UNIVERSITETET I OSLO
Institutt for Informatikk

A. Maus, R.K. Runde, I. Yu

INF2220: algorithms and data structures

Series 3

Topic Map and Hashing (Exercises with hints for solution)

Issued: 7. 09. 2016

Classroom

Exercise 1 (Hash table complexity) What is the complexity of finding order infor-
mation, such as max, min, or range of stored values from a hash table?

Solution: [of Exercise [1| Hash tables are not really made for that. In particular, they
don’t contain or represent order information. In a way, a good hashing function should
best be completely unordered

Anyway, since that’s the case, there’s no other way to determine the maximum etc
than just going throught the whole table and find out. So the complexity is O(n). Note
there is no distinction between best/worst /average case, one needs to seach through all of
it, as said.

Exercise 2 (Extendible hashing) Assume that you have an empty hashtable, and that
M = 4. Show the hash table you get by inserting the following numbers: {000100, 001000,
100000, 011011, 111000, 010100, 101010, 010101, 111001, 001010, 000111, 001001, 101110,
100100}

Solution: [of Exercise 2] See figure.ex

looo Joor [o10 [o1r [100 101 [110 [111 |

000100 001000 010100 100000 111000
000111 001001 010101 100100 111001
001010 011011 101010

101110

Figure 1: solution of

Exercise 3 (Deletion from a hash table) Explain how deletion is performed both with
probing and separate chaining hash-tables.

www.uio.no
http://www.ifi.uio.no

Series 3 (+ Hints for solutions) 7. 09. 2016

Exercise 4 (Hash table behavior) Given the input {42,39,57,3,18,5,67,13,70,26},
and a fixed table size of 13, and a hash-function H(X) = X mod 13, show the resulting

1. Linear probing hash-table

2. Separate chaining hash-table

Solution: [of Exercise [4] One may mention that exercises like that are not uncommon
in earlier exams. Not just for hash-tables, of course. Note: the solution of last year had
an error (13 and 26 should have swapped place).

1. linear probing: That one is pretty simple: just calculate mod 13, if the slot is filled
(“conflict”), move (typically) to the right until you find a free slot. Note that it’s
convenient (as is the case in Java) for those modulo-based hashing functions, that
the first slot of the array is index by OEI The hash table is rather small, but perhaps
one get’s a feeling what the problem of primary clustering is. One can compare that
with the figure below (with external chaining): for instance the linked list at slot 0
is of length 3 and hence “grows” in the cluster starting at 2 etc. such that in the
end it’s one big cluster. As a hint for an exam: if the task is (like here) to make
a separate chain and an internal probing hash table with the same data, it seems
slightly faster an less error prone to do the separate chain first. Of course: one
cannot first do the separate chains and only look at the result to construct the other
one The order of the original insertions plays a role (which is not completely
preserved in the separate chain HT).

elements: | 39 | 13 |67 |42 |3 |57 |18 |5 | 70 | 26
i: Ol 1|23 |4|5|6 |7 8|9]|10]|11]12

2. Separate chaing hash table:

The solution here is slightly inefficient. As u can see from the linked list, when
inserting an element, it’s done at the end. There is no reason to do that. It’s to
be expected that it’s slightly more efficient to insert it at the head, avoiding list
traversal. In practice there is perhaps not such a big difference. If one has a good
hashing function (and consequently not too heavy clustering) the linked lists should
be reasonably short. If they get too long one would increase the size of the array.
But still, no need to insert at the end. In the book [Weiss, p. 198, Fig 5.10] the
function List.add method (from the Java lib) is used, where the documentation
states

“Appends the specified element to the end of this list (optional opera-
tion).”

It’s to be expected that the Java implementation of linked list is more subtle that a
naive (single-)linked list, so the above remark may not be too relevant. If, however,
one makes the linked list from scratch, adding it at the beginning is more appropriate.
Note: remembering “esoteric” details from the Java library such as “remember that
the add function adds to the end” as far as Java is concerned is not exam material.
Knowing that adding to a linked list at the beginning or the end can make a difference
(depending on how it’s represented) is something one should be aware of.

!Some older/weired languages may start with 1, in which case one has to “shift” the mod-function by
one.

Series 3 (+ Hints for solutions) 7. 09. 2016

| it Jof1[2]3 4[5]6]7[8]9]10]11]12]

List 3

of 39 67 42 57

elements: | d 4

13 3 18

+ +

26 5

]

70

Exercise 5 (Hash table behavior) Given the input {4371,1323,6173,4199,4344,9679,1989},
and a fixed table size of 10, and a hash-function H(X) = X mod 10, show the resulting

1. Linear probing hash-table
2. Quadratic probing hash-table

3. Separate chaining hash-table

Solution: [of Exercise [7]

1. Linear probing hash-table

elements: | 9679 | 4371 | 1989 | 1323 | 6173 | 4344 4199
i: 0 1 2 3 4 5 6718 9

2. Quadratic probing hash-table.

elements: | 9679 | 4371 1323 | 6173 | 4344 1989 | 4199
i: 0 1 2 3 4 5 6|7 8 9

3. Separate chaining hash-table: that one is of course almost too boring.

L@ o[1t [2] 3 [4 [5[6[7]8] 9 |
List J
of 4371 1323 4344 4199
elements: + N
6173 9679
J
1989

Exercise 6 (Hash table behavior) Given the input {15,78,56,25,19,38,57,76,34,53,72,91},
and a fixed table size of 19, and a hash-function H(X) = X mod 19,

1. show the resulting Quadratic probing hash-table

2. show the resulting Double probing hash-table. Note that you have to first find the
largest prime number which is smaller than the size of the hash-table.

Solution:

Series 3 (+ Hints for solutions) 7. 09. 2016

1. show the resulting Quadratic probing hash-table

elements: | 19 | 38 | 78 57 | 53 | 25 76 72 | 91 15| 34 56
i 0O|1(2 (34|56 7|89 10111213 |14 |15]16| 17| 18
2. show the resulting double probing hash-table. Double probing is described at page
203.
elements: | 19 78 | 53 25 | 34 76 | 91 | 57 38 15 | 72 56
i 01|23 |4|5|6|7|8]9|10|11 12|13 |14 |15|16 |17 |18

Exercise 7 (Complexity questions: Binary hash map) A class BinaryHashMap serves

as a basis for the first 3 questions in this assignments. The internal array (of lists) which
is used by BinaryHashMap is of length 2. Consequently, the (very basic) hash-function
hashes all keys with an even length to 0 and all keys with an odd length to 1. The following
complexity questions should be anwered with big-O notation, both for average case and
worst case.

1. What is the complexity of locating an element in an unordered list?

2. What is the complexity of locating an element inside the BinaryHashMap?
binHash is an object of BinaryHashMap.
Object o = binHash.get(‘‘a_key’’)

Hint: the elements are distributed among two unordered lists.

3. What is the complexity of inserting an element into the BinaryHashMap?
binHash.put(‘ ‘some_key’’, some_obj_pointer);
Hint: keys are unique, we cannot simply add it to one of our internal listsE]

4. Let M be the number of list-pointers internally inside a hash-table, assume that we

have a hash-function which is perfect. l.e., if we fill it with M key-value pairs, we
have zero collisions and all our internal lists contain one elements each.

What is the complexity of locating an element in a hash-table with a perfect hash-
function, if it contains N elements, and it has M internal list pointers. I.e., big-O
expressed with NV and M.

Solution: [for Exercise [7]
1. finding elements in an unordered list:

e worst case: O(n) = n. The worst case is that the element is the last one we
inspect (equally if the element is not there; in that case we have to check them
all as well until we are sure).

2Tt’s not a “law of nature” that hash tables as concept work only with unique keys. However, the binary
hash map of this exercise should be a degenerate version of Java’s hash map (java.util.HashMap<K,V>.
It’s a hash table implementation for a “map”, which a function assocuating values to keys (so a mapping
from keys to values. Hence, keys must be unique. Note in passing: the put method from Java’s hash map
overrides the old value (if there’s one) with the newly inserted and gives back the old value (if there has
been one). This detail does not affect the complexity.

Series 3 (+ Hints for solutions) 7. 09. 2016

e average case: O(n) = (n/2)/2 = n/4. On average, one has to check half the list
to find an element. According to the definitions we learnt, the factors 1/2 are
irrelevant in the asymptotic considerations underlying the “big-o” notations.
So a correct answer is O(n) as well, or “linear complexity”. Similarly for the
other questions.

2. finding an element in the given “binary” hash map

e worst case: O(n) = n: the worst case is, that the hash table is completely “un-
balanced” in the sense that all elements are chained to one slot, and furthermore
that the element is at the end of that list.

e average case: O(n) = (n/2)/2 = n/4. One has two lists with n/2 elements on
average, and you have to check half the list on average to find an element.

3. Insertion

(a) worst case O(n) =n
(b) average case O(n) = n/4
We first have to find the element as before, i.e. the same penalty as before. Updating

the pointer to the new element can be done in constant time and therefore can be
ignored.

4. The number of elements in internal lists are distributed perfectly as described is: N
/ M.

The complexity of finding an element in a list with length N/M is

(a) worst case: N/M
(b) average case: (N/M)/2 = N/2M

Lab

Exercise 8 We are going to implement a few functions inside the class BinaryHashMap

1. Implement the function: boolean remove(String key), which returns false if the
elements is not present inside BinaryHashMap true otherwise.
2. Implement the function: String[] keys(), which returns all keys inside the BinaryHashMap.

(HINT: we know how large this array has to be from this.size)

3. Implement the function: Object[] toArray(), which should return all values from
the hash-table.

Exercise 9 Write an implementation for a hash table which uses separate chaining to
handle hash collision. The implementation should include inserting, deleting, and searching
an element in the hash table.

