
Universitetet i Oslo
Institutt for Informatikk

A. Maus, R.K. Runde, I. Yu

INF2220: algorithms and data structures

Series 1

Topic Trees & estimation of running time (Exercises with hints for solu-
tion)

Issued: 25. 08. 2017

Classroom

Exercise 1 (Terminology of trees and tree traversal) For the given tree, determine

• what is the root?

• which are the leaves

• what’s the tree’s height

• Give the result of preorder, postorder, and inorder traversal.

• For all the nodes of the tree

– name the parent

– list the children

– list the siblings

– compute the height, depth, and size (number of nodes in the subtree).

a

/ \

/ \

/ \

b c

\ / \

d e f

/ \ / /

g h i j

\ / \

k l m

Solution: [Terminology of trees and tree traversal]

www.uio.no
http://www.ifi.uio.no

Series 1 (+ Hints for solutions) 25. 08. 2017

Nodes Parent Children Siblings Height Depth Size

a - b, c - 4 0 13

b a d c 3 1 5

c a e, f b 3 1 7

d b g, h - 2 2 4

e c i f 1 2 2

f c j e 2 2 4

g d k h 1 3 2

h d - g 0 3 1

i e - - 0 3 1

j f l, m - 1 3 3

k g - - 0 4 1

l j - m 0 4 1

m j - l 0 4 1

• root: a

• leaves: k, h, i, l, m

• tree’s depth: 4

• preorder: a, b, d, g, k, h, c, e, i, f, j, l, m
postorder: k, g, h, d, b, i, e, l, m, j, f, c, a
inorder: b, g, k, d, h, a, i, e, c, l, j, m, f

Exercise 2 (Binary search tree - insertion and deletion)

• Show the result of inserting 6, 4, 8, 5, 1, 9, 7, 11, 2 into an initially empty binary
search tree.

• Show the result of first deleting 1 (from the previously constructed tree), and then
6.

Solution: [Binary search tree - insertion and deletion]

6 7

/ \ / \

/ \ / \

4 8 4 8

/ \ / \ / \ \

1 5 7 9 2 5 9

\ \ \

2 11 11

Exercise 3 (Analysis of running time) Estimate the running time of the following
program fragments (a “big-O” analysis). In the fragments, the variable n, an integer, is
the input.

2

Series 1 (+ Hints for solutions) 25. 08. 2017

f o r (i = 0 ; i < n ; i++)
sum++;

f o r (i = 0 ; i < n ; i += 2)
sum++;

f o r (i = 0 ; i < n ; i++)
f o r (j = 0 ; j < n ; j++)

sum++;

f o r (i n t i = 0 i < n ; i++)
sum++;

f o r (i n t j = 0 j < n ; j++)
sum++;

f o r (i = 0 ; i < n ; i++)
f o r (j = 0 ; j < n∗n ; j++)

sum++;

f o r (i = 0 ; i < n ; i++)
f o r (j = 0 ; j < i ; j++)

sum++;

f o r (i = 0 ; i < n ; i++)
f o r (j = 0 ; j < n∗n ; j++)

f o r (k = 0 ; k < j ; k++)
sum++;

f o r (i = 1 ; i < n ; i = i ∗2)
sum++;

Solution: [Analysis of running time]
O(N)
O(N)
O(N2)
O(N)
O(N3)
O(N2)
O(N5)
O(logN)

Note that of course the analysis of given programs (in this exercise more of simple
program fragments/loops) is a (much) simpler problem than “runtime complexity analysis”
of a problem. When analysing a problem, one is typically interested in finding an estimation
(for instance a worst-case estimation) of the best of all possible algorithms!

Lab

Exercise 4 (Implementation of trees) Discuss how to implement a tree where each
node may have an arbitrary number of children. The elements in the tree should be
integers.

1. Write a method that returns the sum of all elements in the tree. Should the method
be recursive or non-recursive?

2. Write a recursive method that computes the depth AND height for each of the nodes
in the tree.

Remember to test the methods on some example trees.

3

Series 1 (+ Hints for solutions) 25. 08. 2017

Exercise 5 (Binary tree) Given a binary tree whose nodes are given as instances of the
following class:

c l a s s BinNode {
i n t data ;
BinNode l e f t ;
BinNode r i g h t ;

}

An empty tree is represented by the null reference.

1. Write a method int number(BinNode t) which gives back the number of nodes.

2. Write a method int sum(BinNode t) which gives back the sum of the integer data
values of all nodes in the tree.

Exercise 6 (Binary trees (2)) Revisiting the binary trees and the BinNode data struc-
ture described in Exercise 5, this exercise here is to provide a slightly different way of
solving the same 2 problems. Instead of the methods sketched in Exercise 5, provide two
methods with the (alternative) interface

int number()

int sum()

so that they are local to class BinNode, i.e. one should be able to call functions as follows:

int number = root.number();

int sum = root.sum();

Exercise 7 (Binary search trees) In this exercise you are going to implement a binary
search tree using two different approaches:

1. You are given a Tree class with an inner class Node:

public class Tree {

Node root;

private class Node {

Node right;

Node left;

int value;

Node(int value) {

this.value = value;

}

}

}

Do the following exercises without changing the Node class, i.e. let all functions be
a part of the Tree class:

(a) Implement a function that inserts a value in the BST.

4

Series 1 (+ Hints for solutions) 25. 08. 2017

(b) Implement a function that search for a value in the BST, returning a boolean
value

(c) Implement a function that returns the smallest value in the BST.

(d) Implement a function that removes a value from the BST.

2. Assume now that you don’t have a Tree class, i.e. only the structure

public class Node {

Node right;

Node left;

int value;

Node(int value) {

this.value = value;

}

}

An empty tree is refered to as a null pointer; the root is used to refer to the tree.
Implement all of the above functions as recursive methods in the Node class.

Exercise 8 (Non-unique search keys) We use a binary search tree to store a number
of elements containing an integer value (of type int) together with a number of other data.
We assume that each node has a pointer to its left, resp. right child, as usual. Different
from most examples in the lecture, we allow here that different elements can have the same
value —the other data can be different— and they are supposed to be stored in different
nodes.

1. A possible solution does the following when inserting a value: if reaching a node
carrying the same value, continue further down the three, choosing the right subtree
for equal values. Write an insert-method that implements this idea and sketch some
typical trees that result in that implementation.

2. For a tree created with the above insertion method, if we print the nodes using
inorder traversal, in which order will the nodes with the same values be printed?
In which order would they have been printed, had we instead chosen to use the left
subtree for equal values?

3. In this part of the exercise, the nodes with the same value should be put into a list
starting at the first node with that value. This list, however, requires additional
pointers, but we can do it as follows: If we insert an object and there is already
exactly one with this value in the tree, we link that element between the old node
and its right subtree. If later on more objects with the same value should be inserted,
they will be linked into a list from that second object where the left-pointer is used
as list-pointer. Sketch some examples, and write an insert method based in that
idea.

4. when printing out trees constructed as described under 3 using inorder traveral,
nodes with the same values end up in one batch. But in which order are they
actually processed? Write a modified print-method which prints nodes with the
same values in the order they had been inserted into the tree.

5

Series 1 (+ Hints for solutions) 25. 08. 2017

Exercise 9 (Frequency Tree) We want to use a binary search tree to analyze the play
Vildanden from Henrik Ibsen. First read all the words which are separated by, e.g. “;”,
“?”, etc, from the file and insert them into an initially binary search tree. The same word
in upper case and lower case should count as the same word. Each node in the tree is
corresponding to a unique word in the file. Each node should remember the frequency of
the corresponding word appear in the play.

• Create a separate frequency tree which is sorted on the frequency of each word.

• Write a sorted list of the N most frequently used words (e.g. N = 20).

• Write a list of all words having frequency between X and Y (which may be equal).

• Calculate the depth of the left and right subtrees for both the binary search tree and
the frequency tree.

6

