
INF2270 — Spring 2010

Philipp Häfliger

Lecture 1: Digital Representation



Digital Electronics

æ Digital electronics is everywhere: PCs, cell phones,
DVD and MP3 players, cameras, cars, fridges ...

æ ’Digital’ comes from latin ’digitus’ meaning ’finger’
which we often use for discrete counting

æ Digital representation: discontinuous/discrete
representation (discrete numbers/integers/Z) as
opposed to analog/continuous

Lecture 1: Digital Representation 2



A Short History of Computers

æ The Analytical Engine by Charles Babbage in 1837
(mechanical)

æ G. Stibitz’ Model-K (1937) and K. Zuse’s Z3 (1941)
(electro mechanical, relays)

æ ENIAC, 1946 (vacuum tubes)

æ Computer revolution with transistors, first used to
build a computer in 1953 (ca. 600 transistors)

Lecture 1: Digital Representation 3



Transistors

æ Transistors are electronic switches
that are in turn controlled by an
electronic signal, i.e. three terminal
electronic devices

æ State of the art transistors can be extremely small,
down to 32nm (0.000000032m) long, and hundreds of
millions integrated on a single computer chip. The
Intel Coretm i7 Quad Extreme (Bloomfield) has 731
millioner transistorer in a 45nm-technology (2008)

æ Transistors need in the order of only nano-seconds to
switch

Lecture 1: Digital Representation 4



Binary Representation

æ Switches obviously have two states: ’on’ and ’off’

æ Thus they are suited to represent digital numbers in
the binary system (rather than the decimal that we are
used to)

æ The two states can also be used to represent the two
states in predicate logic/Boolean algebra: ’true’ and
’false’, respectively ’1’ and ’0’

Lecture 1: Digital Representation 5



Binary Numbers

’10010’ as a binary number means:
1� 24 � 0� 23 � 0� 22 � 1� 21 � 0� 20 � 16� 2 � 18

just as ’18’ as a decimal number means:
1� 101 � 8� 100

Lecture 1: Digital Representation 6



Boolean Algebra

æ Boolean algebra/logic is a set of operations defined on
variables that have only two values: ’0’ and ’1’

æ There are three basic opeartoions: NOT, AND, OR

æ NOT a can be written as :a, ā or a’

æ a AND b can be written as a^a or a�b (not to be mixed
up with normal multiplication)

æ a OR b can be written as a_a or a�b (not to be mixed
up with normal addition)

Lecture 1: Digital Representation 7



Truth Tables

a ā

0 1

1 0

a b a^b

0 0 0

0 1 0

1 0 0

1 1 1

a b a_b

0 0 0

0 1 1

1 0 1

1 1 1

Lecture 1: Digital Representation 8



Derived Boolean Functions

a XOR b = �a^ b̄�_ �ā^ b�

a XNOR b = �a^ b�_ �ā^ b̄�

a NAND b = a^ b

a NOR b = a_ b

Lecture 1: Digital Representation 9



Rules that Apply

¯̄a=a

a^b_c = (a^b)_c a_b^c = a_(b^c)

a^ā=0 a_ā=1

a^a=a a_a=a

a^1=a a_0=a

a^0=0 a_1=1

a^b = b^a a_b = b_a (commutative)

(a^b)^c=a^(b^c) (a_b)_c=a_(b_c) (associative)

a^�b_c)=(a^b)_(a^c) a_(b^c)= (a_b)^(a_c) (distributive)

a_ b � ā^ b̄ a^ b � ā_ b̄ (deMorgan)
Lecture 1: Digital Representation 10



Checking deMorgan’s Theorem

for NOR:

a b a_ b a b ā^ b̄

Lecture 1: Digital Representation 11



Examples: simplify

a^b _ a^b̄ = ?
a^b^c _ ā^b^c _ ā^b^c̄^ �a_ c� = ?

Lecture 1: Digital Representation 12



Solution 1

a^b _ a^b̄

= a^(b_b̄�
= a^1

= a

Solution 2

a^b^c _ ā^b^c _ ā^b^c̄^ �a_ c�
= �a_ ā)^b^c _ ā^b^c̄^ a _ ā^ b^ c̄^ c

= 1^ b^ c _ 0_ 0

= b^ c

Lecture 1: Digital Representation 13



Examples: representation with truth tables (1/2)

F=a^b _ ā^ b̄

a b F

Lecture 1: Digital Representation 14



Examples: representation with truth tables (2/2)

G=a^b^c _ ā^ c _ a^ b̄

a b c G

Lecture 1: Digital Representation 15



Representing Boolean Functions

1. expression with variables and operators

2. truth table

3. graphically with logic gates

Lecture 1: Digital Representation 16


	Background
	Binary Numbers
	Boolean Algebra

