

Daniel Lupp

Universitetet i Oslo

22nd February 2018

University of Oslo

• DFA/NFA: finite memory represented in the states;

• DFA/NFA: finite memory represented in the states; accepted regular languages

- DFA/NFA: finite memory represented in the states; accepted regular languages
- PDA: finite memory in states, restricted infinite memory in a stack;

- DFA/NFA: finite memory represented in the states; accepted regular languages
- PDA: finite memory in states, restricted infinite memory in a stack; accepted context-free languages

- DFA/NFA: finite memory represented in the states; accepted regular languages
- PDA: finite memory in states, restricted infinite memory in a stack; accepted context-free languages
- Last week, we saw the pumping lemma for context-free languages

- DFA/NFA: finite memory represented in the states; accepted regular languages
- PDA: finite memory in states, restricted infinite memory in a stack; accepted context-free languages
- Last week, we saw the pumping lemma for context-free languages Saw some examples of languages that PDA's do not cover!

Today: Introduce computational model underlying most of modern computer science

Today: Introduce computational model underlying most of modern computer science

A Turing machine is a finite state machine that has access to an infinite tape

• could only read input once (and never move backwards over the input)

- could only read input once (and never move backwards over the input)
- would only accept after having read the entire input (reject if no computational branches accept)

- could only read input once (and never move backwards over the input)
- would only accept after having read the entire input (reject if no computational branches accept)
- either finite memory (DFA), or restricted access to memory (PDA)

- could only read input once (and never move backwards over the input)
- would only accept after having read the entire input (reject if no computational branches accept)
- either finite memory (DFA), or restricted access to memory (PDA)

Turing machines are a bit different:

- could only read input once (and never move backwards over the input)
- would only accept after having read the entire input (reject if no computational branches accept)
- either finite memory (DFA), or restricted access to memory (PDA)

Turing machines are a bit different:

• can move left and right across it's tape

- could only read input once (and never move backwards over the input)
- would only accept after having read the entire input (reject if no computational branches accept)
- either finite memory (DFA), or restricted access to memory (PDA)

Turing machines are a bit different:

- can move left and right across it's tape
- if enters accept/reject state, immediately stops computing

- could only read input once (and never move backwards over the input)
- would only accept after having read the entire input (reject if no computational branches accept)
- either finite memory (DFA), or restricted access to memory (PDA)

Turing machines are a bit different:

- can move left and right across it's tape
- if enters accept/reject state, immediately stops computing
- unrestricted access to infinite memory

A Turing machine starts in the following configuration

A Turing machine starts in the following configuration

• q_0 is the start state

A Turing machine starts in the following configuration

- q_0 is the start state
- $w_1 \cdots w_n$ is the input string

A Turing machine starts in the following configuration

- q_0 is the start state
- $w_1 \cdots w_n$ is the input string
- \Box is the *blank symbol*: represents that the cell on tape does not contain any value

• Given current state and tape symbol, the Turing machine can write into the current cell, and move left/right

- Given current state and tape symbol, the Turing machine can write into the current cell, and move left/right
- Say that if M is in state q and reads w_2 it writes b and goes to the right:

- Given current state and tape symbol, the Turing machine can write into the current cell, and move left/right
- Say that if M is in state q and reads w_2 it writes b and goes to the right:

- Given current state and tape symbol, the Turing machine can write into the current cell, and move left/right
- Say that if M is in state q and reads w_2 it writes b and goes to the right:

• Given current state and tape symbol, the Turing machine can write into the current cell, and move left/right

- Given current state and tape symbol, the Turing machine can write into the current cell, and move left/right
- Say that if M is in state q and reads w_1 it writes b and goes to the left:

- Given current state and tape symbol, the Turing machine can write into the current cell, and move left/right
- Say that if M is in state q and reads w_1 it writes b and goes to the left:

- Given current state and tape symbol, the Turing machine can write into the current cell, and move left/right
- Say that if M is in state q and reads w_1 it writes b and goes to the left:

• The machine is at the leftmost cell on the tape!

- Given current state and tape symbol, the Turing machine can write into the current cell, and move left/right
- Say that if M is in state q and reads w_1 it writes b and goes to the left:

- The machine is at the leftmost cell on the tape!
- The machine cannot move left; instead, it performs the write operation and stays in the same cell

- Given current state and tape symbol, the Turing machine can write into the current cell, and move left/right
- Say that if M is in state q and reads w_1 it writes b and goes to the left:

- The machine is at the leftmost cell on the tape!
- The machine cannot move left; instead, it performs the write operation and stays in the same cell

Recall language $\{ww \mid w \in \{0,1\}^*\}$. Last week we used the pumping lemma to show this is not context-free.

Recall language $\{ww \mid w \in \{0,1\}^*\}$. Last week we used the pumping lemma to show this is not context-free. Let's try to describe a Turing machine that accepts the similar language $\{w\#w \mid w \in \{0,1\}^*\}$. How would the tape operations look?

Recall language $\{ww \mid w \in \{0,1\}^*\}$. Last week we used the pumping lemma to show this is not context-free. Let's try to describe a Turing machine that accepts the similar language $\{w\#w \mid w \in \{0,1\}^*\}$. How would the tape operations look?

• First input symbol must be compared with the first symbol occuring after #.

Recall language $\{ww \mid w \in \{0,1\}^*\}$. Last week we used the pumping lemma to show this is not context-free. Let's try to describe a Turing machine that accepts the similar language $\{w\#w \mid w \in \{0,1\}^*\}$. How would the tape operations look?

- First input symbol must be compared with the first symbol occuring after #.
- Each following symbol (before and after #) must be compared as well
Recall language $\{ww \mid w \in \{0,1\}^*\}$. Last week we used the pumping lemma to show this is not context-free. Let's try to describe a Turing machine that accepts the similar language $\{w\#w \mid w \in \{0,1\}^*\}$. How would the tape operations look?

- First input symbol must be compared with the first symbol occuring after #.
- Each following symbol (before and after #) must be compared as well
- If the same symbols occur on both sides, accept. Else, reject.

 $L = \{w \# w \mid w \in \{0, 1\}^*\}:$ Intuitively, we *zig-zag* across the tape:

Intuitively, we *zig-zag* across the tape:

 $\bullet\,$ Cross off first symbol, move to first symbol after # and cross off if the same symbol occurs

- $\bullet\,$ Cross off first symbol, move to first symbol after # and cross off if the same symbol occurs
- Move back to beginning of tape

- $\bullet\,$ Cross off first symbol, move to first symbol after # and cross off if the same symbol occurs
- Move back to beginning of tape
- If no non-crossed off symbols remain, move past # and check if any non-crossed off symbols remain on that side. If yes, reject. If no, accept.

- $\bullet\,$ Cross off first symbol, move to first symbol after # and cross off if the same symbol occurs
- Move back to beginning of tape
- If no non-crossed off symbols remain, move past # and check if any non-crossed off symbols remain on that side. If yes, reject. If no, accept.
- \bullet Cross off first non-crossed off symbol, move to first non-crossed off symbol after #

- $\bullet\,$ Cross off first symbol, move to first symbol after # and cross off if the same symbol occurs
- Move back to beginning of tape
- If no non-crossed off symbols remain, move past # and check if any non-crossed off symbols remain on that side. If yes, reject. If no, accept.
- \bullet Cross off first non-crossed off symbol, move to first non-crossed off symbol after #
- If no non-crossed off symbols after # remain or next symbol is not the same, reject. Else, cross off if equal to the last crossed off symbol

• We used "move back to beginning of tape"....but how to implement this?

- We used "move back to beginning of tape"....but how to implement this?
- A Turing machine's head's view:

- We used "move back to beginning of tape"....but how to implement this?
- A Turing machine's head's view:

• It cannot see anything outside of its current cell

- We used "move back to beginning of tape"....but how to implement this?
- A Turing machine's head's view:

- It cannot see anything outside of its current cell
- If after moving the same symbol appears, how does the machine know whether it *actually* moved or not?

- We used "move back to beginning of tape"....but how to implement this?
- A Turing machine's head's view:

- It cannot see anything outside of its current cell
- If after moving the same symbol appears, how does the machine know whether it *actually* moved or not?
- Multiple options:
- write a special symbol at the beginning to encode the beginning of the tape

Other option:

• when looking for beginning of tape: replace current cell contents x with a new symbol \dot{x} to mark where the head was. If after moving left it reads \dot{x} , it knows it's at the beginning of the tape.

- when looking for beginning of tape: replace current cell contents x with a new symbol \dot{x} to mark where the head was. If after moving left it reads \dot{x} , it knows it's at the beginning of the tape.
- Otherwise, go right, replace \dot{x} with x, go left, repeat.

- when looking for beginning of tape: replace current cell contents x with a new symbol \dot{x} to mark where the head was. If after moving left it reads \dot{x} , it knows it's at the beginning of the tape.
- Otherwise, go right, replace \dot{x} with x, go left, repeat.

- when looking for beginning of tape: replace current cell contents x with a new symbol \dot{x} to mark where the head was. If after moving left it reads \dot{x} , it knows it's at the beginning of the tape.
- Otherwise, go right, replace \dot{x} with x, go left, repeat.

- when looking for beginning of tape: replace current cell contents x with a new symbol \dot{x} to mark where the head was. If after moving left it reads \dot{x} , it knows it's at the beginning of the tape.
- Otherwise, go right, replace \dot{x} with x, go left, repeat.

- when looking for beginning of tape: replace current cell contents x with a new symbol \dot{x} to mark where the head was. If after moving left it reads \dot{x} , it knows it's at the beginning of the tape.
- Otherwise, go right, replace \dot{x} with x, go left, repeat.

- when looking for beginning of tape: replace current cell contents x with a new symbol \dot{x} to mark where the head was. If after moving left it reads \dot{x} , it knows it's at the beginning of the tape.
- Otherwise, go right, replace \dot{x} with x, go left, repeat.

- when looking for beginning of tape: replace current cell contents x with a new symbol \dot{x} to mark where the head was. If after moving left it reads \dot{x} , it knows it's at the beginning of the tape.
- Otherwise, go right, replace \dot{x} with x, go left, repeat.

- when looking for beginning of tape: replace current cell contents x with a new symbol \dot{x} to mark where the head was. If after moving left it reads \dot{x} , it knows it's at the beginning of the tape.
- Otherwise, go right, replace \dot{x} with x, go left, repeat.

- when looking for beginning of tape: replace current cell contents x with a new symbol \dot{x} to mark where the head was. If after moving left it reads \dot{x} , it knows it's at the beginning of the tape.
- Otherwise, go right, replace \dot{x} with x, go left, repeat.

- when looking for beginning of tape: replace current cell contents x with a new symbol \dot{x} to mark where the head was. If after moving left it reads \dot{x} , it knows it's at the beginning of the tape.
- Otherwise, go right, replace \dot{x} with x, go left, repeat.

• This was a *low-level description* of a Turing machine, describing in words how the tape operates:

- This was a *low-level description* of a Turing machine, describing in words how the tape operates:
 - M = on input w:
 - Zig-zag across the tape to corresponding positions on either side of #, checking whether these positions contain the same symbol. If they do not, reject. Cross off corresponding symbols if equal
 - When all symbols before # have been crossed off, scan symbols after # to see if any uncrossed symbols remain. If yes, reject, if no, accept.

- This was a *low-level description* of a Turing machine, describing in words how the tape operates:
 - M = on input w:
 - Zig-zag across the tape to corresponding positions on either side of #, checking whether these positions contain the same symbol. If they do not, reject. Cross off corresponding symbols if equal
 - When all symbols before # have been crossed off, scan symbols after # to see if any uncrossed symbols remain. If yes, reject, if no, accept.
- High-level: "Compare words before and after # and accept if equal, reject if not equal"

- This was a *low-level description* of a Turing machine, describing in words how the tape operates:
 - M = on input w:
 - Zig-zag across the tape to corresponding positions on either side of #, checking whether these positions contain the same symbol. If they do not, reject. Cross off corresponding symbols if equal
 - When all symbols before # have been crossed off, scan symbols after # to see if any uncrossed symbols remain. If yes, reject, if no, accept.
- High-level: "Compare words before and after # and accept if equal, reject if not equal"
- Implementation level: giving the formal definition of a Turing machine, with all states and transitions (we'll go through some examples tomorrow)

A Turing machine is a 7-tuple $(Q, \Sigma, \Gamma, \delta, q_0, q_{accept}, q_{reject})$ where Q, Σ, Γ are finite sets and

 \bigcirc Q is the set of states,

- \bigcirc Q is the set of states,
- **2** Σ is the input alphabet *not containing the* **blank symbol** \sqcup

- \bigcirc Q is the set of states,
- **2** Σ is the input alphabet *not containing the* **blank symbol** \sqcup
- $\label{eq:Gamma} {\rm \textbf{$\$$}} \ \ {\rm \ Γ} \ \ {\rm is the tape alphabet, where $\sqcup \in \Gamma$ and $\Sigma \subseteq \Gamma$,}$

- \bigcirc Q is the set of states,
- **2** Σ is the input alphabet *not containing the* **blank symbol** \sqcup
- $\label{eq:gamma} {\rm \textbf{$\$$}} \ \ {\rm \ Γ} \ \ {\rm is the tape alphabet, where $\sqcup \in \Gamma$ and $\Sigma \subseteq \Gamma$,}$
- $\delta: Q \setminus \{q_{accept}, q_{reject}\} \times \Gamma \rightarrow Q \times \Gamma \times \{L, R\}$ is the transition fucntion,

- \bigcirc Q is the set of states,
- **②** Σ is the input alphabet *not containing the* **blank symbol** \sqcup
- $\label{eq:Gamma} {\rm \textbf{0}} \ \ {\rm \Gamma} \ \ {\rm is the tape alphabet, where } \sqcup \in {\rm \Gamma} \ \ {\rm and} \ \ {\rm \Sigma} \subseteq {\rm \Gamma},$
- $\delta: Q \setminus \{q_{accept}, q_{reject}\} \times \Gamma \rightarrow Q \times \Gamma \times \{L, R\}$ is the transition fucntion,
- **(** $q_0 \in Q$ is the start state,
- $q_{accept} \in Q$ is the accept state, and
- $q_{reject} \in Q$ is the reject state.

Configurations

During each computation step, a TM is in a specific *configuration*:

- current tape contents *uv*;
- current head position;
- current state q.
During each computation step, a TM is in a specific *configuration*:

- current tape contents *uv*;
- current head position;
- current state q.

Notation: uqv encodes that the machine is in state q, pointing at the first symbol in v. Example:

Notation: xxx # qxx1

• uaq_ibv yields uq_jacv if $\delta(q_i, b) = (q_j, c, L)$.

• uaq_ibv yields uq_jacv if $\delta(q_i, b) = (q_j, c, L)$.

• uaq_ibv yields uq_jacv if $\delta(q_i, b) = (q_j, c, L)$.

• uaq_ibv yields $uacq_jv$ if $\delta(q_i, b) = (q_j, c, R)$.

• uaq_ibv yields $uacq_jv$ if $\delta(q_i, b) = (q_j, c, R)$.

• uaq_ibv yields $uacq_jv$ if $\delta(q_i, b) = (q_j, c, R)$.

• If the head is at the leftmost side and it moves left:

 $q_i bv$ yields $q_j cv$ if $\delta(q_i, b) = (q_j, c, L)$.

• If the head is at the leftmost side and it moves left:

$$q_i bv$$
 yields $q_j cv$ if $\delta(q_i, b) = (q_j, c, L)$.

qi

• If the head is at the leftmost side and it moves left:

$$q_i bv$$
 yields $q_j cv$ if $\delta(q_i, b) = (q_j, c, L)$.

• If the head is at the leftmost side and it moves left:

 $q_i b v$ yields $q_j c v$ if $\delta(q_i, b) = (q_j, c, L)$.

• If the head is at the rightmost side and it moves right: uq_ib yields $ucq_j = ucq_j \sqcup$ if $\delta(q_i, b) = (q_j, c, R)$.

qi

 $c | v_1 | \cdots$

If the head is at one end of the tape:

• If the head is at the leftmost side and it moves left:

 $q_i bv$ yields $q_j cv$ if $\delta(q_i, b) = (q_j, c, L)$.

• If the head is at the rightmost side and it moves right: uq_ib yields $ucq_j = ucq_j \sqcup$ if

qi

 $c | v_1 | \cdots$

$$\delta(q_i, b) = (q_j, c, R).$$

If the head is at one end of the tape:

• If the head is at the leftmost side and it moves left:

 $q_i bv$ yields $q_j cv$ if $\delta(q_i, b) = (q_j, c, L)$.

• If the head is at the rightmost side and it moves right: uq_ib yields $ucq_j = ucq_j \sqcup$ if

qi

 $c | v_1 | \cdots$

$$\delta(q_i, b) = (q_j, c, R).$$

• The starting configuration is $q_0 w$

- The starting configuration is $q_0 w$
- An accepting configuration is a configuration where the state is q_{accept}

- The starting configuration is $q_0 w$
- An accepting configuration is a configuration where the state is q_{accept}
- A rejecting configuration is a configuration where the state is q_{reject}

- The starting configuration is $q_0 w$
- An accepting configuration is a configuration where the state is q_{accept}
- A rejecting configuration is a configuration where the state is q_{reject}
- A halting configuration is an accepting or a rejecting configuration

- The starting configuration is $q_0 w$
- An accepting configuration is a configuration where the state is q_{accept}
- A rejecting configuration is a configuration where the state is q_{reject}
- A halting configuration is an accepting or a rejecting configuration

Then a Turing machine M accepts a word w if there exists a sequence of configurations C_1, \ldots, C_k such that

• C_1 is the start configuration of M on input w,

- The starting configuration is $q_0 w$
- An accepting configuration is a configuration where the state is q_{accept}
- A rejecting configuration is a configuration where the state is q_{reject}
- A halting configuration is an accepting or a rejecting configuration

Then a Turing machine M accepts a word w if there exists a sequence of configurations C_1, \ldots, C_k such that

- C_1 is the start configuration of M on input w,
- 2 each C_i yields C_{i+1} ,

- The starting configuration is $q_0 w$
- An accepting configuration is a configuration where the state is q_{accept}
- A rejecting configuration is a configuration where the state is q_{reject}
- A halting configuration is an accepting or a rejecting configuration

Then a Turing machine M accepts a word w if there exists a sequence of configurations C_1, \ldots, C_k such that

- C_1 is the start configuration of M on input w,
- **2** each C_i yields C_{i+1} , and
- C_k is an accepting configuration.

For a Turing machine M, the set of words it accepts is the language of M (denoted L(M)) or the language recognized by M.

For a Turing machine M, the set of words it accepts is the language of M (denoted L(M)) or the language recognized by M.

Definition

A language is called *Turing-recognizable* [recursively enumerable] if some Turing machine recognizes it.

For a Turing machine M, the set of words it accepts is the language of M (denoted L(M)) or the language recognized by M.

Definition

A language is called *Turing-recognizable* [recursively enumerable] if some Turing machine recognizes it.

• A Turing machine can either *halt* (accept, reject) on a given input, or *loop* (never accept or reject...for example: head always moves to the right, never enters *q_{accept}* or *q_{reject}*).

For a Turing machine M, the set of words it accepts is the language of M (denoted L(M)) or the language recognized by M.

Definition

A language is called *Turing-recognizable* [recursively enumerable] if some Turing machine recognizes it.

- A Turing machine can either *halt* (accept, reject) on a given input, or *loop* (never accept or reject...for example: head always moves to the right, never enters *q_{accept}* or *q_{reject}*).
- A Turing machine *decides* a language A if it accepts all words w ∈ A and rejects all words w ∉ A.

For a Turing machine M, the set of words it accepts is the language of M (denoted L(M)) or the language recognized by M.

Definition

A language is called *Turing-recognizable* [recursively enumerable] if some Turing machine recognizes it.

- A Turing machine can either *halt* (accept, reject) on a given input, or *loop* (never accept or reject...for example: head always moves to the right, never enters *q_{accept}* or *q_{reject}*).
- A Turing machine *decides* a language A if it accepts all words w ∈ A and rejects all words w ∉ A. → it halts on all inputs!

For a Turing machine M, the set of words it accepts is the language of M (denoted L(M)) or the language recognized by M.

Definition

A language is called *Turing-recognizable* [recursively enumerable] if some Turing machine recognizes it.

- A Turing machine can either *halt* (accept, reject) on a given input, or *loop* (never accept or reject...for example: head always moves to the right, never enters *q_{accept}* or *q_{reject}*).
- A Turing machine *decides* a language A if it accepts all words w ∈ A and rejects all words w ∉ A. → it halts on all inputs!

Definition

A language is *Turing-decidable* [decidable, recursive] if there is a Turing machine that decides it.

Previous example of language $\{w \# w \mid w \in \{0,1\}^*\}$ was recognized by machine: M= on input w:

- Zig-zag across the tape to corresponding positions on either side of #, checking whether these positions contain the same symbol. If they do not, reject. Cross off corresponding symbols if equal
- When all symbols before # have been crossed off, scan symbols after # to see if any uncrossed symbols remain. If yes, reject, if no, accept.

Previous example of language $\{w \# w \mid w \in \{0,1\}^*\}$ was recognized by machine: M= on input w:

- Zig-zag across the tape to corresponding positions on either side of #, checking whether these positions contain the same symbol. If they do not, reject. Cross off corresponding symbols if equal
- When all symbols before # have been crossed off, scan symbols after # to see if any uncrossed symbols remain. If yes, reject, if no, accept.

It was, in fact, decided by M!

$A = \{0^{2^n} \mid n \ge 0\}$. Want to construct a TM that recognizes (decides?) it.

A = {0^{2ⁿ} | n ≥ 0}. Want to construct a TM that recognizes (decides?) it.
words: 0, 00, 0000, 00000000, etc.

- $A = \{0^{2^n} \mid n \ge 0\}$. Want to construct a TM that recognizes (decides?) it.
 - words: 0, 00, 0000, 0000000, etc.
 - all words except 0 have length divisble by 0.

 $A = \{0^{2^n} \mid n \ge 0\}$. Want to construct a TM that recognizes (decides?) it.

- words: 0, 00, 0000, 0000000, etc.
- all words except 0 have length divisble by 0.
- idea: if length=1, accept (if input symbol is correct), otherwise divide length by 2. Repeat How to divide length by 2?

 $A = \{0^{2^n} \mid n \ge 0\}$. Want to construct a TM that recognizes (decides?) it. M=on input w:

• replace first 0 with blank symbol \Box .

 $A = \{0^{2^n} \mid n \ge 0\}$. Want to construct a TM that recognizes (decides?) it. M=on input w:

- replace first 0 with blank symbol \Box .
- scan input until you read the next 0. If none is found, accept. If one is found, cross it off and cross off every other 0 for the remaining input. If the number of 0's read is odd, reject.

 $A = \{0^{2^n} \mid n \ge 0\}$. Want to construct a TM that recognizes (decides?) it. M=on input w:

- replace first 0 with blank symbol \sqcup .
- scan input until you read the next 0. If none is found, accept. If one is found, cross it off and cross off every other 0 for the remaining input. If the number of 0's read is odd, reject.
- **③** Return to head of tape (move left until read \sqcup).

 $A = \{0^{2^n} \mid n \ge 0\}$. Want to construct a TM that recognizes (decides?) it. M=on input w:

- replace first 0 with blank symbol \sqcup .
- scan input until you read the next 0. If none is found, accept. If one is found, cross it off and cross off every other 0 for the remaining input. If the number of 0's read is odd, reject.
- **③** Return to head of tape (move left until read \sqcup).
- go to 2.
- replace first 0 with blank symbol \Box .
- scan input until you read the next 0. If none is found, accept. If one is found, cross it off and cross off every other 0 for the remaining input. If the number of 0's read is odd, reject.
- **③** Return to head of tape (move left until read \sqcup).
- go to 2.

- replace first 0 with blank symbol \Box .
- scan input until you read the next 0. If none is found, accept. If one is found, cross it off and cross off every other 0 for the remaining input. If the number of 0's read is odd, reject.
- **③** Return to head of tape (move left until read \sqcup).
- go to 2.

- replace first 0 with blank symbol \Box .
- scan input until you read the next 0. If none is found, accept. If one is found, cross it off and cross off every other 0 for the remaining input. If the number of 0's read is odd, reject.
- **③** Return to head of tape (move left until read \sqcup).
- go to 2.

- replace first 0 with blank symbol \Box .
- scan input until you read the next 0. If none is found, accept. If one is found, cross it off and cross off every other 0 for the remaining input. If the number of 0's read is odd, reject.
- **③** Return to head of tape (move left until read \Box).
- go to 2.

- replace first 0 with blank symbol \Box .
- scan input until you read the next 0. If none is found, accept. If one is found, cross it off and cross off every other 0 for the remaining input. If the number of 0's read is odd, reject.
- **③** Return to head of tape (move left until read \Box).
- go to 2.

- replace first 0 with blank symbol \Box .
- scan input until you read the next 0. If none is found, accept. If one is found, cross it off and cross off every other 0 for the remaining input. If the number of 0's read is odd, reject.
- **③** Return to head of tape (move left until read \sqcup).
- go to 2.

- replace first 0 with blank symbol \Box .
- scan input until you read the next 0. If none is found, accept. If one is found, cross it off and cross off every other 0 for the remaining input. If the number of 0's read is odd, reject.
- **③** Return to head of tape (move left until read \sqcup).
- go to 2.

- replace first 0 with blank symbol \Box .
- scan input until you read the next 0. If none is found, accept. If one is found, cross it off and cross off every other 0 for the remaining input. If the number of 0's read is odd, reject.
- **③** Return to head of tape (move left until read \sqcup).
- go to 2.

- replace first 0 with blank symbol \Box .
- scan input until you read the next 0. If none is found, accept. If one is found, cross it off and cross off every other 0 for the remaining input. If the number of 0's read is odd, reject.
- **③** Return to head of tape (move left until read \sqcup).
- go to 2.

- replace first 0 with blank symbol \Box .
- scan input until you read the next 0. If none is found, accept. If one is found, cross it off and cross off every other 0 for the remaining input. If the number of 0's read is odd, reject.
- **③** Return to head of tape (move left until read \sqcup).
- go to 2.

- replace first 0 with blank symbol \Box .
- scan input until you read the next 0. If none is found, accept. If one is found, cross it off and cross off every other 0 for the remaining input. If the number of 0's read is odd, reject.
- **③** Return to head of tape (move left until read \Box).
- go to 2.

- replace first 0 with blank symbol \Box .
- scan input until you read the next 0. If none is found, accept. If one is found, cross it off and cross off every other 0 for the remaining input. If the number of 0's read is odd, reject.
- **③** Return to head of tape (move left until read \Box).
- go to 2.

- replace first 0 with blank symbol \Box .
- scan input until you read the next 0. If none is found, accept. If one is found, cross it off and cross off every other 0 for the remaining input. If the number of 0's read is odd, reject.
- **③** Return to head of tape (move left until read \Box).
- go to 2.

- replace first 0 with blank symbol \Box .
- scan input until you read the next 0. If none is found, accept. If one is found, cross it off and cross off every other 0 for the remaining input. If the number of 0's read is odd, reject.
- **③** Return to head of tape (move left until read \sqcup).
- go to 2.

- replace first 0 with blank symbol \Box .
- scan input until you read the next 0. If none is found, accept. If one is found, cross it off and cross off every other 0 for the remaining input. If the number of 0's read is odd, reject.
- **③** Return to head of tape (move left until read \sqcup).
- go to 2.

- replace first 0 with blank symbol \Box .
- scan input until you read the next 0. If none is found, accept. If one is found, cross it off and cross off every other 0 for the remaining input. If the number of 0's read is odd, reject.
- **③** Return to head of tape (move left until read \sqcup).
- go to 2.

- replace first 0 with blank symbol \Box .
- scan input until you read the next 0. If none is found, accept. If one is found, cross it off and cross off every other 0 for the remaining input. If the number of 0's read is odd, reject.
- **③** Return to head of tape (move left until read \sqcup).
- go to 2.

- replace first 0 with blank symbol \Box .
- scan input until you read the next 0. If none is found, accept. If one is found, cross it off and cross off every other 0 for the remaining input. If the number of 0's read is odd, reject.
- **③** Return to head of tape (move left until read \Box).
- go to 2.

- replace first 0 with blank symbol \Box .
- scan input until you read the next 0. If none is found, accept. If one is found, cross it off and cross off every other 0 for the remaining input. If the number of 0's read is odd, reject.
- **③** Return to head of tape (move left until read \Box).
- go to 2.

- replace first 0 with blank symbol \Box .
- scan input until you read the next 0. If none is found, accept. If one is found, cross it off and cross off every other 0 for the remaining input. If the number of 0's read is odd, reject.
- **③** Return to head of tape (move left until read \Box).
- go to 2.

- replace first 0 with blank symbol \Box .
- scan input until you read the next 0. If none is found, accept. If one is found, cross it off and cross off every other 0 for the remaining input. If the number of 0's read is odd, reject.
- **③** Return to head of tape (move left until read \Box).
- go to 2.

- replace first 0 with blank symbol \Box .
- scan input until you read the next 0. If none is found, accept. If one is found, cross it off and cross off every other 0 for the remaining input. If the number of 0's read is odd, reject.
- **③** Return to head of tape (move left until read \sqcup).
- go to 2.

- replace first 0 with blank symbol \Box .
- scan input until you read the next 0. If none is found, accept. If one is found, cross it off and cross off every other 0 for the remaining input. If the number of 0's read is odd, reject.
- **③** Return to head of tape (move left until read \sqcup).
- go to 2.

- replace first 0 with blank symbol \Box .
- scan input until you read the next 0. If none is found, accept. If one is found, cross it off and cross off every other 0 for the remaining input. If the number of 0's read is odd, reject.
- **③** Return to head of tape (move left until read \Box).
- go to 2.

- replace first 0 with blank symbol \Box .
- scan input until you read the next 0. If none is found, accept. If one is found, cross it off and cross off every other 0 for the remaining input. If the number of 0's read is odd, reject.
- **③** Return to head of tape (move left until read \Box).
- go to 2.

- replace first 0 with blank symbol \Box .
- scan input until you read the next 0. If none is found, accept. If one is found, cross it off and cross off every other 0 for the remaining input. If the number of 0's read is odd, reject.
- **③** Return to head of tape (move left until read \Box).
- go to 2.

- replace first 0 with blank symbol \Box .
- scan input until you read the next 0. If none is found, accept. If one is found, cross it off and cross off every other 0 for the remaining input. If the number of 0's read is odd, reject.
- **③** Return to head of tape (move left until read \sqcup).
- go to 2.

 $A = \{0^{2^n} \mid n \ge 0\}$. Want to construct a TM that recognizes (decides?) it. M=on input w:

- replace first 0 with blank symbol \sqcup .
- scan input until you read the next 0. If none is found, accept. If one is found, cross it off and cross off every other 0 for the remaining input. If the number of 0's read is odd, reject.
- **③** Return to head of tape (move left until read \sqcup).
- go to 2.

 \rightarrow *M* decides *A*!

• Not surprisingly, Turing machines are very powerful!

- Not surprisingly, Turing machines are *very* powerful!
- Can we make it *even more expressive* by, e.g., allowing the machine to also *stay put*, i.e., not move left or right?

Definition

A LRS Turing machine is a Turing machine with a transition function is defined as

 $\delta: Q \setminus \{q_{accept}, q_{reject}\} \times \Gamma \rightarrow Q \times \Gamma \times \{L, R, S\}$

We can model stay put by adding an extra transition: first move left, then right.

We can model *stay put* by adding an extra transition: first move left, then right. For each $\delta(q_i, b) = (q_j, c, S)$, we can rewrite this as $\delta(q_i, b) = (q', c, L)$ and $\delta(q', *) = (q_j, *, R)$ where * is any tape symbol. We can model stay put by adding an extra transition: first move left, then right. For each $\delta(q_i, b) = (q_j, c, S)$, we can rewrite this as $\delta(q_i, b) = (q', c, L)$ and $\delta(q', *) = (q_j, *, R)$ where * is any tape symbol. So, equally expressive as a normal TM! • Can we make it even more expressive by, e.g., adding more tapes?

Definition

A multitape Turing machine is a turing machine with $k \ge 2$ tapes, i.e., its transition function is defined as

$$\delta: Q \setminus \{q_{accept}, q_{reject}\} \times \Gamma^k \to Q \times \Gamma^k \times \{L, R\}$$

Multitape Turing machines

- The machine has access to multiple tapes
- Can this be modelled on a single tape?

Multitape Turing machines

- The machine has access to multiple tapes
- Can this be modelled on a single tape? Yes!

- The machine has access to multiple tapes
- Can this be modelled on a single tape? Yes!
- Idea: encode content of each tape on one tape, using a symbol (#) to separate the different tapes

- The machine has access to multiple tapes
- Can this be modelled on a single tape? Yes!
- Idea: encode content of each tape on one tape, using a symbol (#) to separate the different tapes

#

а

- The machine has access to multiple tapes
- Can this be modelled on a single tape? Yes!
- Idea: encode content of each tape on one tape, using a symbol (#) to separate the different tapes
- in each tape block (space between two #), one symbol is marked (represents where the head is on that tape)

#

С

С

g | #

alalalia

More formally:

S = on input w:

• Put S into the following format to model k tapes:

 $\#\dot{w}_1\ldots w_n\#\dot{\sqcup}\#\dot{\sqcup}\#\ldots\#$

More formally:

S = on input w:

• Put S into the following format to model k tapes:

 $\#\dot{w}_1\ldots w_n\#\dot{\sqcup}\#\dot{\sqcup}\#\ldots\#$

② To simulate a single move in the multitape TM, S scans from first # to (k + 1)st # to determine symbols under the virtual heads ("check which cells are dotted"). S then makes a second pass over tape and updates cells according to M's transitions.

More formally:

S = on input w:

• Put S into the following format to model k tapes:

 $\#\dot{w}_1\ldots w_n\#\dot{\sqcup}\#\dot{\sqcup}\#\ldots\#$

- To simulate a single move in the multitape TM, S scans from first # to (k + 1)st # to determine symbols under the virtual heads ("check which cells are dotted"). S then makes a second pass over tape and updates cells according to M's transitions.
- If S moves one of virtual heads on to #, this means M has moved on to a previously unread blank symbol on one of the tapes. S then writes blank symbol into that cell, shifts cell contents from this cell to the rightmost # one to the right. Go to 2.

More formally:

S = on input w:

• Put S into the following format to model k tapes:

 $\#\dot{w}_1\ldots w_n\#\dot{\sqcup}\#\dot{\sqcup}\#\ldots\#$

- To simulate a single move in the multitape TM, S scans from first # to (k + 1)st # to determine symbols under the virtual heads ("check which cells are dotted"). S then makes a second pass over tape and updates cells according to M's transitions.
- If S moves one of virtual heads on to #, this means M has moved on to a previously unread blank symbol on one of the tapes. S then writes blank symbol into that cell, shifts cell contents from this cell to the rightmost # one to the right. Go to 2.

Theorem

A language is Turing recognizable [decidable] if and only if some multitape Turing machine recognizes [decides] it.

OK...what about *nondeterministic* Turing machines? Do they let us do anything a deterministic TM cannot?

OK...what about *nondeterministic* Turing machines? Do they let us do anything a deterministic TM cannot?

Definition

A nondeterministic Turing machine has a transition function of the form

$$\delta: Q \setminus \{q_{\textit{accept}}, q_{\textit{reject}}\} \times \Gamma \rightarrow P(Q \times \Gamma \times \{L, R\})$$

We can model a nondeterministic Turing machine N with a deterministic Turing machine M!

We can model a nondeterministic Turing machine N with a deterministic Turing machine M! Idea: we use a multitape Turing machine (which we've seen is equivalent to a deterministic, single-tape Turing machine). We can model a nondeterministic Turing machine N with a deterministic Turing machine M! Idea: we use a multitape Turing machine (which we've seen is equivalent to a deterministic, single-tape Turing machine).

• We use 3 tapes: input tape, simulation tape, address tape

We can model a nondeterministic Turing machine N with a deterministic Turing machine M! Idea: we use a multitape Turing machine (which we've seen is equivalent to a deterministic, single-tape Turing machine).

- We use 3 tapes: input tape, simulation tape, address tape
- input tape: contains input, will never be altered;

We can model a nondeterministic Turing machine N with a deterministic Turing machine M! Idea: we use a multitape Turing machine (which we've seen is equivalent to a deterministic, single-tape Turing machine).

- We use 3 tapes: input tape, simulation tape, address tape
- input tape: contains input, will never be altered;
- simulation tape: "where the magic happens"...tape simulating current computational branch in N;

We can model a nondeterministic Turing machine N with a deterministic Turing machine M! Idea: we use a multitape Turing machine (which we've seen is equivalent to a deterministic, single-tape Turing machine).

- We use 3 tapes: input tape, simulation tape, address tape
- input tape: contains input, will never be altered;
- simulation tape: "where the magic happens"...tape simulating current computational branch in N;
- address tape: tells us which choices to make in the computational tree of N

• For each Configuration C_i in N, there are multiple possibilities for following configurations.

- For each Configuration C_i in N, there are multiple possibilities for following configurations.
- Let b be the largest number of possible following configurations in δ .

- For each Configuration C_i in N, there are multiple possibilities for following configurations.
- Let b be the largest number of possible following configurations in δ .
- Then a string over $\{1, \ldots b\}$ represents a sequence of choices; e.g., 143 represents that we choose Option 1 after start configuration, then Option 4, then Option 3.

- For each Configuration C_i in N, there are multiple possibilities for following configurations.
- Let b be the largest number of possible following configurations in δ .
- Then a string over $\{1, \ldots b\}$ represents a sequence of choices; e.g., 143 represents that we choose Option 1 after start configuration, then Option 4, then Option 3.
- To ensure that we do not loop before reaching a possible accept configuration, we parse the computational tree with *breadth first search*:

- For each Configuration C_i in N, there are multiple possibilities for following configurations.
- Let b be the largest number of possible following configurations in δ .
- Then a string over {1,...*b*} represents a sequence of choices; e.g., 143 represents that we choose Option 1 after start configuration, then Option 4, then Option 3.
- To ensure that we do not loop before reaching a possible accept configuration, we parse the computational tree with *breadth first search*:
- we order the addresses (strings over $\{1, \ldots b\}$) as follows (lexicographic ordering): 1, 2, ..., b, 11, 12, 13, ..., 1b, 21, 22, ..., bb, 111, ...

Initiate input tape with input w, simulation and address tapes are empty.

- Initiate input tape with input w, simulation and address tapes are empty.
- 2 Copy input tape to simulation tape, initialize address tape to ε .

- **1** Initiate input tape with input *w*, simulation and address tapes are empty.
- **2** Copy input tape to simulation tape, initialize address tape to ε .
- Use simulation tape to simulate N with input w. For each computation step, consult next symbol on address for which option to choose. If address is invalid (number corresponds to a nonexistent option), or this leads to a rejecting configuration, go to 4. If accepting configuration, accept.

- **1** Initiate input tape with input *w*, simulation and address tapes are empty.
- **2** Copy input tape to simulation tape, initialize address tape to ε .
- Use simulation tape to simulate N with input w. For each computation step, consult next symbol on address for which option to choose. If address is invalid (number corresponds to a nonexistent option), or this leads to a rejecting configuration, go to 4. If accepting configuration, accept.
- Replace address tape's contents with next address according to our ordering. Go to 2.

Theorem

A language is Turing recognizable [decidable] if and only if some nondeterministic Turing machine recognizes [decides] it.

Theorem

A language is Turing recognizable [decidable] if and only if some nondeterministic Turing machine recognizes [decides] it.

A little extra work needed for decidability result! \rightarrow Exercise 3.3 in book!
Enumerators

- An enumerator is a slightly altered Turing machine:
- It has a working tape and an attached printer
- initializes with an empty working tape, taking no input
- throughout its computation, it can output strings using the printer
- If the enumerator does not halt, it can potentially output infinitely many strings

Theorem

A language is Turing-recognizable iff there exists an enumerator that enumerates it.

Theorem

A language is Turing-recognizable iff there exists an enumerator that enumerates it.

Proof:

• Assume we have an enumerator *E*. We want to construct a Turing machine A that accepts all the words that *E* enumerates.

Theorem

A language is Turing-recognizable iff there exists an enumerator that enumerates it.

Proof:

• Assume we have an enumerator *E*. We want to construct a Turing machine A that accepts all the words that *E* enumerates.

A = On input w

- 1. Run E. Every time E prints a string, compare to w.
- 2. If *w* appears in the output of *E*, *accept*.

Theorem

A language is Turing-recognizable iff there exists an enumerator that enumerates it.

Proof:

• Now, let A be a Turing machine. We want to construct an enumerator that enumerates L(A).

Theorem

A language is Turing-recognizable iff there exists an enumerator that enumerates it.

Proof:

- Now, let A be a Turing machine. We want to construct an enumerator that enumerates L(A).
- Le Σ be the alphabet of L(A). Then we can order all strings in Σ* (first list all strings of length 1, then of length 2, etc).

Theorem

A language is Turing-recognizable iff there exists an enumerator that enumerates it.

Proof:

- Now, let A be a Turing machine. We want to construct an enumerator that enumerates L(A).
- Le Σ be the alphabet of L(A). Then we can order all strings in Σ* (first list all strings of length 1, then of length 2, etc). Label them s₁, s₂, s₃,.... Then we can construct an enumerator:

E =Ingore input

- 1. Repeat for i = 1, 2, 3, ...
- 2. Run A on s_1, \ldots, s_i for *i* steps.
- 3. If any computation accepts, print corresponding s_j .