INF2270 — Spring 2010

HF1

Philipp Häfliger

Lecture 1: Digital Representation

UNIVERSITETET I OSLO

Digital Electronics

- Digital electronics is everywhere: PCs, cell phones, DVD and MP3 players, cameras, cars, fridges ...
- 'Digital' comes from latin 'digitus' meaning 'finger' which we often use for discrete counting
- Digital representation: discontinuous/discrete representation (discrete numbers/integers/Z) as opposed to analog/continuous

A Short History of Computers

- The Analytical Engine by Charles Babbage in 1837 (mechanical)
- ► G. Stibitz' Model-K (1937) and K. Zuse's Z3 (1941) (electro mechanical, relays)
- ENIAC, 1946 (vacuum tubes)
- Computer revolution with transistors, first used to build a computer in 1953 (ca. 600 transistors)

Transistors

 Transistors are electronic switches that are in turn controlled by an electronic signal, i.e. three terminal electronic devices

- State of the art transistors can be extremely small, down to 32nm (0.00000032m) long, and hundreds of millions integrated on a single computer chip. The Intel Coretm i7 Quad Extreme (Bloomfield) has 731 millioner transistorer in a 45nm-technology (2008)
- Transistors need in the order of only nano-seconds to switch

Binary Representation

- Switches obviously have two states: 'on' and 'off'
- Thus they are suited to represent digital numbers in the binary system (rather than the decimal that we are used to)
- The two states can also be used to represent the two states in predicate logic/Boolean algebra: 'true' and 'false', respectively '1' and '0'

Binary Numbers

'10010' as a binary number means: $1 \times 2^4 + 0 \times 2^3 + 0 \times 2^2 + 1 \times 2^1 + 0 \times 2^0 = 16 + 2 = 18$

just as '18' as a decimal number means: $1\times 10^1 + 8\times 10^0$

Lecture 1: Digital Representation

Boolean Algebra

- Boolean algebra/logic is a set of operations defined on variables that have only two values: '0' and '1'
- There are three basic opeartoions: NOT, AND, OR
- NOT a can be written as ¬a, ā or a'
- ► a AND b can be written as a∧a or a×b (not to be mixed up with normal multiplication)
- ► a OR b can be written as a∨a or a+b (not to be mixed up with normal addition)

Truth Tables

a	ā
0	1
1	0

а	b	a∧b
0	0	0
0	1	0
1	0	0
1	1	1

a	b	a∨b
0	0	0
0	1	1
1	0	1
1	1	1

Lecture 1: Digital Representation

Derived Boolean Functions

a XOR b = $(a \land \bar{b}) \lor (\bar{a} \land b)$

a XNOR **b** = $(a \land b) \lor (\bar{a} \land \bar{b})$

a NAND b = $\overline{a \wedge b}$

a NOR b = $\overline{a \lor b}$

Lecture 1: Digital Representation

Rules that Apply

ā=a		
$a \land b \lor c = (a \land b) \lor c$	$a \lor b \land c = a \lor (b \land c)$	
a∧ā=0	a∨ā=1	
a∧a=a	a∨a=a	
a∧1=a	a∨0=a	
a∧0=0	a∨1=1	
$a \wedge b = b \wedge a$	$a \lor b = b \lor a$	(commutative)
$(a \land b) \land c = a \land (b \land c)$	$(a \lor b) \lor c = a \lor (b \lor c)$	(associative)
$a \land (b \lor c) = (a \land b) \lor (a \land c)$	$a \lor (b \land c) = (a \lor b) \land (a \lor c)$	(distributive)
$\overline{a \vee b} = \bar{a} \wedge \bar{b}$	$\overline{\mathbf{a} \wedge \mathbf{b}} = \overline{\mathbf{a}} \vee \overline{\mathbf{b}}$	(deMorgan)

Lecture 1: Digital Representation

10

UNIVERSITETET I OSLO

Checking deMorgan's Theorem

for NOR:

a	b	$\overline{a \lor b}$

	а	b	$\bar{a}\wedge\bar{b}$
_			

Lecture 1: Digital Representation

Examples: simplify

 $\begin{array}{l} a \wedge b \lor a \wedge \bar{b} = ? \\ a \wedge b \wedge c \lor \bar{a} \wedge b \wedge c \lor \bar{a} \wedge b \wedge \bar{c} \wedge (a \lor c) = ? \end{array}$

Lecture 1: Digital Representation

Solution 1

	$a \wedge b \vee a \wedge b$
=	$a \wedge (b \vee \bar{b})$
=	$a \wedge 1$
=	а

Solution 2

	$a \wedge b \wedge c \lor \bar{a} \wedge b \wedge c$
=	$(a \lor \bar{a}) \land b \land c$
=	$1 \wedge b \wedge c$
=	$b \wedge c$

V

V

 $\bar{a} \wedge b \wedge \bar{c} \wedge (a \lor c)$ $\bar{a} \wedge b \wedge \bar{c} \wedge a \lor \bar{a} \wedge b \wedge \bar{c} \wedge c$ $0 \lor 0$

Lecture 1: Digital Representation

Examples: representation with truth tables (1/2)

bF

а

 $F{=}a{\wedge}b\,\vee\,\bar{a}{\,\wedge\,}\bar{b}$

UNIVERSITETET I OSLO

Examples: representation with truth tables (2/2)

$G{=}a{\wedge}b{\wedge}c \, \lor \, \bar{a} \wedge c \, \lor \, a \wedge \bar{b}$

Lecture 1: Digital Representation

Representing Boolean Functions

- 1. expression with variables and operators
- 2. truth table
- 3. graphically with logic gates

Lecture 1: Digital Representation

