
Universitetet i Oslo
Institutt for Informatikk

INF2220: algorithms and data structures

Mandatory assignment 2

Issued: 21. 09. 2017

Deadline: 10. 10. 2017

1 General description: project planner

In this assignment, you are going to develop a project planning tool. A project
consists of tasks, each taking an estimated time and certain manpower to complete.

Figure 1 shows an example project, where a project with eight tasks is depicted
as a directed graph. Each task is represented as a node with a unique identity, time
estimate (T), and manpower requirements (M). The dependency between two tasks
is represented as a directed edge.

T=3
M=4

1

T=5
M=2

2

T=1
M=2

3

T=2
M=4

4 T=4
M=3

5

T=8
M=4

6

T=3
M=2

7

T=1
M=3

8

Figure 1: A sample directed graph of a project

2 Problems

Your implementation of the project planner should solve the following problems:

www.uio.no
http://www.ifi.uio.no

21. 09. 2017

Realizability

Is the project realizable? Considering only the task dependencies (i.e., ignoring
manpower and time information). A project is unrealizable if the dependency graph
includes one or more cycles (it is not possible to realize the project if task 1 has to
be completed before task 2 can be started and task 1 cannot be started until task 2
is completed).

If the project is not realizable your program should find a cycle and print the
cycle before it finally terminates. A cycle comprises of all the nodes in the path
with the start and finish being the same node. All of these nodes must be printed.

NOTE: Your program does not have to find all cycles if there are more than one,
just one of them.

Optimal time schedule

If the project is realizable the program should plan an ideal time schedule, so that
the project is finished as early as possible. The plan should be given by describing
the earliest start and finishing time of each task.

In this assignment we will assume to have infinite manpower. This means that
a task can be started as soon as all of its dependencies are finished. For example,
in Figure 1 task 6 cannot be started until task 3 and 4 have been completed. This
also means that multiple tasks might have to be executed simultaneously in an ideal
plan.

NOTE: This is not parallel programming. This assignment does not include
threads. You should use one or more graph algorithms to calculate these times.

Latest start, slack and critical tasks

Because a task can depend on multiple tasks, some tasks can be delayed without
delaying the overall project completion time.

In Figure 1 task 1 can be delayed at least 2 time units as task 3 also must wait
for task 2 which takes longer time than task 1. But task 3 might also be delayed
because task 5 can be delayed as task 6 takes very long time increasing the maximum
time task 1 can be delayed. When a task can be delayed we say that it has positive
slack (ie. task 1 has 3 slack).

Task 2, 4, 6 and 7 may not be delayed though as they represent the longest path
(in time steps) through the graph. Tasks that may not be delayed critical and have
0 slack.

Your program should calculate the latest possible finishing time for a task with-
out delaying the overall project completion time as well as slack and whether a task
is critical.

2

21. 09. 2017

3 What should be printed?

The program should print a simulation of the execution of the project. I.e the time
schedule including the starting times, finishing times and the manpower used at all
times.

Listing 1: Suggested output
Time: 0 Starting: 1

Starting: 2

Current staff: 6

Time: 3 Finished: 1

Current staff: 2

Time: 5 Finished: 2

Starting: 3

Starting: 4

Current staff: 6

Time: 6 Finished: 3

Starting: 5

Current staff: 7

Time: 7 Finished: 4

Starting: 6

Current staff: 7

Time: 10 Finished: 5

Current staff: 4

Time: 15 Finished: 6

Starting: 7

Starting: 8

Current staff: 5

Time: 16 Finished: 8

Current staff: 2

Time: 18 Finished: 7

**** Shortest possible project execution is 18 ****

It should also print a list of all tasks with the following information:

• Identity number

• Name

• Time needed to finish the task

• Manpower required to complete the task

• Earliest starting time

• Latest starting time

• Slack

3

21. 09. 2017

• A list of tasks (identities) which depend on this task

4 Guidelines & hints for the implementation

Reading input files and constructing the graph

A project is given by an input file. At the top of this file is the total number of tasks in
the project. The data format of the input file will be a list of task definitions, where each
of them is a sequence of the following data:

Identity of this task integer
Name of this task a string
Time estimate for this task integer
Manpower requirements integer
dependency edges A sequence of identities that states which

tasks must be completed before this task
can start (its predecessors). This list is
terminated by a 0.

NOTE: Task ID’s are always in the range 1 to num tasks.

To represent the tasks in a graph you can use the following class:

class Task {

int id , time , staff;

String name;

int earliestStart , latestStart;

List <Task > outEdges;

int cntPredecessors;

}

Remember to test your code thoroughly, and try to check for different corner cases.
Remember that a set of jobs can have multiple starting nodes.

5 How to deliver

The assignment should be carried out individually and delivered through https://devilry.ifi.uio.no/.

• The implementation language is Java.

• Your implementation must compile on the Linux machines at the University and
run either with the command:

java Oblig2 <projectName>.txt

where the argument of the Oblig2 program is input file specifying the project.

• Your delivery should contain

– Compilable (and afterwards runnable) source file(s) of your implementation.

4

21. 09. 2017

– A file named report.txt in which you should state the complexity of you
implementation and justify the stated complexity. If you have different com-
plexity for each question, discuss them separately.

– A file named output.txt in which you put the feedback (print out) from sys-
tem during execution of project buildhouse1, buildhouse2 and buildrail.

– A README-file which contains:

1. How to compile your program (ie. javac *.java)

2. Which file includes the main-method

3. Any assumptions you have made when implementing the assignment

4. Any peculiarities about your implementation

5. The status of your delivery (what works and what does not)

6. Give credit if your code is heavily influenced by some source (ie. teaching
material)

Good luck!

5

	General description: project planner
	Problems
	What should be printed?
	Guidelines & hints for the implementation
	How to deliver

