
INF2270 — Spring 2010

Philipp Häfliger

Lecture 5: Von Neuman Architecture

content

Von Neumann Architecture

ALU

RAM
SRAM
DRAM

Register Transfer Language

Execution of Instructions
Pipelining

Lecture 5: Von Neuman Architecture 2

content

Von Neumann Architecture

ALU

RAM
SRAM
DRAM

Register Transfer Language

Execution of Instructions
Pipelining

Lecture 5: Von Neuman Architecture 3

Von Neumann Architecture

In 1945 John von Neumann published his reference model
of a computer architecture that is still the basis of most
computer architectures today. The main novelty was that
a single memory was used for both, program and data.

Lecture 5: Von Neuman Architecture 4

Von Neumann Architecture Block Diagram

Lecture 5: Von Neuman Architecture 5

Typical Registers(1/3)

PC: (program counter, also called instruction
pointer (IP)) the register holding the memory
address of the next machine code instruction.

IR: (instruction register) the register holding the
machine code of the instruction that is
executed.

Lecture 5: Von Neuman Architecture 6

Typical Registers(2/3)

MAR: (memory address register) half of the registers
dedicated as interface of the memory with the
CPU, holding the memory address to be read
or written to.

MBR: (memory buffer register) the other half of the
CPU-memory interface, a buffer holding the
data just read from the memory or to be
written to the memory. Typically the MBR can
be connected as one of the inputs to the ALU.

Lecture 5: Von Neuman Architecture 7

Typical Registers(2/3)

accumulator: a dedicated register that stores one operand
and the result of the ALU. Several
accumulators (or general purpose registers in
the CPU) allow for storing of intermediate
results, avoiding (costly) memory accesses.

flag/status register: a register where each single bit
stands for a specific property of the result
from (or the input to) the ALU, like carry
in/out, equal to zero, even/uneven ...

Lecture 5: Von Neuman Architecture 8

Data and Instruction Bus

Buses are connections between registers, the functional
units (such as the ALU), the memory, and I/O units. They
are often shared by several of those units and usually only
one unit sends data on the bus to one other at a time.
Since there is only one bus between the memory and the
CPU for both instruction and data transfer in a von
Neumann architecture (actually two: one for the address
and one for the data), this bus can be a main speed
limiting factor (von Neumann bottleneck). Internally in the
CPU there is one or several buses for data exchange among
the registers.

Lecture 5: Von Neuman Architecture 9

content

Von Neumann Architecture

ALU

RAM
SRAM
DRAM

Register Transfer Language

Execution of Instructions
Pipelining

Lecture 5: Von Neuman Architecture 10

A 1-bit Arithmetic Logic Unit (ALU) Example

Symbol:

inst computation

000 a^ b

001 a^ b

010 a_ b

011 a_ b

100 a� b

101 a� b

110 a� b

111 a� b�!�

Lecture 5: Von Neuman Architecture 11

n-bit ALU example

Symbol:

More complicated ALUs
will have more flags,
e.g. overflow, divide by
zero ...

Lecture 5: Von Neuman Architecture 12

ALUs in CPUs

Modern CPUs contain several ALUs, e.g. one dedicated to
memory pointer operations and one for data operations.
ALUs can be much more complex and perform many more
functions in a single step than the example shown here,
but note that even a simple ALU can compute complex
operations in several steps, controlled by the software.
Thus, there is always a trade-off of where to put the
complexity: either in the hardware or in the software.
Complex hardware can be expensive in power
consumption, chip area and cost. Furthermore, the most
complex operation may determine the maximal clock
speed. The design of the ALU is a major factor in
determining the CPU performance!

Lecture 5: Von Neuman Architecture 13

content

Von Neumann Architecture

ALU

RAM
SRAM
DRAM

Register Transfer Language

Execution of Instructions
Pipelining

Lecture 5: Von Neuman Architecture 14

Static Random Access Memory Principle

Lecture 5: Von Neuman Architecture 15

RAM terminology

address space: the number of words in a RAM. In the
previous example its equivalent to the number
of rows.

word length: The number of bits that can be accessed in a
single read/write operation, i.e. the number of
bits addressed with a single address. In the
previous example the number of columns.

memory size: word length multiplied with address space.

Lecture 5: Von Neuman Architecture 16

Most Typical RAM Signals (1/3)

WE, write enable (often active low): This signal
distinguishes a read from a write access. If
there is no RAS/CAS input to the RAM, WE
going low directly causes D to be stored into
the RAM at address A.

Lecture 5: Von Neuman Architecture 17

Most Typical RAM Signals (2/3)

RAS/CAS, row/column access strobe: appears in DRAM
that actually has a 3-D structure: one decoder
for the row address, one for the column
address and the word (conceptually) extends
into the third dimension. The address bus is
reused for both row and column address. First
the row address is asserted on the address bus
A and RAS is pulsed low, then the column
address is asserted on the address bus and
CAS is pulsed low. CAS is the final signal that
triggers the either read or write. The other
signals that are asserted before. Several
column accesses can be made for a single row
access for faster access times.Lecture 5: Von Neuman Architecture 18

Most Typical RAM Signals (3/3)

OE, output enable: A signal that regulates the access if
there are several devices using the bus. Only
one of them should be allowed to drive the
bus at anyone time.

CS, chip select: A control line that allows to use several
RAMs instead of just one on the same address
bus and sharing all other control signals. If CS
is not asserted all other signals are ignored
and the output is not enabled. Extra address
bits are used to address one specific RAM and
a decoder issues the appropriate CS to just one
RAM at a time. This extends the address space.

Lecture 5: Von Neuman Architecture 19

Dynamic Random Access Memory Principle

Lecture 5: Von Neuman Architecture 20

DRAM refresh

Capacitive storage is not self maintaining like flip flops.
Memory content is lost over time. Thus, the sense
amplifier has to be connected to every memory cell within
a given time period, while the memory is idle. In modern
DRAM internal state machines take care of this refresh
cycle.

Lecture 5: Von Neuman Architecture 21

Static vs. Dynamic RAM

SRAM DRAM

access speed + -

memory density - +

no refresh needed + -

simple internal control + -

price per bit - +

Lecture 5: Von Neuman Architecture 22

content

Von Neumann Architecture

ALU

RAM
SRAM
DRAM

Register Transfer Language

Execution of Instructions
Pipelining

Lecture 5: Von Neuman Architecture 23

Register Transfer Language (RTL)

expression meaning

X register X or unit X

�X� the content of X

 replace/insert or execute code

M() memory M

�M(�X�)] memory content at address �X�

Lecture 5: Von Neuman Architecture 24

RTL Examples

�IR� �MBR� transfer the content of the MBR to
the IR

Lecture 5: Von Neuman Architecture 25

content

Von Neumann Architecture

ALU

RAM
SRAM
DRAM

Register Transfer Language

Execution of Instructions
Pipelining

Lecture 5: Von Neuman Architecture 26

A Simple Example CPU Executing Machine
Code

At start-up of the CPU the program
counter is initialized to a specific
memory address. Here to address
0. The memory content is as
follows:

mem adr content

0 move 4

1 add 5

2 store 6

3 stop

4 1

5 2

6 0
...

...
Lecture 5: Von Neuman Architecture 27

Fetch

At the beginning of a instruction cycle a new instruction is
fetched from the memory. A finite state machine in the
control unit generates the right sequence of control
signals. Actually the CU is nothing but a finite state
machine controlled by the instructions.

�MAR� �PC�
�PC� �PC�� 1
�MBR� �M��MAR���
�IR� �MBR�

Lecture 5: Von Neuman Architecture 28

Decode

As a last stage of the fetch phase the operation code
(’move’) of the instruction is decoded by the control unit
(CU).

CU �IR�opcode��

and triggers a cycle of the finite state machine with the
appropriate signals to execute a sequence of operations
specific to the instruction. The order, type and number of
the individual operations may vary among different
instructions and the set of instructions is specific to a
particular CPU.

Lecture 5: Von Neuman Architecture 29

Machine Code

The other part of the ’machine code’ instruction in our
(16-bit) processor is the ’operand’ 4. What we have written
as ’move 4’ is actually a bit pattern:

10110010| {z } 00000100| {z }
opcode: move operand: 4

As mentioned before, the set of instructions and the
machine codes are specific to a CPU. Machine code is not
portable between different CPUs.

Lecture 5: Von Neuman Architecture 30

Execute

The data from memory location 4 (1) is moved to the
accumulator A (often the accumulator is the implicit target
of instructions without being explicitly defined):
�MAR� �IR�operand��
�MBR� �M��MAR���
�A� �MBR�

Lecture 5: Von Neuman Architecture 31

2nd Instruction (1/2)

A fetch and decode exactly like before:
�MAR� �PC� (now �PC�=1)
�PC� �PC�� 1
�MBR� M��MAR��
�IR� �MBR�
The instruction in the IR is now ’add 5’.
CU �IR�opcode��

Lecture 5: Von Neuman Architecture 32

2nd Instruction (2/2)

Again the accumulator is the implicit target of the
instruction:
�MAR� �IR�operand��
�MBR� �M��MAR���
The ALU receives the appropriate instruction from the
state machine triggered by the opcode, or sometimes
parts of the opcode are the instruction for the ALU.
ALU �A�;ALU �MBR�
�A� ALU
The number from memory location 5 (2) has been added
and the result (3) is stored in the accumulator.

Lecture 5: Von Neuman Architecture 33

Write Back: 3rd Instruction

Fetch and decode like before (not shown).
...
and then a ’write back’:
�MBR� �A�
�MAR� �IR�operand��
�M��MAR��� �MBR�

Lecture 5: Von Neuman Architecture 34

4th Instruction

The forth instruction is a stop
instruction which halts the
execution of the program. The
memory content is now changed
to:

mem adr content

0 move 4

1 add 5

2 store 6

3 stop

4 1

5 2

6 3
...

...

Lecture 5: Von Neuman Architecture 35

content

Von Neumann Architecture

ALU

RAM
SRAM
DRAM

Register Transfer Language

Execution of Instructions
Pipelining

Lecture 5: Von Neuman Architecture 36

Pipelining Concept

To accelerate the execution of instructions computer
architectures today divide the execution into several
steps. The CPU is designed that in a way that allows to
execute these steps by independent subunits and such
that each step needs the same number of clock cycles for
all instructions. Thus, the first step’s sub-unit can already
fetch a new instruction, while the second step’s sub-unit
is still busy with the first.
To achieve this, the set of instructions is kept small, which
used to be known as reduced instruction set computer
(RISC) architecture as opposed to complex instruction set
computer (CISC). Today, however, the instruction sets tend
to become more complex again, still allowing pipelining.

Lecture 5: Von Neuman Architecture 37

Pipelining Instruction Steps

An example of steps of instruction execution in pipelining
are:

æ IF: instruction fetch (get the instruction)

æ DE: decode and load (from a register)

æ EX: execute

æ WB: write back (write the result to a register)

Lecture 5: Von Neuman Architecture 38

Pipelining Illustration
The pipeline in this example
achieves a 4 times bigger
instruction throughput.
Note, though, that
instruction 0 has the same
delay. An ’annoyance’ are
instructions that cause
program counter jumps: then
the execution of the
pre-fetched instructions is
interrupted and the pipeline
restarted.

Lecture 5: Von Neuman Architecture 39

	Von Neumann Architecture
	ALU
	RAM
	SRAM
	DRAM

	Register Transfer Language
	Execution of Instructions
	Pipelining

