INF2270, exercise on combinational logic: solution

P. Häfliger

January 28, 2010

Α

$[a\oplus b]\oplus [(b\wedge c)\oplus (c\vee a))]$

(1)

Truth table:

a	b	с	F
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	0

Karnaugh map:

$_{\rm cd} \setminus^{\rm a}$	0	1
00	0	0
01	1	0
11	1	0
10	1	1

Resulting Boolean function:

$$(\bar{a} \wedge c) \vee (b \wedge \bar{c}) \tag{2}$$

\mathbf{B}

Boolean function:

Figure 1: The resulting simplified circuits

Truth table:

a	b	c	d	F
0	0	0	0	1
0	0	0	1	0
0	0	1	0	1
0	0	1	1	1
0	1	0	0	0
0	1	0	1	0
0	1	1	0	1
0	1	1	1	1
1	0	0	0	0
1	0	0	1	0
1	0	1	0	1
1	0	1	1	1
1	1	0	0	1
1	1	0	1	1
1	1	1	0	1
1	1	1	1	1

Karnaugh map:

$_{\rm cd} \rangle^{\rm ab}$	00	01	11	10
00	1	0	1	0
01	0	0	1	0
11	1	1	1	1
10	1	1	1	1

Resulting Boolean function:

$$c \lor (a \land b) \lor (\bar{a} \land \bar{b} \land \bar{d})$$
(4)

Its tempting to use deMorgan on that last term also, to get rid of the inverters in the final circuit:

$$c \lor (a \land b) \lor \overline{(a \lor b \lor d)} \tag{5}$$