INF2080

Oblig 3

Deadline: Friday April 20th 23:59

Hand-in and deadline

Hand in a single PDF file with your answers. You can scan written answers and compile the scans into a PDF file, but make sure the pages are correctly oriented, and that they are readable. Your answer may be in English or a Norwegian-like language.

Hand in your answers using Devilry. Deadline is April 20th, at 23:59.

Definitions

A literal is a formula on the form X or \bar{X}, where X is a variable (i.e., atomic formula). A formula ϕ is on Conjunctive Normal Form (CNF) if

$$
\phi=\left(l_{1}^{1} \vee \ldots \vee l_{k_{1}}^{1}\right) \wedge \ldots \wedge\left(l_{1}^{n} \vee \ldots \vee l_{k_{n}}^{n}\right),
$$

where l_{i}^{j} is the i-th literal of the j-th clause, and k_{m} is the number of literals in the m-th clause. A formula ϕ is on Disjunctive Normal Form (DNF) if

$$
\phi=\left(l_{1}^{1} \wedge \ldots \wedge l_{k_{1}}^{1}\right) \vee \ldots \vee\left(l_{1}^{n} \wedge \ldots \wedge l_{k_{n}}^{n}\right)
$$

We define the following languages:

$$
\begin{aligned}
\text { CNFSAT } & =\{\phi \mid \phi \text { is on CNF, and } \phi \text { is satisfiable }\} \\
\text { DNFSAT } & =\{\phi \mid \phi \text { is on DNF, and } \phi \text { is satisfiable }\} \\
\text { CNFUNSAT } & =\{\phi \mid \phi \text { is on CNF, and } \phi \text { is unsatisfiable }\} \\
\text { DNFUNSAT } & =\{\phi \mid \phi \text { is on DNF, and } \phi \text { is unsatisfiable }\} \\
\text { CNFTAUT } & =\{\phi \mid \phi \text { is on CNF, and } \phi \text { is a tautology }\} \\
\text { DNFTAUT } & =\{\phi \mid \phi \text { is on DNF, and } \phi \text { is a tautology }\}
\end{aligned}
$$

We define the complexity class coNP as the class of languages that are the complements of languages in $N P$. Formally, let A be a language. Then $A \in N P$ if and only if $\bar{A} \in c o N P$.

A language B is coNP-complete if (i) B is in coNP, and (ii) every language A in $c o N P$ is polynomial time reducible to B (i.e., $A \leq_{P} B$).

When answering the following problems, assume that

$$
P \neq N P \quad \text { and } \quad N P \neq c o N P .
$$

Problem 1

At least one of the above languages is in P. Identify them, and prove that they are in P .

Problem 2

At least one of the above languages is $N P$-complete. Identify them, and prove that they are $N P$-complete.

Problem 3

At least one of the above languages is coNP-complete. Identify them, and prove that they are coNP-complete.

