
INF2270 — Spring 2010

Philipp Häfliger

Lecture 8: Superscalar CPUs, Course
Summary/Repetition (1/2)



content

From Scalar to Superscalar

Lecture Summary and Brief Repetition
Binary numbers
Boolean Algebra
Combinational Logic Circuits

Encoder/Decoder
Multiplexer/Demultiplexer
Adders

Sequential Logic Circuits
Counters
Shift Registers

Lecture 8: Superscalar CPUs, Course
Summary/Repetition (1/2) 2



content

From Scalar to Superscalar

Lecture Summary and Brief Repetition
Binary numbers
Boolean Algebra
Combinational Logic Circuits

Encoder/Decoder
Multiplexer/Demultiplexer
Adders

Sequential Logic Circuits
Counters
Shift Registers

Lecture 8: Superscalar CPUs, Course
Summary/Repetition (1/2) 3



Scalar Processors

The concept of a CPU that we have discussed so far where
all scalar processors, in as far as they do not execute
operations in parallel and produce only a single result
data item at a time.

Lecture 8: Superscalar CPUs, Course
Summary/Repetition (1/2) 4



Vector processors
High performance computing led to
vector processors, most prominently the
Cray-1 in 1976 that had 8 vector registers
of 64 words of 64-bit length. Vector
processors perform ’single instruction
multiple datastream’ (SIMD)
computations, i.e. they execute the same
operation on a vector instead of a scalar.
Some machines used parallel ALU’s but
the Cray-1 used a dedicated pipelining
architecture that would fetch a single
instruction and then execute it efficiently,
e.g. 64 times, saving 63 fetches.

Lecture 8: Superscalar CPUs, Course
Summary/Repetition (1/2) 5



Multi processor
Vector computers lost popularity with the
introduction of multi-processor computers
such as Intels’s Paragon series of massively
parallel supercomputers: It was cheaper to
combine multiple (standard) CPU’s rather than
designing powerfull vector processors, even
considering a bigger communication overhead,
e.g. in some architectures with a single shared
memory/system bus the instructions and the
data need to be fetched and written in
sequence for each processor, making the von
Neumann bottleneck more severe. Other
designs, however, had local memory and/or
parallel memory access and many clever
solutions were introduced.

Lecture 8: Superscalar CPUs, Course
Summary/Repetition (1/2) 6



Clusters/Grids

But even cheaper and obtainable for the common user are
Ethernet clusters of individual computers, or even
computer grids connected over the internet. Both of these,
obviously, suffer from massive communication overhead
and espescially the latter are best used for so called
’embarassingly parallel problems’, i.e. computation
problems that do require no or minimal communication of
the computation nodes.

Lecture 8: Superscalar CPUs, Course
Summary/Repetition (1/2) 7



Multi Core

Designing more complicated integrated circuits has
become cheaper with progressing miniaturization, such
that several processing units can now be accomodated on
a single chip which has now become standard with AMD
and Intel processors. These multi-core processors have
many of the advantages of multi processor machines, but
with much faster communication between the cores, thus,
reducing communication overhead. (Although, it has to be
said that they are most commonly used to run individual
independent processes, and for the common user they do
not compute parallel problems.)

Lecture 8: Superscalar CPUs, Course
Summary/Repetition (1/2) 8



Superscalar Processor Principle

Superscalar processors were introduced even before
multi-core and all modern designs belong to this class.
Like vector processeors with parallel ALUs, they are
actually capable of executing instructions in parallel, but
in contrast to vector computers, they are different
instructions. Instead of replication of the basic functional
units n-times in hardware (e.g. the ALU), superscalar
processors exploit the fact that there already are multiple
functional units. For example, many processors do sport
both an ALU and a FPU. Thus, they should be able to
execute an integer- and a floating-point operation
simultaneously. Data access operations do not require the
ALU nor the FPU (or have a dedicated ALU for address
operations) and can thus also be executed at the same
time.

Lecture 8: Superscalar CPUs, Course
Summary/Repetition (1/2) 9



Superscalar Processor

For this to work, several instructions have to be fetched in
parallel, and then dispatched, either in parallel, if possible,
or in sequence, if necessary. Some additional stages are
needed in the pipelining structure, and the pipeline is
divided for differnt types of instructions.
Superscalar processors can ideally achive an average clock
cycle per instruction (CPI) smaller than 1, and a speedup
higher than the number of pipelining stages k (which is
saying the same thing in two different ways).
Compiler level support can group instructions to optimize
the potential for parallel execution.

Lecture 8: Superscalar CPUs, Course
Summary/Repetition (1/2) 10



Intel Core 2

As an example: the Intel Core 2 microarchitecture has 14
pipeline stages and can execute up to 4-6 instructions in
parallel.

Lecture 8: Superscalar CPUs, Course
Summary/Repetition (1/2) 11



Lecture 8: Superscalar CPUs, Course
Summary/Repetition (1/2) 12



Some Elements in Superscalar
Architectures (1/2)

Micro-instruction reorder buffer (ROB): Stores all
instructions that await execution and
dispatches them for out-of-order execution
when appropriate. Note that, thus, the order of
execution may be quite different from the
order of your assembler code. Extra steps have
to be taken to avoid and/or handle hazards
caused by this reordering.

Retirement stage: The pipelining stage that takes care of
finished instructions and makes the result
appear consistent with the execution sequence
that was intended by the programmer.Lecture 8: Superscalar CPUs, Course

Summary/Repetition (1/2) 13



Some Elements in Superscalar
Architectures (2/2)

Reservation station registers: A single instruction
reserves a set of these registers for all the data
needed for its execution on its functional unit.
Each functional unit has several slots in the
reservation station. Once all the data becomes
available and the functional unit is free, the
instruction is executed.

Lecture 8: Superscalar CPUs, Course
Summary/Repetition (1/2) 14



content

From Scalar to Superscalar

Lecture Summary and Brief Repetition
Binary numbers
Boolean Algebra
Combinational Logic Circuits

Encoder/Decoder
Multiplexer/Demultiplexer
Adders

Sequential Logic Circuits
Counters
Shift Registers

Lecture 8: Superscalar CPUs, Course
Summary/Repetition (1/2) 15



Lecture Content on Hardware

A rough categorization of the content:

æ Digital Logic (Boolean algebra, combinational and
sequential logic ...)

æ Architecture (Von Neumann, cache, virtual memory,
I/O ...)

æ Performance Optimization (pipelining, cacheing and
virtual memory strategies ...)

Lecture 8: Superscalar CPUs, Course
Summary/Repetition (1/2) 16



content

From Scalar to Superscalar

Lecture Summary and Brief Repetition
Binary numbers
Boolean Algebra
Combinational Logic Circuits

Encoder/Decoder
Multiplexer/Demultiplexer
Adders

Sequential Logic Circuits
Counters
Shift Registers

Lecture 8: Superscalar CPUs, Course
Summary/Repetition (1/2) 17



Binary Numbers

unsigned int: ’10010’ corresponds to

1�24�0�23�0�22�1�21�0�20 � 16�2 � 18

int, two’s complement: for n-bit integers

�unsigned int� �2�n�1�; 2n � 1�
� �int� ��2�n�1�;�1�

�unsigned int� �0; 2�n�1� � 1�
� �int� �0; 2�n�1� � 1�

Lecture 8: Superscalar CPUs, Course
Summary/Repetition (1/2) 18



content

From Scalar to Superscalar

Lecture Summary and Brief Repetition
Binary numbers
Boolean Algebra
Combinational Logic Circuits

Encoder/Decoder
Multiplexer/Demultiplexer
Adders

Sequential Logic Circuits
Counters
Shift Registers

Lecture 8: Superscalar CPUs, Course
Summary/Repetition (1/2) 19



Boolean Function

æ A (Boolean) function assigns exactly one output (or
one output vector) to every input vector.

æ Boolean expressions are composed of the three basic
Boolean algebraic operators, AND, OR, and NOT

æ Boolean functions can be defined by
æ Boolean expressions
æ Truth tables
æ Logic gates schematics

æ Functions are identical/equivalent if they produce the
same output for every input. Note: different
expressions/schematics can describe the same
function. There is only one complete truth table,
however, for one function.Lecture 8: Superscalar CPUs, Course

Summary/Repetition (1/2) 20



Boolean function Example

F � x _y ^ z̄

x y z F

0 0 0 0

1 0 0 1

0 1 0 1

1 1 0 1

0 0 1 0

1 0 1 1

0 1 1 0

1 1 1 1
Lecture 8: Superscalar CPUs, Course
Summary/Repetition (1/2) 21



Rules governing equivalency
¯̄a=a

a^b_c = (a^b)_c a_b^c = a_(b^c)

a^ā=0 a_ā=1

a^a=a a_a=a

a^1=a a_0=a

a^0=0 a_1=1

a^b = b^a a_b = b_a (commutative)

(a^b)^c=a^(b^c) (a_b)_c=a_(b_c) (associative)

a^�b_c)=(a^b)_(a^c) a_(b^c)= (a_b)^(a_c) (distributive)

a_ b � ā^ b̄ a^ b � ā_ b̄ (deMorgan)
Lecture 8: Superscalar CPUs, Course
Summary/Repetition (1/2) 22



Simplification

Since there are infinitely many equivalent Boolean
expressions for the same function, it is often desireable to
find a simple expression for a given function. In the
lecture we looked at two methods:

1. Intuitive application of the algebraic rules

2. Karnaugh maps

Lecture 8: Superscalar CPUs, Course
Summary/Repetition (1/2) 23



Example Karnaugh map

F � a^ c̄
_ a^ d̄
_ b̄ ^ c̄ ^ d̄

F̄ � ā^ d
_ ā^ c
_ ā^ b
_ c ^ d

F � �a_ d̄�
^ �a_ c̄�
^ �a_ b̄�
^ �c̄ _ d̄�Lecture 8: Superscalar CPUs, Course

Summary/Repetition (1/2) 24



content

From Scalar to Superscalar

Lecture Summary and Brief Repetition
Binary numbers
Boolean Algebra
Combinational Logic Circuits

Encoder/Decoder
Multiplexer/Demultiplexer
Adders

Sequential Logic Circuits
Counters
Shift Registers

Lecture 8: Superscalar CPUs, Course
Summary/Repetition (1/2) 25



Definition

Combinational Logic circuits are circuits implementing
Boolean functions

Lecture 8: Superscalar CPUs, Course
Summary/Repetition (1/2) 26



Simple 3-bit Encoder Truth Table

I7 I6 I5 I4 I3 I2 I1 I0 O2 O1 O0

0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0 0 0 1

0 0 0 0 0 1 0 0 0 1 0

0 0 0 0 1 0 0 0 0 1 1

0 0 0 1 0 0 0 0 1 0 0

0 0 1 0 0 0 0 0 1 0 1

0 1 0 0 0 0 0 0 1 1 0

1 0 0 0 0 0 0 0 1 1 1
Lecture 8: Superscalar CPUs, Course
Summary/Repetition (1/2) 27



3-bit Encoder Implementation Variant

Lecture 8: Superscalar CPUs, Course
Summary/Repetition (1/2) 28



3-bit Priority Encoder Truth Table

I7 I6 I5 I4 I3 I2 I1 I0 O2 O1 O0

0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 X 0 0 1

0 0 0 0 0 1 X X 0 1 0

0 0 0 0 1 X X X 0 1 1

0 0 0 1 X X X X 1 0 0

0 0 1 X X X X X 1 0 1

0 1 X X X X X X 1 1 0

1 X X X X X X X 1 1 1
Lecture 8: Superscalar CPUs, Course
Summary/Repetition (1/2) 29



3-bit Decoder Truth Table

I2 I1 I0 O7 O6 O5 O4 O3 O2 O1 O0

0 0 0 0 0 0 0 0 0 0 1

0 0 1 0 0 0 0 0 0 1 0

0 1 0 0 0 0 0 0 1 0 0

0 1 1 0 0 0 0 1 0 0 0

1 0 0 0 0 0 1 0 0 0 0

1 0 1 0 0 1 0 0 0 0 0

1 1 0 0 1 0 0 0 0 0 0

1 1 1 1 0 0 0 0 0 0 0
Lecture 8: Superscalar CPUs, Course
Summary/Repetition (1/2) 30



3-bit Decoder Implementation Variant

Lecture 8: Superscalar CPUs, Course
Summary/Repetition (1/2) 31



3-bit Multiplexer Truth Table

S2 S1 S0 O

0 0 0 I0

0 0 1 I1

0 1 0 I2

0 1 1 I3

1 0 0 I4

1 0 1 I5

1 1 0 I6

1 1 1 I7

Lecture 8: Superscalar CPUs, Course
Summary/Repetition (1/2) 32



3-bit Multiplexer Implementation Variant

Lecture 8: Superscalar CPUs, Course
Summary/Repetition (1/2) 33



3-bit Demultiplexer Truth Table

S2 S1 S0 O7 O6 O5 O4 O3 O2 O1 O0

0 0 0 0 0 0 0 0 0 0 I

0 0 1 0 0 0 0 0 0 I 0

0 1 0 0 0 0 0 0 I 0 0

0 1 1 0 0 0 0 I 0 0 0

1 0 0 0 0 0 I 0 0 0 0

1 0 1 0 0 I 0 0 0 0 0

1 1 0 0 I 0 0 0 0 0 0

1 1 1 I 0 0 0 0 0 0 0
Lecture 8: Superscalar CPUs, Course
Summary/Repetition (1/2) 34



3-bit Demultiplexer Implementation Variant

Lecture 8: Superscalar CPUs, Course
Summary/Repetition (1/2) 35



Half Adder

Truth table for a 1-bit half
adder:

a b S C

0 0 0 0

0 1 1 0

1 0 1 0

1 1 0 1

Schematics:

Lecture 8: Superscalar CPUs, Course
Summary/Repetition (1/2) 36



Full Adder (1/2)

A half adder cannot be
cascaded to a binary
addition of an arbitrary
bit-length since there is no
carry input. An extension of
the circuit is needed.

Full Adder truth table:

Cin a b S Cout

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1
Lecture 8: Superscalar CPUs, Course
Summary/Repetition (1/2) 37



Full Adder (2/2)

Schematics:

Lecture 8: Superscalar CPUs, Course
Summary/Repetition (1/2) 38



content

From Scalar to Superscalar

Lecture Summary and Brief Repetition
Binary numbers
Boolean Algebra
Combinational Logic Circuits

Encoder/Decoder
Multiplexer/Demultiplexer
Adders

Sequential Logic Circuits
Counters
Shift Registers

Lecture 8: Superscalar CPUs, Course
Summary/Repetition (1/2) 39



Definition

Sequential logic circuits are logic circuits implementing
finite state machines, i.e. circuits composed of
combinational logic and internal memory elements. One
typical categorization of sequential logic circuits are
Moore or Mealy machines.

Lecture 8: Superscalar CPUs, Course
Summary/Repetition (1/2) 40



Synchronous and Asynchronous FSM

æ Synchronous FSMs include an implicit positive
transition of a global clock signal as transition
condition for all state changes. Synchronous FSMs
realized as sequential logic circuits use synchronous
flip-flops as memory elements, e.g. D-flip-flops. They
are generally simpler to implement and easier to
verify and test. The clock frequency needs to be slow
enough to allow the slowest combinational transition
condition to be computed.

æ Asynchronous FSMs change state at once if the explicit
transition condition is met. They can be very fast but
are much harder to design and verify.

Lecture 8: Superscalar CPUs, Course
Summary/Repetition (1/2) 41



Example: Synchronous Moore Machine

State transition graph:

Characteristic table:

car car go gonext

EW NS NS NS

0 0 0 0

1 0 0 0

0 1 0 1

1 1 0 1

0 0 1 1

1 0 1 0

0 1 1 1

1 1 1 0Lecture 8: Superscalar CPUs, Course
Summary/Repetition (1/2) 42



Example: Synchronous Moore Machine
Characteristic table:

car car go gonext

EW NS NS NS

0 0 0 0

1 0 0 0

0 1 0 1

1 1 0 1

0 0 1 1

1 0 1 0

0 1 1 1

1 1 1 0

Schematics/circuit diagram:

Careful: Always also consider the
conditions for a state to be
maintained, which sometimes is
not explicitly stated in the graph!

Lecture 8: Superscalar CPUs, Course
Summary/Repetition (1/2) 43



3-bit Counter State Transition Graph

Lecture 8: Superscalar CPUs, Course
Summary/Repetition (1/2) 44



3-bit Counter Characteristic Table

present in next

S2 S1 S0 NA S2 S1 S0

0 0 0 0 0 1

0 0 1 0 1 0

0 1 0 0 1 1

0 1 1 1 0 0

1 0 0 1 0 1

1 0 1 1 1 0

1 1 0 1 1 1

1 1 1 0 0 0Lecture 8: Superscalar CPUs, Course
Summary/Repetition (1/2) 45



Counter Element Characteristic Equation

Snnext � Sn �
0@n�1̂

k�0

Sk

1A
In words: if all previous bits are 1 ! flip/toggle.

Lecture 8: Superscalar CPUs, Course
Summary/Repetition (1/2) 46



3 bit Synchronous Counter

Lecture 8: Superscalar CPUs, Course
Summary/Repetition (1/2) 47



3 bit Ripple Counter

Lecture 8: Superscalar CPUs, Course
Summary/Repetition (1/2) 48



Shift Register State Transition Table

control next

LD SE LS O2 O1 O0

1 X X I2 I1 I0

0 0 X O2 O1 O0

0 1 0 RSin O2 O1

0 1 1 O1 O0 LSin

Lecture 8: Superscalar CPUs, Course
Summary/Repetition (1/2) 49



Shift Register Schematics

Lecture 8: Superscalar CPUs, Course
Summary/Repetition (1/2) 50


	From Scalar to Superscalar
	Lecture Summary and Brief Repetition
	Binary numbers
	Boolean Algebra
	Combinational Logic Circuits
	Sequential Logic Circuits


