
INF2270 — Spring 2010

Philipp Häfliger

Lecture 6: Microcode, Cache, Pipelining



content

Microarchitecture

Memory Hierarchy
Cache

Pipelining
Resource Hazards
Data Hazards
Control Hazards
Conclusion

Lecture 6: Microcode, Cache, Pipelining 2



content

Microarchitecture

Memory Hierarchy
Cache

Pipelining
Resource Hazards
Data Hazards
Control Hazards
Conclusion

Lecture 6: Microcode, Cache, Pipelining 3



Microarchitecture

æ So far we have considered a so called hardwired CU
architecture, where a hardwired FSM issues the right
sequence of control signals in response to a machine
code in the IR.

æ A more flexible alternative is to use microcode and a
simple ’processor’ within the processor that simply
issues a sequence of control signals stored as
microinstructions in the microprogram memory,
typically a fast read only memory (ROM) but
sometimes also a flash memory (i.e. electrically
erasable programmable read only memory (EEPROM)).

Lecture 6: Microcode, Cache, Pipelining 4



Hardwired and Microprogrammed CU

Lecture 6: Microcode, Cache, Pipelining 5



Pros and Cons
Microarchitecture Hardwired

Occurrence CISC RISC

Flexibility + -

Design Cycle + -

Speed - +

Compactness - +

Power - +

Lecture 6: Microcode, Cache, Pipelining 6



content

Microarchitecture

Memory Hierarchy
Cache

Pipelining
Resource Hazards
Data Hazards
Control Hazards
Conclusion

Lecture 6: Microcode, Cache, Pipelining 7



Memory Hierarchy

Lecture 6: Microcode, Cache, Pipelining 8



content

Microarchitecture

Memory Hierarchy
Cache

Pipelining
Resource Hazards
Data Hazards
Control Hazards
Conclusion

Lecture 6: Microcode, Cache, Pipelining 9



Cache

Cache is used to ameliorate the von Neumann memory
access bottleneck. Cache refers to a small high speed RAM
integrated into the CPU or close to the CPU. Access time to
cache memory is considerably faster than to the main
memory. Cache is small to reduce cost, but also because
there is always a trade off between access speed and
memory size. Thus, modern architectures include also
several hierarchical levels of cache (L1, L2, L3 ...).

Lecture 6: Microcode, Cache, Pipelining 10



Locality of Code and Data

Cache uses the principle of locality of code and data of a
program, i.e. that code/data that is used close in time is
often also close in space (memory address). Thus, instead
of only fetching a single word from the main memory, a
whole block around that single word is fetched and stored
in the cache. Any subsequent load or write instructions
that fall within that block (a cache hit,) will not access the
main memory but only the cache. If an access is attempted
to a word that is not yet in the cache (a cache miss) a new
block is fetched into the cache (paying a penalty of longer
access time).

Lecture 6: Microcode, Cache, Pipelining 11



Checking for Hits

Checking for hits or misses quickly is a prerequisite for
the usefulness of cache memory.

æ associative cache
Parallel search (extremely specialized HW) among
memory block tags in the cache.

æ direct mapped cache
A hash-function assigns each memory block to only
one cache slot, only one tag needs to be checked

æ set-associative cache
A combination of the previous two: each memory
block is hashed to one block-set in the cache. Quick
search for the tag needs only to be conducted within
the set.

Lecture 6: Microcode, Cache, Pipelining 12



Cache Coherency

A write operation will lead to a temporary inconsistency
between the content of the cache and the main memory.
Several strategies are used in different designs to correct
this inconsistency with varying delay. Major strategies:

write through : a simple policy where each write to the
cache is followed by a write to the main
memory. Thus, the write operations do not
really profit from the cache.

write back : delayed write back where a block that has
been written to in the cache is marked as
dirty. Only when dirty blocks are reused for
another memory block will they be written
back into the main memory.

Lecture 6: Microcode, Cache, Pipelining 13



content

Microarchitecture

Memory Hierarchy
Cache

Pipelining
Resource Hazards
Data Hazards
Control Hazards
Conclusion

Lecture 6: Microcode, Cache, Pipelining 14



Repetition 4-Stage Pipeline

Lecture 6: Microcode, Cache, Pipelining 15



4-Stage Pipeline Simplified Block Diagram

Lecture 6: Microcode, Cache, Pipelining 16



Pipelines with More Stages

The 4-stage pipeline is the shortest pipeline that has been
used for CPU design and modern processors use generally
more stages. The Pentium III had 16 and the Pentium 4 has
31 stages.

Lecture 6: Microcode, Cache, Pipelining 17



Effective Speed-Up (1/2)

The speed-up is the ratio of the time T needed to execute a
specific program for pipelined and non-pipelined
execution. The maximal speed-up of a 4-stage pipeline is
not exactly a factor 4, since the pipeline first needs to be
’filled up’, before it finishes 4 times more instructions
than a purely sequential execution. For example, if a
program contains only one single instruction the
pipelined architecture is obviously no faster at all.

Lecture 6: Microcode, Cache, Pipelining 18



Effective Speed-Up (1/2)

In a k-stage pipeline requiring one clock cycle per stage
the execution of n instructions with a clock cycle time t
will be finished in:

T � �k� �n� 1�� t (1)

The speed-up is, thus:

knt
�k� �n� 1�� t

� kn
k�n� 1

(2)

It may approach k for very long programs according to
this formula. Unfortunately there are other reasons why it
never quite gets there: pipelining hazards

Lecture 6: Microcode, Cache, Pipelining 19



Pipelining Hazards

Other causes that limit the pipelining speed-up are called
pipelining hazards. There are three major classes of these
hazards:

æ resource hazards

æ data hazards

æ control hazards

Hazards can be decimated by clever program compilation.
In the following however, we will look at hardware
solutions. In practice both are used in combination.

Lecture 6: Microcode, Cache, Pipelining 20



content

Microarchitecture

Memory Hierarchy
Cache

Pipelining
Resource Hazards
Data Hazards
Control Hazards
Conclusion

Lecture 6: Microcode, Cache, Pipelining 21



Resource Hazard Example: Memory Access

We have earlier referred to the von Neumann bottle neck
as the limitation to only one memory access at a time. For
pipelined operation, this means that only one instruction
in the pipeline can have memory access at a time. Since
always one of the instructions will be in the instruction
fetch phase, a load or write operation of data to the
memory is not possible without stalling the pipeline.

Lecture 6: Microcode, Cache, Pipelining 22



Improvement 1: Register File

To ameliorate the problem of the memory bottle neck,
most instructions in pipelined architectures use local
registers organized in a register file for data input and
output. The register file is in effect a small RAM (e.g. with
only a 3bit address space) with (commonly) two parallel
read ports (addresses and data) and (commonly) one
parallel write port. It does, thus, allow three parallel
accesses at the same time. In addition it is a specialized
very fast memory within the CPU allowing extremely short
access times. Still, also registers in the register file can be
cause for resource hazards if two instructions want to
access the same port in different pipeline stages.

Lecture 6: Microcode, Cache, Pipelining 23



Improvement 2: Separate Data and
Instruction Cache

Another improvement is the so called Harvard
architecture, different from the von Neumann model
insofar as there are two separate memories again for data
and instructions, on the level of the cache memory. Thus,
the instruction fetch will not collide with data access
unless there is a cache miss of both.

Lecture 6: Microcode, Cache, Pipelining 24



About Memory Access

Memory access still constitutes a hazard in pipelining. E.g.
in the first 4-stage SPARC processors memory access uses
5 clock cycles for reading and 6 for writing, and thus
impede pipe-line speed up.

Lecture 6: Microcode, Cache, Pipelining 25



Other Resource Hazards

Dependent on the CPU architecture a number of resources
may be used by different stages of the pipeline and may
thus be cause for resource hazards, for example:

æ memory, caches,

æ register files

æ buses

æ ALU

æ ...

Lecture 6: Microcode, Cache, Pipelining 26



content

Microarchitecture

Memory Hierarchy
Cache

Pipelining
Resource Hazards
Data Hazards
Control Hazards
Conclusion

Lecture 6: Microcode, Cache, Pipelining 27



Data Hazards

Data hazards can occur when instructions that are in the
pipeline simultaneously access the same data (i.e.
register). Thus, it can happen that an instruction reads a
register, before a previous instruction has written to it.

Lecture 6: Microcode, Cache, Pipelining 28



Data Hazard Illustration

Lecture 6: Microcode, Cache, Pipelining 29



A Solution: Stalling

A simple solution is to detect a dependency in the IF stage
and stall the execution of subsequent instructions until
the crucial instruction has finished its WB

Lecture 6: Microcode, Cache, Pipelining 30



Improvement: Shortcuts/Forwarding

In this solution there is a direct data path from the EX/WB
intermediate result register to the execution stage input
(e.g. the ALU). If a data hazard is detected this direct data
path supersedes the input from the DE/EX intermediate
result register.

Lecture 6: Microcode, Cache, Pipelining 31



content

Microarchitecture

Memory Hierarchy
Cache

Pipelining
Resource Hazards
Data Hazards
Control Hazards
Conclusion

Lecture 6: Microcode, Cache, Pipelining 32



Control Hazards

Pipelining assumes in a first approximation that there are
no program jumps and ’pre-fetches’ always the next
instruction from memory into the pipeline. The target of
jump instructions, however, is usually only computed in
the EX stage of a jump instruction. A this time, two more
instructions have already entered the pipeline and are in
the IF and DE stage. If the jump is taken these instructions
should not be executed and be prevented from writing
their results in the WB stage or accessing the memory in
the EX stage.

Lecture 6: Microcode, Cache, Pipelining 33



Control Hazard Illustration

Lecture 6: Microcode, Cache, Pipelining 34



A solution: Always Stall

Simply do not fetch any more instructions until it is clear
if the branch is taken or not.

Lecture 6: Microcode, Cache, Pipelining 35



Improvement 1: Jump Prediction

Make a prediction and fetch the predicted instructions.
Only if the prediction is proven wrong, flush the pipeline.
Variants:

æ assume branch not taken (also a static prediction)

æ static predictions

æ dynamic predictions

Lecture 6: Microcode, Cache, Pipelining 36



Improvement 2: Hardware Doubling

By doubling the hardware of some of the pipeline stages
one can continue two pipelines in parallel for both
possible instruction addresses. After it is clear, if the
branch was taken or not, one can discard/flush the
irrelevant pipeline and continue with the right one.
Of course, if there are two jumps or more just after each
other, this method fails on the second jump and the
pipeline needs to stall.

Lecture 6: Microcode, Cache, Pipelining 37



Pipelining Conclusion

Pipelining speeds up the instruction throughput (although
the execution of a single instruction is not accelerated).
The ideal speed-up cannot be reached, because of this, and
because of instruction inter-dependencies that sometimes
require that an instruction is finished before another can
begin. There are techniques to reduce the occurrence of
such hazards, but they can never be avoided entirely.

Lecture 6: Microcode, Cache, Pipelining 38


	Microarchitecture
	Memory Hierarchy
	Cache

	Pipelining
	Resource Hazards
	Data Hazards
	Control Hazards
	Conclusion


