
INF2270 — Spring 2010

Philipp Häfliger

Lecture 7: More on Cache, Virtual Memory, I/O



content

Cache (Continued)

Virtual Memory

Input/Output (I/O)

Lecture 7: More on Cache, Virtual Memory, I/O 2



content

Cache (Continued)

Virtual Memory

Input/Output (I/O)

Lecture 7: More on Cache, Virtual Memory, I/O 3



Mapping Strategy: Associative (rep.)

Lecture 7: More on Cache, Virtual Memory, I/O 4



Mapping Strategy: Direct (rep.)

Lecture 7: More on Cache, Virtual Memory, I/O 5



Mapping Strategy: Set Associative (rep.)

Lecture 7: More on Cache, Virtual Memory, I/O 6



Replacement Strategy (1/3)

As a consequence of a cache miss a new block needs to be
loaded into the cache. In associative and set associative
cache it might happen that all available slots are already
occupied and a choice needs to be made, which block in
the cache that will be replaced by the new block. There are
different strategies for this choice, most prominently:

æ first in first out (FIFO)

æ least recently used (LRU)

æ random

æ hybrid solutions

(Note that in direct mapping cache there is no choice as to
which block to replace).

Lecture 7: More on Cache, Virtual Memory, I/O 7



Replacement Strategy (2/3)

LRU seems intuitively quite reasonable but
requires a good deal of administrative
processing (causing delay): Usually a ’used’
flag is set per block when it is accessed. This
flag is reset in fixed intervals and a time tag is
updated for all blocks that have been used.
These time tags have either to be searched
before replacing a block or a queue can be
maintained and updated whenever the time
tags are updated.

FIFO is simpler. The cache blocks are simply
organized in a queue (ring buffer)

Lecture 7: More on Cache, Virtual Memory, I/O 8



Replacement Strategy (3/3)

random Both LRU and FIFO are in trouble if a program
works several times sequentially through a
portion of memory that is bigger than the
cache: the block that is cast out will very soon
be needed again. A random choice will do
better here

hybrid solutions, e.g. using FIFO within a set of
blocks that is randomly chosen are also used
in an attempt to combine the positive
properties of the approaches

Lecture 7: More on Cache, Virtual Memory, I/O 9



Cache Architectures

æ look-through

æ look-aside

Lecture 7: More on Cache, Virtual Memory, I/O 10



Look-Through Architecture

The cache is physically placed between
CPU and memory (system interface)

æ memory access is initiated after a
cache miss is determined (i.e. with a
delay)

æ only if a cache miss is determined,
is a memory access initiated

æ CPU can use cache while memory is
in use by other units

Lecture 7: More on Cache, Virtual Memory, I/O 11



Look-Aside Architecture
The cache shares the bus between
CPU and memory (system
interface)

æ memory access is initiated
before a cache miss is
determined (i.e. with no delay)

æ with a miss the cache just
listens in ’snarfs’ the data

æ only if a cache hit is
determined, does the cache
takes over

æ CPU cannot use cache while
other units access memory

Lecture 7: More on Cache, Virtual Memory, I/O 12



Cache Summary

æ Mapping Strategy
æ associative
æ direct
æ set associative

æ Write Strategy
æ write through
æ write back

æ Replacement Strategy
æ least recently used

(LRU)
æ FIFO
æ random

æ Architecture
æ look aside
æ look through

Lecture 7: More on Cache, Virtual Memory, I/O 13



content

Cache (Continued)

Virtual Memory

Input/Output (I/O)

Lecture 7: More on Cache, Virtual Memory, I/O 14



Virtual Memory

Virtual memory extends the amount of main memory as
seen by programs/processes beyond the capacity of the
physical memory. Additional space on the hard drive
(swap space) is used to store a part of the virtual memory
that is, at present, not in use. The task of the virtual
memory controller is quite similar to a cache controller: it
distributes data between a slow and fast storage medium.
A virtual memory controller may simply be part of the
operating system rather than a hardware component, but
most often there is a HW memory management unit (MMU)
using a translation look-aside buffer (TLB) that supports
virtual memory.

Lecture 7: More on Cache, Virtual Memory, I/O 15



Virtual Memory Principle

The principle of virtual
memory is that each logic
address is translated into a
physical address, either in
the main memory or on the
hard drive. processes
running on the CPU only see
the logic addresses and a
coherent the virtual memory.

Lecture 7: More on Cache, Virtual Memory, I/O 16



Virtual Memory Paging
A pointer for each individual
logic address would require
as much space as the entire
virtual memory. Thus, a
translation table is mapping
memory blocks (called pages
(fixed size) and segment
(variable size)). A logic
address can, thus, be divided
into a page number and a
page offset. A location in
memory that holds a page is
called page frame.

Lecture 7: More on Cache, Virtual Memory, I/O 17



Translation Look-Aside Buffer (TLB)

A translation look-aside buffer is a cache for the page
table, accelerating the translation of logic to physical
address by the MMU.

Lecture 7: More on Cache, Virtual Memory, I/O 18



MMU Flow Chart and Block Diagram

Lecture 7: More on Cache, Virtual Memory, I/O 19



Memory Hierarchy Summary

registers � 1ns � 100B

L1 (on CPU) cache �� 1ns � 10kB

L2,L3 (off CPU) cache � 2ns-10ns � 1MB

main memory (DRAM) � 20ns-100ns � 1GB

SSD/flash � 100ns-1�s � 10-100GB

hard disc � 1ms � 0.1-1TB

Lecture 7: More on Cache, Virtual Memory, I/O 20



content

Cache (Continued)

Virtual Memory

Input/Output (I/O)

Lecture 7: More on Cache, Virtual Memory, I/O 21



I/O Block Diagram
A computer is
connected to various
devices transferring
data to and from the
main memory. This is
referred to as
Input/output (I/O).
Examples: Keyboard,
Graphics, Mouse,
Network (Ethernet,
Bluetooth ...), USB,
Firewire, PCI,
PCI-express, SATA ...

Lecture 7: More on Cache, Virtual Memory, I/O 22



I/O Controller Principle
An I/O controller translates
and synchronizes a
peripheral device protocol
(communication language)
for the system bus. It
normally has at least one
data buffer referred to as I/O
port, a control register that
allows some SW
configuration and a status
register with information for
the CPU.

Lecture 7: More on Cache, Virtual Memory, I/O 23



I/O Addressing (1/2)

Memory mapped I/O is to access I/O ports and I/O
control- and status registers (each with its own
address) with the same functions as the
memory. Thus, in older systems, the system
interface might simply have been a single
shared I/O and memory bus. A disadvantage is
that the use of memory addresses may
interfere with the expansion of the main
memory.

Lecture 7: More on Cache, Virtual Memory, I/O 24



I/O Addressing (2/2)

Isolated I/O (as in the 80x86 family) means that separate
instructions accessing an I/O specific address
space are used for I/O access. An advantage
can be that these functions can be made
privileged, i.e. only available in certain modes
of operation, e.g. only to the operating system.

Lecture 7: More on Cache, Virtual Memory, I/O 25



Modes of Transfer(1/3)

Programmed/Polled: The processor is in full control of all
aspects of the transfer. It polls the I/O status register in a
loop to check if the controller has data to be collected
from the port or is ready to receive data to the port.
Polling uses up some CPU time and prevents the CPU from
being used for other purposes while waiting for I/O.

Lecture 7: More on Cache, Virtual Memory, I/O 26



Modes of Transfer(2/3)

Interrupt Driven: The I/O controller signals with a
dedicated 1bit data line (interrupt request (IRQ)) to the
CPU that it needs servicing. The CPU is free to run other
processes while waiting for I/O. If the interrupt is not
masked in the corresponding CPU status register, the
current instruction cycle is completed, the processor
status is saved (PC and flags pushed onto stack) and the
PC is loaded with the starting address of an interrupt
handler. the start address is found, either at a fixed
memory location specific to the interrupt priority
(autovectored) or stored in the controller and received by
the CPU after having sent an interrupt acknowledge
control signal to the device (vectored)

Lecture 7: More on Cache, Virtual Memory, I/O 27



Modes of Transfer(3/3)

Direct Memory Access (DMA): The processor is not
involved, but the transfer is negotiated directly with the
memory, avoiding copying to CPU registers first and the
subroutine call to the interrupt handler. DMA is used for
maximum speed usually by devices that write whole
blocks of data to memory (e.g. disk controllers). The CPU
often requests the transfer but then relinquishes control
of the system bus to the I/O controller, which only at the
completion of the block transfer notifies the CPU with an
interrupt.
(DMA poses another challenge to the cache as data can
now become stale, i.e. invalid in the cache)

Lecture 7: More on Cache, Virtual Memory, I/O 28


	Cache (Continued)
	Virtual Memory
	Input/Output (I/O)

