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Exercise 1 (Analysis of running time)

1. The following program snippet sorts an integer array int[] A = new int[n]. What’s
the order of running time for that in big-O notation.

f o r ( i n t i = 0 ; i < n ; i++) {
minj = i ;
f o r ( j = i + 1 ; j < n ; j++) {

i f (A[ j ] < A[ minj ] ) {
minj = j ;

}
}
bytt ( i , minj ) ;

}

2. What’s the order of running time for that in big-O notation for the following frag-
ment. Pay attention especially for the conditional inside the second nested loop.

f o r ( i n t i = 1 ; i <= n ; i++) {
f o r ( i n t j =1; j <= i ∗ i ; j++) {

i f ( j % i == 0) {
f o r ( i n t k = 0 ; k < j ; k++ )

sum++;
}
}
}

3. For a given n > 0, which value will be found in the variable L2 after executing the
following program snippet. The answer should be given as a function of n. Of which
order is the running time of this program in big-O notation?

i = 1 ;
L2 = −1;
whi l e ( i <= n) {

i = i ∗ 2 ;
L2++;

}
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Solution:

1. O(N2)

2. O(N4)

3. O(log2N)

Exercise 2 Big-O Fibonacci
The following program will calculates the n’th Fibonacci number. Determine the

running time in big-O notation:

i n t f i b ( i n t n) {
i f (n<=1) {

r e turn 1 ;
}
r e turn f i b (n−1) + f i b (n−2);

}

Solution: O(2n)

Exercise 3 (Height of a binary tree)

1. Exercise 4.5 in MAW.

2. Show that for a balanced tree with N nodes, the height is blog2(N)c.

Solution:

1. This can be proved by induction.

Base step h = 0: 20+1 − 1 = 2− 1 = 2

Induction step: Assume that a tree with height k has maximum 2k+1 − 1 nodes.
Prove that a tree with height k + 1 has maximum 2(k+1)+1 − 1 = 2k+2 − 1 nodes.

Proof: For a tree with height k + 1 we have:

• 1 root node

• a left subtree with maximum height k, having maximum 2k+1−1 nodes accord-
ing to the induction hypothesis

• a right subtree with maximum height k, having maximum 2k+1 − 1 nodes ac-
cording to the induction hypothesis

This gives a total of (2k+1− 1) + (2k+1− 1) + 1 = (2k+1 + 2k+1)− 1 = 2 ∗ 2k+1− 1 =
2k+2 − 1 nodes.

2. Proved by manipulation of the result from the previous exercise: N = 2h+1− 1 =⇒
2h+1 = N + 1 =⇒ log2(2

h+1) = log2(N + 1) =⇒ h + 1 = log2(N + 1) =⇒ h =
log2(N + 1)− 1 =⇒ h = blog2(N)c

Exercise 4 (Trees) Given a binary tree (not necessesarily a binary search tree), with an
arbitary number of nodes. Write pseudo-code for a function which

(a) returns the smallest value in the tree

(b) returns the largest value in the tree
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(c) returns the length of the longest path from the root to a null pointer

(d) returns the length of the shortest path from the root to a null pointer

Exercise 5 (Nodes in a binary tree)

1. Show that in a (non-empty) binary tree with N nodes, there are N + 1 null links
representing children.

2. A full node is a node with 2 children. Prove that the number of full nodes + 1 is
equal to the number of leaves in a non-empty binary tree.

Solution: [For Exercise 5] The exercise is taken from from Weiss p.160, exercise 4.4 and
4.6.

4.4 For an N-node tree, there are 2N pointers and N −1 incoming edges. Therefore,
we have 2N − (N − 1) = N + 1 NULL pointers.

4.6 We prove it by induction on the number of full nodes.

Base case: Single-node tree→ 1 leaf, 0 full node. Tree with one full node→ 2 leaves,
1 full node.

Inductive case: Assume that all binary trees with n full nodes have n + 1 leaves.

We need to show that a tree with n+1 full nodes has n + 2 leaves: A tree with n+1
full nodes can be formed from a tree with n full nodes in the following ways. First
we observe: given the tree in the induction case, we have to add 1 full node. That
can be done by turning an existing node in the given tree from a non-full node into
a full node. Alternatively: the tree is extended by a (new) subtree which contains
the additional full node. The following is the (simplified) core of the argument:

1. Make a non-full inner node, i.e., a node with 1 child, a full node by adding one
leaf node.

2. Add 2 children to a leaf node.

3. Add a tree with one full node to a leaf.

From these cases, the number of full nodes is increased by one and the number of
leaves is also increased by one. This induction is slightly simplified (but actually
captures intuitively the argument), because we are doing induction on the number
full node. Basically what is imprecise is that the cases do not cover all possibilities
in that a tree with n + 1 full nodes can be turned into one with n + 2 such nodes
(even if restricting to adding nodes at the leaves, which is ok.) If we want to capture
all such n + 2 trees we must be more careful, but the idea remains the same.

Let’s observe: a tree with no full nodes is linear (= list-like). A tree with 1 full nodes
has two leaves. This either is obvious or of course is also follows from the induction.

additonal full node: in old tree

1. Make a non-full inner node, i.e., a node with 1 child, a full node by adding
one linear tree (plus append to an arbitrary number of leaf-nodes one linear
tree).

2. Add 2 linear trees/lists as 2 children to a leaf node (and additionally append
to an arbitrary number of leaf-nodes one linear tree).
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Figure 2: Exercise 2.2

additional full node: in the appended, new tree Add not a leaf a tree with 1
full node (and additionally append to an arbitrary number of leaf-nodes one
linear tree).

From these cases, the number of full nodes is increased by one and the number of
leaves is also increased by one.

As an aside: How would one prove that a tree with 1 full node has 2 leaves? One
could say: that’s obvious (which it more or less is). If one likes more formal arguments:
by induction on the number of nodes does the job. The base case is n = 3 which is the
smallest tree with one full node. The induction should not restrict itself to add new nodes
at the leaves (otherwise one would stick to the form of the tree where the full node is at
the root).

Exercise 6 (Red-black tree) Build, step by step, red-black trees that result from in-
serting the following sequences of elements:

1. 41 38 31 12 19 8

2. A L G O R I T H M

Solution: Seen in the form of complexity measures (“Big-O”) there’s no big difference
between AVL and red-black trees (and other form of balanced trees). The trick is always
the same: balancing gives a garantee of log n worst case. The problem of the AVL trees
is mainly that they are too strict as far as balancing is concerned. They like to maintain
almost perfect balance. It’s only “+/- 1”. Especially in very large trees and when doing
frequent insertion (and/or deletions), the requires frequent rebalance. Red-black trees
allow not a constant “+/-1” condition for being balanced but much more loose “factor
two”. Beside that, they use a clever “coloring scheme” to ensure that condition. It’s
clever because one does not need to calculate the balance globally for all node and compare
whether the tree is needs rebalance or not. It suffices to check whether locally the color
conditions in the neighborhood of the interted node is satisfied or not. Also the rebalance
is done in constant time (which is less easy to see than for the AVLs).

The two resulting red-black trees are given as follows.

Exercise 7 (B-trees)
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Figure 3: Exercise 3.1
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Figure 4: Exercise 3.2
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Figure 5: Exercise 3.3

1. Assume an empty B-Tree with M = 4 and L = 4. Insert the following values in the
given order:

A B C D G H K M R W Z

Show how the tree changes step by step.

2. Assume an empty B-Tree with M = 5 and L = 5. Insert the following values in the
given order:

2 6 17 20 24 25 27 29 30 31 32 5 21 1 40 45 50 70

Show how the tree changes step by step.

3. Assume an empty B-Tree with M = 3 and L = 4.

• Insert the following values:

61 27 19 5 7 25 36 4 42 2 13 44 62 98 43 16 24 29 15

Show how the tree changes step by step.

4. Assume an empty B-Tree with M = 3 and L = 2.

• Insert the following values:

3 14 1 59 26 5 89 79

Show how the tree changes step by step.

• Delete 59, 5, 3, 1 and 26. Draw the tree after each deletion.

Solution: [B-Trees]
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Figure 6: Exercise 3.4 After insertion
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Figure 7: Exercise 3.4 After deletion

Lab

Exercise 8 (Binary search) Implement binary search in an array of integers.

Exercise 9 (Rotations) Implement zig and zig-zag rotation for arbitrary binary search
trees (i.e. without the color coding of red-black trees).

Exercise 10 (B-Trees) Write a general implementation of insertion for a B-Tree. Note
that you have to restructure the tree in case the leaf is full after the insertion.

Exercise 11 (Red-black trees) In the previous week, you were asked to analyze the
play Vildanden from Henrik Ibsen by building a binary search tree. Instead of building a
BST, use a red-black tree for the play Vildanden this week. Similarly, all the words which
are different from upper case and lower case are considered to be the same. Each node
in the tree is corresponding to a unique word in the file. Each node should remember the
frequency of the corresponding word appear in the play. Calculate the depth of the left
and right subtrees for the red-black tree, and compare with the depth of the BST from
last week.
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