
INF2270, performance degradation due to

pipelining hazards, cache misses and page

failures, example solution

P. Häfliger

April 6, 2010

Abstract

In this exercise you will try to gauge the dependence of computer
performance on cache hit rate and page failure rate, and the dependence
of pipeline speedup on (control) hazards.

Cache Miss and Page Failure

1. One clock cycle t of a clock with a frequency f of 3GHz lasts:

t = 1
f = 0.33ns

With no cache misses and assuming one clock cycle per instruction and
no penalty for a cache access (realistic for L1 cache in some architectures)
the average number of clock cycles per instruction CPI is 1. A program
of n instructions when n=1000 will take:

tn = 0.33ns × 1000 = 0.33µs

2. With a hit rate of 95% and 200 memory accesses out of 1000 instructions,
10 instructions will cause a penalty of 19 clock cycles. In other words
the execution of the program wil take 1190 clock cycles, i.e. 19% longer
because of only 5% cache miss rate among only 20% of the instructions
that access the memory. A quite severe performance degradation despite
a rather good cache hit rate.

Execution time becomes:

800t+ 190t+ 10 × 20t = 1190t = 0.39µs

Average clock cycles per instruction becomes:

CPI = 1190
1000 = 1.19

3. considering the load time for this program from the hard drive or just
assuming a page failure in the virtual memory for the first data access
will cause a 1000000 clock cycle penalty in addition, which simply will
dominate the total execution time of now 1001190clock cycles, i.e. 0.33ms

1



4. Thus, optimization of small programs does not really pay off. However,
optimization of small functions/procedures/routines that are executed fre-
quently (e.g. in a loop) within a large program that remains in memory
longer than the time it takes to load it into memory is very much worth
your while.

Pipeline Speedup

1. Ideally one would expect a speedup of k since a non-pipelined program
takes nkt seconds to execute and a pipelined program may approach an
execution time of nt seconds. Thus, the speedup would be:
nkt
nt = k

However, with the initial delay of ’filling’ the pipeline, the first instruction
does not profit from pipelining and needs k clock cycles to finish. Only
the following instructions will cause only a single clock cycle additional
delay per instruction. Thus, the execution time is

kt+ (n− 1)t = (k + n− 1)t

and the speedup
nkt

(k+n−1)t = nk
k+n−1

which only approximates k for very large numbers of instructions n. In
our specific example the speedup is thus

100×5
5+100−1 = 500

104 = 4.81

Average Clock cycles per instruction here is

CPI = 104
100 = 1.04

Since programs usually are quite a bit longer than just 100 instructions,
this penalty is usually not severe and mostly not worth mentioning.

2. Pipeline hazards are more severe performance limiting factors, and control
hazards are most often the most serious (although, one can easily construct
programs that suffer more from other types of hazards). In this example
the CPI is

(1 − PbPt) × 1 + PbPt × 3 = 1 + 2PbPt = 1 + 0.14 × 2 = 1.28

Execution time, thus, becomes

nt ∗ CPI = 0.42µs

(that’s another convenient formula for the execution time if yo happen to
know the CPI). Note that with no branch prediction the situation is often
as bad as depicted in this example, since Pt is often quite high.

3. With branch prediction, a significant improvement is often achieved. In
our example the CPI becomes:

CPI = 1 − Pb(1 − Pc) + 3Pb(1 − Pc) = 1 + 2Pb(1 − Pc) = 1.12

2



and the execution time

nt ∗ CPI = 0.37µs

3


