INF2270 — Spring 2010

tfj

Philipp Häfliger

Lecture 1: Digital Representation

UNIVERSITETET

Digital Electronics

- Digital electronics is everywhere: PCs, cell phones, DVD and MP3 players, cameras, cars, fridges ...
- *ñ* 'Digital' comes from latin 'digitus' meaning 'finger' which we often use for discrete counting
- **•** Digital representation: discontinuous/discrete representation (discrete numbers/integers/Z) as opposed to analog/continuous

A Short History of Computers

- **Filter Analytical Engine by Charles Babbage in 1837** (mechanical)
- **► G. Stibitz' Model-K (1937) and K. Zuse's Z3 (1941)** (electro mechanical, relays)
- ENIAC, 1946 (vacuum tubes)
- Computer revolution with transistors, first used to build a computer in 1953 (ca. 600 transistors)

Transistors

Figure 2 Transistors are electronic switches that are in turn controlled by an electronic signal, i.e. three terminal electronic devices

- ▶ State of the art transistors can be extremely small, down to 32nm (0.000000032m) long, and hundreds of millions integrated on a single computer chip. The Intel Core*tm* i7 Quad Extreme (Bloomfield) has 731 millioner transistorer in a 45nm-technology (2008)
- **Figure 7** Transistors need in the order of only nano-seconds to switch Lecture 1: Digital Representation

Binary Representation

- \triangleright Switches obviously have two states: 'on' and 'off'
- ▶ Thus they are suited to represent digital numbers in the binary system (rather than the decimal that we are used to)
- **Fig. 2** The two states can also be used to represent the two states in predicate logic/Boolean algebra: 'true' and 'false', respectively '1' and '0'

Binary Numbers

'10010' as a binary number means: $1 \times 2^4 + 0 \times 2^3 + 0 \times 2^2 + 1 \times 2^1 + 0 \times 2^0 = 16 + 2 = 18$

just as '18' as a decimal number means: $1 \times 10^{1} + 8 \times 10^{0}$

Boolean Algebra

- **EXECT** Boolean algebra/logic is a set of operations defined on variables that have only two values: '0' and '1'
- **Fig. 2** There are three basic opeartoions: NOT, AND, OR
- *NOT* a can be written as $\neg a$, **ā** or a'
- **► a AND b can be written as a∧a or a×b (not to be mixed)** up with normal multiplication)
- \rightarrow a OR b can be written as a∨a or a+b (not to be mixed up with normal addition)

Truth Tables

Derived Boolean Functions

 $a \, XOR \, b = (a \wedge \bar{b}) \vee (\bar{a} \wedge \bar{b})$

$$
a \text{ XNOR } b = (a \land b) \lor (\bar{a} \land \bar{b})
$$

a NAND
$$
b = \overline{a \wedge b}
$$

a NOR $b = \overline{a \vee b}$

Rules that Apply

Lecture 1: Digital Representation 10

UNIVERSITETET
I OSLO

Checking deMorgan's Theorem

for NOR:

Lecture 1: Digital Representation 11

UNIVERSITETET
I OSLO

Examples: simplify

 $a \wedge b \vee a \wedge b = ?$ a∧b∧c ∨ ā∧b∧c ∨ ā∧b∧c ∧ *(a* ∨ c*)* = ?

Solution 1

Solution 2

a∧b∧c ∨ ¯a∧b∧c ∨ ¯a∧b∧¯c ∧ *(*a ∨ c*)* = *(*a ∨ ¯a)∧b∧c ∨ ¯a∧b∧¯c ∧ a ∨ ¯a ∧ b ∧ ¯c ∧ c \vee 0 ∨ 0 \vee 0 ∨ 0

Examples: representation with truth tables (1/2)

 $F=a\wedge b \vee \bar{a}\wedge \bar{b}$

Examples: representation with truth tables (2/2)

G=a∧b∧c \vee \bar{a} ∧ c \vee a ∧ \bar{b}

Representing Boolean Functions

- 1. expression with variables and operators
- 2. truth table
- 3. graphically with logic gates

