INF2080 Oblig 3

Deadline: Friday April 20th 23:59

Hand-in and deadline

Hand in a single PDF file with your answers. You can scan written answers and compile the scans into a PDF file, but make sure the pages are correctly oriented, and that they are readable. Your answer may be in English or a Norwegian-like language.

Hand in your answers using Devilry. Deadline is April 20th, at 23:59.

Definitions

A *literal* is a formula on the form X or \overline{X} , where X is a variable (i.e., atomic formula). A formula ϕ is on *Conjunctive Normal Form* (CNF) if

$$\phi = (l_1^1 \lor \ldots \lor l_{k_1}^1) \land \ldots \land (l_1^n \lor \ldots \lor l_{k_n}^n)$$

where l_i^j is the *i*-th literal of the *j*-th clause, and k_m is the number of literals in the *m*-th clause. A formula ϕ is on *Disjunctive Normal Form* (DNF) if

$$\phi = (l_1^1 \wedge \ldots \wedge l_{k_1}^1) \vee \ldots \vee (l_1^n \wedge \ldots \wedge l_{k_n}^n).$$

We define the following languages:

 $CNFSAT = \{\phi \mid \phi \text{ is on CNF, and } \phi \text{ is satisfiable} \}$ $DNFSAT = \{\phi \mid \phi \text{ is on DNF, and } \phi \text{ is satisfiable} \}$ $CNFUNSAT = \{\phi \mid \phi \text{ is on CNF, and } \phi \text{ is unsatisfiable} \}$ $DNFUNSAT = \{\phi \mid \phi \text{ is on DNF, and } \phi \text{ is unsatisfiable} \}$ $CNFTAUT = \{\phi \mid \phi \text{ is on CNF, and } \phi \text{ is a tautology} \}$ $DNFTAUT = \{\phi \mid \phi \text{ is on DNF, and } \phi \text{ is a tautology} \}$

We define the complexity class coNP as the class of languages that are the complements of languages in NP. Formally, let A be a language. Then $A \in NP$ if and only if $\overline{A} \in coNP$.

A language B is coNP-complete if (i) B is in coNP, and (ii) every language A in coNP is polynomial time reducible to B (i.e., $A \leq_P B$).

When answering the following problems, assume that

 $P \neq NP$ and $NP \neq coNP$.

Problem 1

At least one of the above languages is in P. Identify them, and prove that they are in P.

Problem 2

At least one of the above languages is NP-complete. Identify them, and prove that they are NP-complete.

Problem 3

At least one of the above languages is coNP-complete. Identify them, and prove that they are coNP-complete.