i.e., its transition function is
defined as

62 Q\ {Gaccepts Greject} X TK = Q x TK x {L, R}

INF2080 Lecture :: 22nd February 26 / 38

Multitape Turing machines

@ The machine has access to multiple
[—— tapes

blalala|b|a @ Can this be modelled on a single tape?

D—abc

INF2080 Lecture :: 22nd February 27 / 38

Multitape Turing machines

@ The machine has access to multiple

— tapes
blalala|b|a @ Can this be modelled on a single tape?
Yes!
—
HERE
S—
c|l1l|f|&

INF2080 Lecture :: 22nd February 27 / 38

Multitape Turing machines

@ The machine has access to multiple

[—— tapes
blajala|b|a @ Can this be modelled on a single tape?
Yes!
o Idea: encode content of each tape on
ajb|c one tape, using a symbol (#) to
separate the different tapes
—
c|l|f|8

INF2080 Lecture :: 22nd February 27 / 38

Multitape Turing machines

@ The machine has access to multiple

P tapes
blalala|b|a @ Can this be modelled on a single tape?
Yes!

o Idea: encode content of each tape on

ajb|c one tape, using a symbol (#) to

separate the different tapes

#\ blalalal|pla|#|a|plc|#|c|l|f|8|#

INF2080 Lecture :: 22nd February 27 / 38

Multitape Turing machines

@ The machine has access to multiple

[—— tapes
blajala|b|a @ Can this be modelled on a single tape?
Yes!
o Idea: encode content of each tape on
ajb|c one tape, using a symbol (#) to
separate the different tapes
— .
clilsle @ in each tape block (space between two
#), one symbol is marked (represents

where the head is on that tape)

#\ blalalal|pla|#|a|plc|#|c|l|f|8|#

INF2080 Lecture :: 22nd February 27 / 38

__
Multitape Turing Machines

More formally:
S= on input w:

© Put S into the following format to model k tapes:

iy Wt 4

INF2080 Lecture :: 22nd February 28 / 38

__
Multitape Turing Machines

More formally:
S= on input w:

© Put S into the following format to model k tapes:

iy Wt 4

@ To simulate a single move in the multitape TM, S scans from first # to (k + 1)st # to
determine symbols under the virtual heads (“check which cells are dotted”). S then makes
a second pass over tape and updates cells according to M'’s transitions.

INF2080 Lecture :: 22nd February 28 / 38

Multitape Turing Machines

More formally:
S= on input w:

© Put S into the following format to model k tapes:

iy Wt 4

@ To simulate a single move in the multitape TM, S scans from first # to (k + 1)st # to
determine symbols under the virtual heads (“check which cells are dotted”). S then makes
a second pass over tape and updates cells according to M'’s transitions.

© If S moves one of virtual heads on to #, this means M has moved on to a previously
unread blank symbol on one of the tapes. S then writes blank symbol into that cell, shifts
cell contents from this cell to the rightmost # one to the right. Go to 2.

INF2080 Lecture :: 22nd February 28 / 38

Multitape Turing Machines

More formally:
S= on input w:

© Put S into the following format to model k tapes:

iy Wt 4

@ To simulate a single move in the multitape TM, S scans from first # to (k + 1)st # to
determine symbols under the virtual heads (“check which cells are dotted”). S then makes
a second pass over tape and updates cells according to M'’s transitions.

© If S moves one of virtual heads on to #, this means M has moved on to a previously
unread blank symbol on one of the tapes. S then writes blank symbol into that cell, shifts
cell contents from this cell to the rightmost # one to the right. Go to 2.

INF2080 Lecture :: 22nd February 28 / 38

Multitape Turing Machines

INF2080 Lecture :: 22nd February 29 / 38

Multitape Turing Machines

INF2080 Lecture :: 22nd February 29 / 38

Multitape Turing Machines

SN BnE

#|blalal#|alb|c|F#|c|1|f|8|#

INF2080 Lecture :: 22nd February 29 / 38

Multitape Turing Machines

SN BnE

#|blalh|d|alb|c|#|c|1|f|8|#

INF2080 Lecture :: 22nd February 29 / 38

Multitape Turing Machines

SN BnE

#blalh|Uja|p|c|F|c|L|f|8|#

INF2080 Lecture :: 22nd February 29 / 38

Multitape Turing Machines

SN BnE

#lblalh|U|#|b|c|#|c|1|f|8|#

INF2080 Lecture :: 22nd February 29 / 38

Multitape Turing Machines

SN BnE

#|blalh|U|#|a|c|F#|c|1|f|8|#

INF2080 Lecture :: 22nd February 29 / 38

Multitape Turing Machines

SN BnE

#lblalh|U|#|a|p|#|c|1|f|8|#

INF2080 Lecture :: 22nd February 29 / 38

Multitape Turing Machines

SN BnE

#|blalh|U|#|a|b|c|#|c|1|f|8|#

INF2080 Lecture :: 22nd February 29 / 38

Multitape Turing machiens

Theorem

A language is Turing recognizable [decidable] if and only if some multitape Turing machine
recognizes [decides] it.

INF2080 Lecture :: 22nd February 30/ 38

-
Turing Machine alternatives

OK...what about nondeterministic Turing machines? Do they let us do anything a deterministic
TM cannot?

INF2080 Lecture :: 22nd February 31/ 38

Turing Machine alternatives

OK...what about nondeterministic Turing machines? Do they let us do anything a deterministic
TM cannot?

Definition
A nondeterministic Turing machine has a transition function of the form

0:Q \ {qacceptaqreject} XTI — P(Q x % {L7 R})

INF2080 Lecture :: 22nd February 31/ 38

-
Nondeterministic TM

We can model a nondeterministic Turing machine N with a deterministic Turing machine M!

INF2080 Lecture :: 22nd February 32 /38

Nondeterministic TM

We can model a nondeterministic Turing machine N with a deterministic Turing machine M!

Idea: we use a multitape Turing machine (which we've seen is equivalent to a deterministic,
single-tape Turing machine).

INF2080 Lecture :: 22nd February 32 /38

Nondeterministic TM

We can model a nondeterministic Turing machine N with a deterministic Turing machine M!

Idea: we use a multitape Turing machine (which we've seen is equivalent to a deterministic,
single-tape Turing machine).

@ We use 3 tapes: input tape, simulation tape, address tape

INF2080 Lecture :: 22nd February 32 /38

Nondeterministic TM

We can model a nondeterministic Turing machine N with a deterministic Turing machine M!
Idea: we use a multitape Turing machine (which we've seen is equivalent to a deterministic,
single-tape Turing machine).

@ We use 3 tapes: input tape, simulation tape, address tape

@ input tape: contains input, will never be altered;

INF2080 Lecture :: 22nd February 32 /38

Nondeterministic TM

We can model a nondeterministic Turing machine N with a deterministic Turing machine M!
Idea: we use a multitape Turing machine (which we've seen is equivalent to a deterministic,
single-tape Turing machine).

@ We use 3 tapes: input tape, simulation tape, address tape

@ input tape: contains input, will never be altered;

@ simulation tape: “where the magic happens’...tape simulating current computational
branch in N;

INF2080 Lecture :: 22nd February 32 /38

-
Nondeterministic TM

We can model a nondeterministic Turing machine N with a deterministic Turing machine M!
Idea: we use a multitape Turing machine (which we've seen is equivalent to a deterministic,
single-tape Turing machine).

@ We use 3 tapes: input tape, simulation tape, address tape

@ input tape: contains input, will never be altered;

@ simulation tape: “where the magic happens’...tape simulating current computational
branch in N;

@ address tape: tells us which choices to make in the computational tree of N

INF2080 Lecture :: 22nd February 32 /38

-
Nondeterministic TM

More on the address tape:

@ For each Configuration C; in N, there are multiple possibilities for following configurations.

INF2080 Lecture :: 22nd February 33 /38

-
Nondeterministic TM

More on the address tape:

@ For each Configuration C; in N, there are multiple possibilities for following configurations.

@ Let b be the largest number of possible following configurations in 4.

INF2080 Lecture :: 22nd February 33 /38

Nondeterministic TM

More on the address tape:
@ For each Configuration C; in N, there are multiple possibilities for following configurations.
@ Let b be the largest number of possible following configurations in 4.

@ Then a string over {1,...b} represents a sequence of choices; e.g., 143 represents that we
choose Option 1 after start configuration, then Option 4, then Option 3.

INF2080 Lecture :: 22nd February 33 /38

Nondeterministic TM

More on the address tape:
@ For each Configuration C; in N, there are multiple possibilities for following configurations.

@ Let b be the largest number of possible following configurations in 4.

@ Then a string over {1,...b} represents a sequence of choices; e.g., 143 represents that we
choose Option 1 after start configuration, then Option 4, then Option 3.

@ To ensure that we do not loop before reaching a possible accept configuration, we parse
the computational tree with breadth first search:

INF2080 Lecture :: 22nd February 33 /38

Nondeterministic TM

More on the address tape:
@ For each Configuration C; in N, there are multiple possibilities for following configurations.

@ Let b be the largest number of possible following configurations in 4.

@ Then a string over {1,...b} represents a sequence of choices; e.g., 143 represents that we
choose Option 1 after start configuration, then Option 4, then Option 3.

@ To ensure that we do not loop before reaching a possible accept configuration, we parse
the computational tree with breadth first search:

@ we order the addresses (strings over {1,...b}) as follows (lexicographic ordering):
1,2,...,b,11,12,13,...,1b,21,22, ... bb, 111, ..

INF2080 Lecture :: 22nd February 33 /38

-
Nondeterministic TM

Given NTM N, we construct a 3-tape TM M as follows:
M=on input w:

@ Initiate input tape with input w, simulation and address tapes are empty.

INF2080 Lecture :: 22nd February 34 / 38

-
Nondeterministic TM

Given NTM N, we construct a 3-tape TM M as follows:
M=on input w:
@ Initiate input tape with input w, simulation and address tapes are empty.

@ Copy input tape to simulation tape, initialize address tape to e.

INF2080 Lecture :: 22nd February 34 / 38

Nondeterministic TM

Given NTM N, we construct a 3-tape TM M as follows:
M=on input w:
@ Initiate input tape with input w, simulation and address tapes are empty.
@ Copy input tape to simulation tape, initialize address tape to ¢.
© Use simulation tape to simulate N with input w. For each computation step, consult next
symbol on address for which option to choose. If address is invalid (number corresponds to
a nonexistent option), or this leads to a rejecting configuration, go to 4. If accepting
configuration, accept.

INF2080 Lecture :: 22nd February 34 / 38

Nondeterministic TM

Given NTM N, we construct a 3-tape TM M as follows:
M=on input w:
@ Initiate input tape with input w, simulation and address tapes are empty.
@ Copy input tape to simulation tape, initialize address tape to ¢.
© Use simulation tape to simulate N with input w. For each computation step, consult next
symbol on address for which option to choose. If address is invalid (number corresponds to
a nonexistent option), or this leads to a rejecting configuration, go to 4. If accepting
configuration, accept.
Q Replace address tape's contents with next address according to our ordering. Go to 2.

INF2080 Lecture :: 22nd February 34 / 38

Nondeterministic TM

Theorem

A language is Turing recognizable [decidable] if and only if some nondeterministic Turing
machine recognizes [decides] it.

INF2080 Lecture :: 22nd February 35 /38

Nondeterministic TM

Theorem

A language is Turing recognizable [decidable] if and only if some nondeterministic Turing
machine recognizes [decides] it.

A little extra work needed for decidability result! — Exercise 3.3 in book!

INF2080 Lecture :: 22nd February 35 /38

Enumerators

@ An enumerator is a slightly altered
Turing machine:

@ It has a working tape and an attached
printer
State control @ initializes with an empty working tape,
taking no input

@ throughout its computation, it can
output strings using the printer

@ If the enumerator does not halt, it can
potentially output infinitely many strings

INF2080 Lecture :: 22nd February 36 / 38

Enumerators

An enumerator enumerates a word iff at some point it prints it.

INF2080 Lecture :: 22nd February 37 /38

Enumerators

An enumerator enumerates a word iff at some point it prints it.
Theorem

A language is Turing-recognizable iff there exists an enumerator that enumerates it. J

INF2080 Lecture :: 22nd February 37 /38

Enumerators

An enumerator enumerates a word iff at some point it prints it.
Theorem
A language is Turing-recognizable iff there exists an enumerator that enumerates it. J

Proof:

@ Assume we have an enumerator E. We want to construct a Turing machine A that
accepts all the words that E enumerates.

INF2080 Lecture :: 22nd February 37 /38

Enumerators

An enumerator enumerates a word iff at some point it prints it.
Theorem
A language is Turing-recognizable iff there exists an enumerator that enumerates it. J

Proof:

@ Assume we have an enumerator E. We want to construct a Turing machine A that
accepts all the words that E enumerates.
A = On input w

1. Run E. Every time E prints a string, compare to w.
2. If w appears in the output of E, accept.

INF2080 Lecture :: 22nd February 37 /38

Enumerators

Theorem

A language is Turing-recognizable iff there exists an enumerator that enumerates it. J

Proof:

@ Now, let A be a Turing machine. We want to construct an enumerator that enumerates
L(A).

INF2080 Lecture :: 22nd February 38/ 38

Enumerators

Theorem
A language is Turing-recognizable iff there exists an enumerator that enumerates it. J
Proof:

@ Now, let A be a Turing machine. We want to construct an enumerator that enumerates
L(A).

@ Le X be the alphabet of L(A). Then we can order all strings in ©* (first list all strings of
length 1, then of length 2, etc).

INF2080 Lecture :: 22nd February 38 /38

Enumerators
Theorem
A language is Turing-recognizable iff there exists an enumerator that enumerates it. J
Proof:
@ Now, let A be a Turing machine. We want to construct an enumerator that enumerates
L(A).
@ Le X be the alphabet of L(A). Then we can order all strings in ©* (first list all strings of
length 1, then of length 2, etc). Label them s1, sy, s3,.... Then we can construct an
enumerator:

E = Ingore input
1. Repeatfori=1,2,3,....
2. Run Aon sy,...,s; for i steps.

3. If any computation accepts, print corresponding s;.

INF2080 Lecture :: 22nd February 38 /38

