
UNIVERSITY OF OSLO
Faculty of mathematics and natural sciences

Examination in INF2220 — Algorithms and data structures

Day of examination: 15. desember 2010

Examination hours: 14.30 – 18.30

This problem set consists of 18 pages.

Appendices: None

Permitted aids: All printed and written

Please make sure that your copy of the problem set is
complete before you attempt to answer anything.

Contents
1 Binary Search Tree (weight 15%) page 2
2 Sorting (weight 20%) page 3
3 Huffman Coding (weight 10%) page 6
4 Parsed Expression (weight 25%) page 9
5 Miscellancious (weight 15%) page 14
6 Common Subset (weight 15%) page 15

Some general advice:

• Make sure your handwriting is easy to read (unreadable answers are
always wrong . . .)

• Remember to justify your answers.

• Keep your comments short and concise. If you use well known data-
structures (list, set, map, binary-tree) there is no need to explain how they
work or behave. In general: when using abstract data types from the library,
you can use them without explaining what they do.

• The weight of a problem indicates how difficult it is estimated to be. You
may take that into account as you organize your time.

• Some questions contain sentences like “Assume a collection (or set . . .) of
this-and-that . . . ”. The word “collection” or “set” in this context does not
mean an implementation of the Java Collection or Set interface, it is just
an English word. When referring to concrete Java classes/interfaces, we use
capital letters, i.e., Collection.

(Continued on page 2.)

Examination in INF2220, 15. desember 2010 Page 2

Problem 1 Binary Search Tree (weight 15%)

1a Insert Nodes (weight 5%)
Start with an empty binary search tree and insert these values (in this order) 9,
1, 3, 10, 4, 6, 7 and 8. Draw the resulting tree.

Solution:

9

1

3

4

6

7

8

10

Hints for solving: That should go very fast. Note that all keys are different.
There is only one solution. The question does not ask to show the series of trees
in the individual steps, so one does not have to show that.

1b Logarithmic time (weight 5%)
Is it possible to locate elements in the binary tree in logarithmic (log2) time?
Justify your answer.

Solution: No it’s not possible since the tree is out of balance, it contains 8 elements,
log2(8) = 3, the tree is higher than that.

Hints for solving: The question is kind of tricky, actually. Questions like
logarthimic time make sense, in my eyes, only asymptocically. This question
refers (not very clear also) to one given and quite unbalanced tree. Since the
tree is fixed, the question strictly speaking makes no sense. Especially no one
has ever said that one level in a tree is “time one”. That makes no sense since in
particular we discussed time complexity up-to a constant.
The proposed solution (and I guess many people “got the answer”) is: logarithmic
time complexity is for balanced trees (or for the average). This one is pretty
unbalanced, so the answer is no. But the question is not really good.

(Continued on page 3.)

Examination in INF2220, 15. desember 2010 Page 3

1c Remove nodes (weight 5%)
Remove the values 1 and 3 from your binary tree. Draw the resulting tree.

Solution:

9

4

6

7

8

10

Hints for solving: Note As long as the binary search tree, still is a binary
search tree after the nodes have been removed, this assignment should be ok.
Different removal schemes may lead to different trees (? is that true).
The way that we have learned deletion is that there are 3 different situations.
Leaves, one child nodes, two child nodes. The cases here are not the hardest, we
remove only nodes with one child. In the lecture we said, we single child then just
“jumps over” the one deleted. That’s in my eyes the only sensible (but perhaps not
logically imaginable) way of dealing with it, so there is actually only one possible
result.
One (not too smart) alternative could be to use the procedure for 2-children nodes
also in cases here. However, that does not lead to a different result: it works like
this: one replaces the deleted node with the node with the smallest key in the left
subtree. In this particular tree, where the subtree is just a list, that gives the same
result here. One also sees a weeknees if one uses the more complex 2-children-
deletion process in the simpler case, because there might be the situation, that
there is no right subtree, so one has to have a special case distinction, which
again treats the one-child case in a specially manner.
However, if the sub-tree would not be linear, using the 2-children-approach for
just one child would give a different result. However, as said, not in this particular
task, so the result, as far as I see it, is unique.

Problem 2 Sorting (weight 20%)
Look at the method sorted given in Figure 1 and determine the following.

2a Classification (weight 5%)
Is this a value or comparison based sorting algorithm? Justify your answer.

Solution: It is value based, no comparison of the elements are ever done, we just
allocate buckets for all possible values and update how many elements that fall into each
bucket.

(Continued on page 4.)

Examination in INF2220, 15. desember 2010 Page 4

Hints for solving: That should again be simple, if one remembers the sorting
stuff. It’s a typical value based algorithm. It’s easy to see in that the elements
are not compared. Of course there are some “comparisons” in the algorithm, but
that’s indices in loops. Even if the understanding of the algorithm may take some
time, the general feeling that this is not a comparison-based algothim should be
fast.

2b Time Complexity (weight 5%)
What is the worst case time complexity of this method, given as O(n, m) where:

1. n = input.length

2. m = max value of input array

Solution:

2c Time Complexity (weight 5%)
The first loop: O(n, m) = n

for (int i = 0 ; i < input . length ; i++) {
i f (input [i] > max) {

max = input [i] ;
}

}

The second loop: O(n, m) = n

for (int i = 0 ; i < input . length ; i++) {
b [input [i]]++;

}

The third loop: O(n, m) = m + n

for (int i = 0 ; i < b . length ; i++) {
while (b [i] > 0) {

sort [counter] = i ;
b [i]−−;
counter ++;

}
}

NOTE The inner while loop can only be executed n times, since we can fill at most n
buckets.
Total time complexity:
O(n, m) = n + n + m + n = 3n + m (linear time complexity: n).

As bigO, they could state O(n, m) = O(n+m) with constants and so on removed, and with
n, m→∞ this leads to O(2n)→ O(n).

(Continued on page 5.)

Examination in INF2220, 15. desember 2010 Page 5

Hints for solving: Again, in principle one should be able to answer that
question without really understanding what the algo does, just by applying
“complexity thinking”. A first observation is: the algorithm is not recursive. That
typically makes it easier. The complexity comes thus from the loops only. We have
to check therefore all the loops, and in particular find out how they depend on the
specified input (as given by the question), how they potentially depend on each
other, in particular whether they are nested or sequentially composed. In this
case we have 4 loops, 2 are nested. We also keep an eye on the “worst-case” part
of the question. Let’s go through the 3 sequentially composed loops in the body of
the sorted function.

1. O(n). That’s obvious, the upper bound is directly given as one of the
parameters. For that loop, there is no difference between worst/best and thus
average case. Note in particular that it does not matter wether the internal
condition is true or false: it does not make a difference, complexity-wise. Of
course, if the conditional is always false (“best case”) or to be expected false
50% of the time, the loop will be faster, but it’s only a constant factor, so it
does not matter.

2. same for the second loop, here it’s even more obvious that the worst/best case
are identical.

3. here now we have a nested loop, and the exit condition(s) depend not as
obvious as before on the “input” parameters. The other loop is the length of
the array which is the given input parameter m⇒ O(m).

Now the inner loop is more tricky, and one has to now understand the
algorithm, in particular, one has to understand what the second loop has
done. What is unusual in this task is the following: typically, when
encountering nested loops, there will be a multiplication of their complexity.
If one would do that here, that would lead to a too imprecise approximation.
The point is that the different nested while-loops depend on each other.
Here’s the naive approach, considering them independent. The inner while
loop is determined by the value of b[i]. Now that is determined by the
2nd loop, and that’s where one has to understand the algorithm (or at least
it helps). Without deep understanding we see in the second loop that the
array b (the “buckets”) are increased exactly n-times. Depending on the
input, of course, different buckets are increased. In the worst case, it’s only
one particular bucket which is increased (so everything “goes into the same
bucket”). So the maximal value there is n. If one stops thinking now, that
leads to the following worst-case estimation

O(n×m)

What has been ignored is that even if it’s correct that the highest number
a bucket may contain is n and that this is the worst-case complexity of the
inner loop, they different inner loops are not independent since the different
buckets are not independent. The second loop increase the whole bucket
array n-times, typically spreading it over different individual buckets or
slots. Therefore, the inner while-loops should not be considered independent

(Continued on page 6.)

Examination in INF2220, 15. desember 2010 Page 6

but are altogether executed n times, and again that gives O(n). Counting
now only how many times the inner commands (inside the inner loop) are
executed would be to simple, however. It ignores the input parameter m, and
the task explicitly request to take that into account. If the maximal value
is very large, but only very few numbers, then the 3rd one still executes m
times, and even if many of the inner while-loops are “empty” each iteration
still costs some (constant) time. So that gives O(n + m)

2d Average case (weight 5%)
Does the average case time complexity differ from the worst case complexity?
Justify your answer.

Solution: The average case time complexity is identical to the worst case complexity,
no matter what values our input array holds, the exact same steps are preformed.

2e Weakness (weight 5%)
That it can’t handle negative values is obviously a weakness, can you name
another weaknesses with this approach?

Solution: The major weakness with this type of bucket sort is that large values
requires you to allocate a very large array, i.e., the bucket array. If you want to sort
an array of 2 elements, and one of the elements have a value of 1000000, you need to
allocate an int array with 1000000 elements.

Problem 3 Huffman Coding (weight 10%)
Assume that an input file has given you the following frequency table:

• a: 9

• b: 2

• c: 4

• d: 2

• e: 1

• f: 1

3a Huffman tree (weight 10%)
Draw a Huffman tree based on the frequency table.

(Continued on page 7.)

Examination in INF2220, 15. desember 2010 Page 7

// assume p o s i t i v e input values

int [] sorted (int [] input) {

int [] sort = new int [input . length] ;
int max = 0;

for (int i = 0 ; i < input . length ; i++) {
i f (input [i] > max) {

max = input [i] ;
}

}

int [] b = new int [max + 1] ; // a l l values are 0

for (int i = 0 ; i < input . length ; i++) {
b [input [i]]++;

}

int counter = 0;

for (int i = 0 ; i < b . length ; i++) {
while (b [i] > 0) {

sort [counter] = i ;
b [i]−−;
counter ++;

}
}

return sort ;
}

Figure 1: sorted

Solution:

(Continued on page 8.)

Examination in INF2220, 15. desember 2010 Page 8

a

c

b

f e

d

NOTE There are more than one legal Huffman tree, but a and c should get the shortest
paths, and e and f should get the longest paths.

Hints for solving:
That is a task which again should go without much thinking, if one remembered
the Huffman stuff. Note also the (obvious) fact that unlike for heaps and also
search trees, one does not have a choice where to put the “larger values”. For
heap, there are max heaps and min-heaps, for BST I might have the choice for
sorting increasingly or decreasingling. For Huffman encoding, assuming that one
wants a minimal size of the file, one has no such choice. One has to start with the
smallest ones and proceeds in a greedy manner (one could use a p-queue for that).
If one has forgotten whether the greedy algo should always take the minimal
ones or the maximals? That should be easy as well. First, remember that higher
frequencies means that the letter is more often, and this it should be higher up
the in the tree and the ones with the lowest frequencies further down. However,
due to the prefix condition, of course all letters are at the leaves, i.e., further
down means further away from the root. Since the tree builds up by taking too
trees/nodes and joining them together, intuitively the later a node is added, the
more probably it’s close to the root and the ones added first will be further way.
Therefore, we must start with the minimal ones, and greedy takes always the 2
smallest.
The task does not seem to state one should make intermediate stages. Anyway, in
our example it’s

e f: 2
[e f] d : 4
b [[e f] d] : 6
c [b [[e f] d]] : 10
a [c [b [[e f] d]]]: 19

(Continued on page 9.)

Examination in INF2220, 15. desember 2010 Page 9

In the stages, there are points where one can choose to continue different ways.
Note also: if one does it on paper, one is like “to grow a tree”, at least in this
example one can do that. That’s however, not how the algorithm works and there
are other examples where that does not work. What is slightly misleading when
doing it like this is to assume that the “growing tree” part is always one of the two
minimal elements to choose from. That seems to be the case in the example, so
that could work here.
One could do also a different choices. For instance the following

a

c

e f

b d

Note: the code of d (and d) in these two concoding is 4 bit long or 5 bit long, in
other words the trees are differently balanced! Nonetheless, they are both optimal
as far as the given text is concerned.

Problem 4 Parsed Expression (weight 25%)
Assume that a parser for binary calculations generates a tree, where each leaf-
node corresponds to a number, all other nodes corresponds to a binary operator
(+,−,×, /). In Figure 2 you can see two examples. Each node holds a token
(String), which is either the string representation of a number, or the string
representation of a binary operator. The expressions are represented by the class
BinOp, shown in Figure 3.

4a String representation (weight 5%)
Binary operators cannot be applied in any order, so we must make sure the order
of application is clear from our String representation. I.e., the expressions a
from Figure 2 should not be represented as “4 × 4 + 7” since it’s unclear if we
mean: (4 × 4) + 7 = 23 or 4 × (4 + 7) = 44. Implement the str method inside
Node, and group operations together with parenthesis, to create an unambiguous
String representation of the expression represented by a BinOp object. Example
from Figure 2 a.toString(): “((4× 4) + 7)”

Solution: Pretty simple. It’s just printing parentheses + recursion.

(Continued on page 10.)

Examination in INF2220, 15. desember 2010 Page 10

a b+

× 7

4 4

−

14 /

+ 3

14 7

Figure 2: Parsed Expression

public class BinOp{

Node root ;

public String toString () { return root . s tr () ; }
public double eval () { return root . eval () ; }
public String pol ish () { return root . pol ish () ; }

class Node {

String token ;
Node l e f t , r ight ;

String str () { /* TODO */ }
double eval () { /* TODO */ }
String pol ish () { /* TODO */ }

boolean isLeaf () { // u t i l i t y function
return l e f t == null && right == null ;

}
}

}

Figure 3: BinOp

String str () {
i f (isLeaf ()) {

return token ;
} else {

return String . format (" (%s %s %s) " ,
l e f t . s t r () , token , r ight . s tr ()) ;

}
}

(Continued on page 11.)

Examination in INF2220, 15. desember 2010 Page 11

4b Evaluate (weight 5%)
Implement the eval method inside the Node class which returns the value of the
expression as a double.
Note: The elements inside the tree which represent numbers can be converted
with the function Double.parseDouble(String s).

Solution:

double eval () {
i f (isLeaf ()) {

return Double . parseDouble (token) ;
} else {

i f (token . equals ("+")) {
return l e f t . eval () + r ight . eval () ;

} else i f (token . equals ("−")) {
return l e f t . eval () − r ight . eval () ;

} else i f (token . equals (" * ")) {
return l e f t . eval () * r ight . eval () ;

} else { // token . equals (" / "))
return l e f t . eval () / r ight . eval () ;

}
}

}

Hints for solving: Also this one is equivlantly complex. It’s again just a
“homomorphism”, calculating by “structural induction” over the expression, which
means in terms of the tree, but recursion and bottom-up. The only additional
“complexity” is the case-switch.

4c Polish Notation (weight 5%)
To use parentheses to group binary operations is not desirable in all circum-
stances, so we want to be able to represent our expressions in a unambiguous
way without parentheses. Polish notation1 achieves this, by giving the operator
prior to its operands/numbers.

• a: + × 4 4 7

• b: − 14 / + 14 7 3

Implement the polish method inside the Node class, which returns the polish
notation of the expression.

Solution:

String pol ish () {
i f (isLeaf ()) {

return token ;

1Invented by Polish logician Jan Lukasiewicz

(Continued on page 12.)

Examination in INF2220, 15. desember 2010 Page 12

} else {
return String . format ("%s %s %s " , token , l e f t . pol ish () , r ight . pol ish ()) ;

}
}

Hints for solving: Note much more difficult (except perhaps for understanding
the task). It’s actually the same as for the infix notation, excect that the
paretheses are not needed (well, not wanted actually as specified by the task)
and that the order of the printout is changed, of course.

4d Polish Calculator (weight 10%)
Below you see a calculation of the expression b from Figure 2 in polish notation.

• − 14 / + 14 7 3

• − 14 / (+ 14 7) 3

• − 14 / 21 3

• − 14 (/ 21 3)

• − 14 7

• (− 14 7)

• 7

From left to right apply an operator as soon as you find two operands/numbers.
Assume that a String expression given in polish notation, can be tokenized by a
call to the String.split method, such that:

String [] tokens = polishExpression . s p l i t (" ") ;

gives you an array of tokens which are either String represented numbers, or
operators. Assume you have the following utility methods.

boolean isOp (String token) {
/* implementation l e f t out */

}

String strApply (String op , String v1 , String v2) {
/* implementation l e f t out */

}

/* −−−−−−−−−−−−−−−−− Example usage −−−−−−−−−−−−−−−−− */

isOp ("+") == true
isOp (" * ") == true
isOp ("5") == false

(Continued on page 13.)

Examination in INF2220, 15. desember 2010 Page 13

strApply ("+" , "40 " , "1") . equals ("41") == true
strApply (" * " , "35 " , "2") . equals ("70") == true
strApply (" / " , "5 " , "2 ") . equals (" 2.5 ") == true

/* −−−−−−−−−−−−−−−−− Example usage −−−−−−−−−−−−−−−−− */

Choose an appropriate data structure and implement the method with the
signature below, which takes the String representation of an expression in polish
notation, and computes the result.

double polishEval (String polishExpression) {
/* TODO */

}

Solution:

4e Polish Calculator (weight 10%)

public double polishEval (String expression) {

String [] tokens = expression . s p l i t (" ") ;

// made a l i t t l e stack implementation here
// but java . u t i l . Stack<String > should do :−)

StrStack estack = new StrStack (tokens . length +1) ;
StrStack unused = new StrStack (tokens . length +1) ;

for (int i = tokens . length − 1; i >= 0; i−−){
unused . push (tokens [i]) ;

}

String v1 , v2 , op ;

while (unused . hasMore ()) {

estack . push (unused . pop ()) ;

while (estack . s ize () > 2) {
v1 = estack . pop () ;
v2 = estack . pop () ;
i f (notOp (v1) && notOp (v2)) {

op = estack . pop () ;
estack . push (strOp (op , v1 , v2)) ;

} else {
estack . push (v2) ;
estack . push (v1) ;
break ;

}
}

}

(Continued on page 14.)

Examination in INF2220, 15. desember 2010 Page 14

return Double . parseDouble (estack . pop ()) ;
}

Problem 5 Miscellancious (weight 15%)

5a Topological sort (weight 7.5%)
Assume that you have a dependency graph with the following nodes:
{Q, B, J, P, A, Z}. There are only 4 legal topological orderings of the graph, which
are listed below.

• Q, A, B, J, Z, P

• Q, B, A, J, Z, P

• Q, A, B, Z, J, P

• Q, B, A, Z, J, P

Draw a graph that meet the criteria.

Solution:

Q

B

A

J

Z

P

5b Boyer Moore (weight 7.5%)
Calculate the good-suffix-shift for the needle: skjeskj

Solution:

goodshift[0] : !j 1
goodshift[1] : !kj 7
goodshift[2] : !skj 7
goodshift[3] : !eskj 4
goodshift[4] : !jeskj 4
goodshift[5] : !kjeskj 4
goodshift[6] : !skjeskj 4

(Continued on page 15.)

Examination in INF2220, 15. desember 2010 Page 15

Problem 6 Common Subset (weight 15%)
Assume that you have two arrays char[] a1 and char[] a2 both containing
1-byte2 characters where a1.length == N and a2.length == M.

6a Implementation (weight 10%)
Implement a method with the signature found in Figure 4 that returns an array
of characters that are present in both a1 and a2. The characters in the returned
array can come in arbitrary order.

// returns characters which are contained in both a1 and a2

char [] both (char [] a1 , char [] a2) ;

Figure 4: Signature of both function

Solution:

static char [] both (char [] a1 , char [] a2) {

final int CHAR_MAX = 256;
int count = 0;
int [] cache = new int [CHAR_MAX] ; // assume 1−byte i n i t i a l i z e d to 0

// loop 1
for (int i = 0 ; i < a1 . length ; i ++){

i f (cache [(int) a1 [i]] == 0) { cache [(int) a1 [i]]++; }
}

// loop 2
for (int i = 0 ; i < a2 . length ; i ++){

i f (cache [(int) a2 [i]] > 0) {
count ++;
cache [(int) a2 [i]] = −1;

}
}

int tmp = 0;
char [] resul t = new char [count] ;

// loop 3
for (int i = 0 ; i < CHAR_MAX; i ++){

i f (cache [i] == −1) {
resul t [tmp++] = (char) i ;

}
}

return resul t ;
}

21-byte characters means that their int values are in the range 0. . . 255

(Continued on page 16.)

Examination in INF2220, 15. desember 2010 Page 16

Hints for solving: One just has to think about it a bit. The challenge is the
complexity and not to do the immediate thing, a nested loop. The solution as
shown has of course 3 loops but they are not nested. The naiv approach would
make 2 loops, each one through the two arrays: Starting (e.g.) with a1: for all
elements in a1, go (= loop) through all elements in a2; if you find a “match”, store
it into the result array (or set) (and exit the loop for optimization). This double-
loop can be optimized in that one remembers if one has seen in the first array a
letter already, then one does not need to check it again in the second one.
The overall complexity would be of course n1 × n2, optimized or not.
The algo here is smarter. If one looks at the previous one, certain things seem to
be done more than once, and that’s always a source of optimization. Now, what is
done to often? The outermost loop not: certainly we need to go through the first
array fully (actually through both arrays, of course).3
Now the problem is the inner loop: for all entries in the first array we go through
the inner array over and over again. The trick must be to avoid that; we want to
go through the second array only once, as well. Instead of 2 nested loops we want
2 separate one. That’s the difference between multiplication and addition.
How can we achieve that? One way of thinking is: if we don’t want to nest the
loops, we have to remember relevant information when doing the first loop so
that it’s available when going to the second one, because the second one is not
completely afterwards the first. Now the question is: what to remember. It may
be clear already by now, but let’s think about it systematically. If the loops are
nested, the index of the outer loop, say i, represents (the occurency of a) letter
in the first array, namely a[i]. With the inner-loop solution, we go through the
second array, and check whether we see a[i] again, and if so remember it for the
final result. There we don’t need to remember a[i] of the first array, as soon as the
index i goes to i + +, we have treated that one and we can forget it. Now, as said,
we cannot forget it, the question is, what do we have to remember? Also that is
clear. It’s unimportant that position i, the letter a[i] was found, what matters is
the fact that letter a[i] was found? How do we remember that?
One way of doing it is: to make an array for all letters of the alphabet. That’s done
in the shown solution. The disadvantage is: the alphabet of available characters
must be known statically in advance. Anyway, the algorithm put’s a flag (integer
1)in the first loop if it sees a letter. The second loop goes through the second array
and checks (using the cache) whether the corresponding letter had occured in the
first array, if so they set it to a third value (-1). One could of course also work with
booleans, a bit more logical, but anyway. The second loop also keeps track on the
number of common matches (in the counter count) which is needed to allocated
the result array which is filled by the third loop.

6b Complexity (weight 5)
What is the worst case time complexity of your implementation. Justify your
answer.

3The only situation which would allow not to look at the whole array is: all letters of the
(previously known) alphabet have already been treated. In that case one may exit the loop. That
would, however, not affect the average/worst case complexity.

(Continued on page 17.)

Examination in INF2220, 15. desember 2010 Page 17

Solution:

• loop 1: N

• loop 2: M

• loop 3: 256 (constant)

• O(N, M) = N + M + 256

• O(N, M) = N + M (Ignoring constants)

• As N, M →∞ we get O(N, M)→ O(2N)→ O(N)

• Linear time complexity

Good luck!

(Continued on page 18.)

Examination in INF2220, 15. desember 2010 Page 18

Method Interfaces
Here is a list of methods that you may find useful during the exam, they are all
taken from the standard library of Java.

java . u t i l . Set<E>

* boolean add (E e) // add element e
* boolean remove (Object o) // remove Object o
* boolean contains (Object o) // i s Object o an element ?
* int s ize () // number of elements

java . u t i l . List <E>

* boolean add (E e) // add element e to l i s t
* void add (E e , int index) // add element e to index
* boolean remove (Object o) // remove Object o
* E remove (int index) // remove element at index
* E get (int index) // r e t r i e v e element at index
* int indexOf (Object o) // get index of Object o
* boolean contains (Object o) // i s Object o contained in l i s t
* int s ize () // number of elements

java . u t i l .Map<K,V>

* boolean containsKey (Object o) // i s Object o a key ?
* boolean containsValue (Object o) // i s Object o a value ?
* V put (K k , V v) // add key−value pair
* V get (Object key) // fe t ch value based on key
* V remove (Object key) // remove key−value pair
* int s ize () // number of key−value pairs
* Set<K> keySet () // s e t o f keys in Map

java . u t i l . PriorityQueue <E>

* boolean add (E e) // add element to que
* E peek () // fe t ch element with highest p r i o r i t y
* E po l l () // same as peek + de l e t e element from que
* boolean contains (Object o) // i s Object o an element in the que
* int s ize () // number of elements

