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Representing Boolean Functions

1. expression with variables and operators

2. truth table

3. graphically with logic gates (combinational logic)
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Examples: simplify

Solutions

a^b _ a^b̄

= a^(b_b̄�
= a^1

= a

a^b^c _ ā^b^c _ ā^b^c̄^ �a_ c�
= �a_ ā)^b^c _ ā^b^c̄^ a _ ā^ b^ c̄^ c

= 1^ b^ c _ 0_ 0

= b^ c
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Examples: representation with truth tables
(1/2)

Solution

F=a^b _ ā^ b̄

a b F
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Examples: representation with truth tables
(1/2)

Solution

F=a^b _ ā^ b̄

a b F

0 0

0 1

1 0

1 1
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Examples: representation with truth tables
(2/2)

solution

G=a^b^c _ ā^ c _ a^ b̄

a b c G
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Examples: representation with truth tables
(2/2)

solution

G=a^b^c _ ā^ c _ a^ b̄

a b c G

0 0 0

0 0 1
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1 1 0

1 1 1
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Examples: representation with truth tables
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Examples: representation with truth tables
(2/2)

solution

G=a^b^c _ ā^ c _ a^ b̄

a b c G
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0 0 1 1

0 1 0 0
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1 0 0 1
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1 1 1 1
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Simplification Example 2 Revisited

F � a^b^c_ ā^b^c_ ā^b^ c̄^ �a_c� !

a b c F

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 0

1 1 0 0

1 1 1 1
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Transscribing a Truth Table into a K-Map

a b c F

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 0

1 1 0 0

1 1 1 1

!

The input
variables are
listed on the x-
and y-axis as
Gray-code: only
one bit shift
between two
subsequent
positions.
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Identify the ’minterms’
Identify rectangles filled with 1’s and
containing 2n 1’s (i.e. 1,2,4,8 ... elements).
Find a set of a minimal number of such
rectangles that covers all 1’s. Overlap of the
rectangles is allowed, actually desired to
maximize their size. Note that the K-map
wraps around at its boundaries, i.e rectangles
can be formed across the map edges.
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The minterms define a ’sum’ of ’products’

!

�b^ c�

Each rectangle defines a
’product’ (elements and-ed)
where the elements are the
input variables that remain
constant within the
rectangle. Finally, all
’products’ are or-ed. (Note:
there is only one ’product’ in
this first example. See next
example!)
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K-map simplification: Example 2
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K-map simplification: Example 2

�a�
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K-map simplification: Example 2

a_ �b̄^ d̄�

Lecture 2: Boolean Functions, Combinational Logic 26



K-map simplification: Example 2

a _ b̄^ d̄ _ �b^ c̄^ d�
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K-Maps Based on the ’0’s

One can also use the 0 to form the minterms and derive an
expression for the inverse function F̄ instead of F by exact
same procedure. Then one can use the deMorgan theorem
to turn the sum of product into a product of sums to
derive F.
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Properties of K-maps

æ Karnaugh maps are useful to a size of up to 6 Boolean
variables

æ It is only possible to have up to two variables along
one axis. Karnaugh maps with 5-8 variables become,
thus, 3-dimensional. (Example in the weekly exercise
for lecture 3)
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Combinational Logic

Combinational logic circuits are feed-forward logic/digital
circuits with no memory that can be described by Boolean
functions.

Note what is implied here: logic gates can also be
connected in ways that include feed-back connections that
implement/include memory that cannot be described as
Boolean functions! This is then not ’combinational logic’,
but ’sequential logic’, of which we will talk later.
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Design and Analysis of Digital Circuits

Design of a digital circuit is the process of assembling
circuit blocks to form a bigger digital circuit.

Analysis of a digital circuit is the process of finding out
what it is doing, e.g. (in the case of
combinational logic!) by finding an equivalent
Boolean function or a complete truth table.
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A complete analysis is quite trivial for small digital
circuits but neigh impossible for circuits of the
complexity of a modern CPU. Hierarchical approaches in
design and analysis provide some help.

The first Pentium on the market had a mistake in its
floating point unit.

After the Intel 286 there was the 386 and then the
486, but the 585.764529 was then dubbed
’Pentium’ for simplicity sake.
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Logic Gate Signals

The logic gates introduced earlier are most often
implemented to operate on voltages as input and output
signals: a certain range of input voltage is defined as
’high’ or logic ’1’ and another range is defined as ’low’ or
’0’. E.g. in a digital circuit with a 1.8V supply one can, for
instance, guarantee an input voltage of 0V to 0.5V to be
recognised as ’0’ and 1.2V to 1.8V as ’1’ by a logic gate.
On the output side the gate can guarantee to deliver a
voltage of either >1.75V or <0.05V.
These safety margins between input and output make
(correctly designed!) digital circuits very robust (which is
necessary with millions of logic gates in a CPU, where a
single error might impair the global function!)
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Combinational Logic Analysis: Example

� a^ b̄| {z }
x4

_b^ c| {z }
x5

_ ā^ b̄^ c| {z }
x6
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Universality of NAND and NOR

Any Boolean function can also be implemented using only
NAND (or only NOR) gates. Use a^ b � ā_ b̄ (deMorgan)
and ¯̄a � a to proof!

!
!
!
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Standard Combinational Logic

Some combinational logic (and of course also sequential
logic ! later) is often used in computational devices and
are usually provided as ’black boxes’ guaranteeing a
defined function.
Examples:

æ encoder/decoder

æ multiplexer/demultiplexer

æ adders/multipliers

There are actually variations on how those functions are
implemented, resulting in different processing speeds
and/or power consumption and/or scalability (i.e. how
easy it is to adapt the same function for more inputs).
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3-bit Encoder Specification

An encoder in digital electronics usually refers to a circuit
that converts 2n inputs into n outputs, as specified by the
following truth table.
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Simple 3-bit Encoder Truth Table

I7 I6 I5 I4 I3 I2 I1 I0 O2 O1 O0

0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0 0 0 1

0 0 0 0 0 1 0 0 0 1 0

0 0 0 0 1 0 0 0 0 1 1

0 0 0 1 0 0 0 0 1 0 0

0 0 1 0 0 0 0 0 1 0 1

0 1 0 0 0 0 0 0 1 1 0

1 0 0 0 0 0 0 0 1 1 1
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3-bit Encoder Implementation Variant
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3-bit Encoder Remarks

The truth table that was given is not complete: some
inputs are ‘illegal’. Circuitry that produces the input
should ensure to only produce legal states. In our specific
digital circuit implementation we can of course deduct
what the output in each illegal case would be, but other
implementation may actually provide different outputs in
those non-defined cases, and still be valid encoders!
The following truth table is a deterministic specification
of an encoder, without ‘illegal’ inputs, where the ’highest’
active input bit determines the output. ’X’ in the table
means ‘do not care’, or ‘for any state’ and allows to
abbreviate the truth table. This would require a different
implementation, but we will not present it here.
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3-bit Priority Encoder Truth Table

I7 I6 I5 I4 I3 I2 I1 I0 O2 O1 O0

0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 X 0 0 1

0 0 0 0 0 1 X X 0 1 0

0 0 0 0 1 X X X 0 1 1

0 0 0 1 X X X X 1 0 0

0 0 1 X X X X X 1 0 1

0 1 X X X X X X 1 1 0

1 X X X X X X X 1 1 1
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3-bit Decoder Specification

A decoder is the inverse function of a encoder, in digital
circuits usually decoding n inputs into 2n outputs.
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3-bit Decoder Truth Table

I2 I1 I0 O7 O6 O5 O4 O3 O2 O1 O0

0 0 0 0 0 0 0 0 0 0 1

0 0 1 0 0 0 0 0 0 1 0

0 1 0 0 0 0 0 0 1 0 0

0 1 1 0 0 0 0 1 0 0 0

1 0 0 0 0 0 1 0 0 0 0

1 0 1 0 0 1 0 0 0 0 0

1 1 0 0 1 0 0 0 0 0 0

1 1 1 1 0 0 0 0 0 0 0
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3-bit Decoder Implementation Variant
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3-bit Multiplexer Specification

A multiplexer routes one of 2n input signals as defined by
the binary control number S to the output.

S2 S1 S0 O

0 0 0 I0

0 0 1 I1

0 1 0 I2

0 1 1 I3

1 0 0 I4

1 0 1 I5

1 1 0 I6

1 1 1 I7Lecture 2: Boolean Functions, Combinational Logic 52



3-bit Multiplexer Implementation Variant
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3-bit Demultiplexer Specification

A demultiplexer performs the inverse function of a
multiplexer, routing one input signal to one of 2n outputs
as defined by the binary control number S
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3-bit Demultiplexer Truth Table

S2 S1 S0 O7 O6 O5 O4 O3 O2 O1 O0

0 0 0 0 0 0 0 0 0 0 I

0 0 1 0 0 0 0 0 0 I 0

0 1 0 0 0 0 0 0 I 0 0

0 1 1 0 0 0 0 I 0 0 0

1 0 0 0 0 0 I 0 0 0 0

1 0 1 0 0 I 0 0 0 0 0

1 1 0 0 I 0 0 0 0 0 0

1 1 1 I 0 0 0 0 0 0 0
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3-bit Demultiplexer Implementation Variant
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