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Simplification Example 2 (Lecture 1)
Revisited
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Transscribing a Truth Table into a K-Map

alb|c]F
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0Oj]1|1]1 ! s| oo Gray-code: only
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Identify the 'minterms’
Identify rectangles filled with 1’s and a

containing 2" 1’s (i.e. 1,2,4,8 ... elements). 8

Find a set of a minimal number of such 8| o] 0

rectangles that covers all 1’s. Overlap of the ol
o

rectangles is allowed, actually desired to
maximize their size. Note that the K-map
wraps around at its boundaries, i.e rectangles
can be formed across the map edges.
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The minterms define a 'sum’ of 'products’

b™c
a o 1 Each rectangle defines a
3 o ‘product’ (elements and-ed)
s 9]° where the elements are the
sl ol o ! input variables that remain
constant within the
(1] 1) .
rectangle. Finally, all
el o] o0 ‘products’ are or-ed. (Note:

there is only one ’product’ in
this first example. See next
example!)
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K-map simplification: Example 2
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K-Maps Based on the 'O’s

One can also use the 0 to form the minterms and derive an
expression for the inverse function F instead of F by exact
same procedure. Then one can use the deMorgan theorem
to turn the sum of product into a product of sums to

derive F.
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K-Maps Based on the '0O’s: Example

ab
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Properties of K-maps

@ Karnaugh maps are useful to a size of up to 6 Boolean
variables

@ It is only possible to have up to two variables along
one axis. Karnaugh maps with 5-8 variables become,
thus, 3-dimensional. (Example in the weekly exercise
for lecture 3)
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Combinational Logic

Combinational logic circuits are feed-forward logic/digital
circuits with no memory that can be described by Boolean
functions.

Note what is implied here: logic gates can also be
connected in ways that include feed-back connections that
implement/include memory that cannot be described as
Boolean functions! This is then not ’combinational logic’,
but ’sequential logic’, of which we will talk later.
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Design and Analysis of Digital Circuits

Design of a digital circuit is the process of assembling
circuit blocks to form a bigger digital circuit.

Analysis of a digital circuit is the process of finding out
what it is doing, e.g. (in the case of
combinational logic!) by finding an equivalent
Boolean function or a complete truth table.
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A complete analysis of a digital circuit is quite trivial for
small digital circuits but neigh impossible for circuits of
the complexity of a modern CPU. Hierarchical approaches
in design and analysis provide some help.

The first Pentium on the market had a mistake in its
floating point unit.

After the Intel 286 there was the 386 and then the
486, but the 585.764529 was then dubbed
’Pentium’ for simplicity sake.
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Logic Gate Signals

A certain range of input voltage is defined as ’high’ or
logic '1’ and another range is defined as ’low’ or '0’. Note:
the range is defined bigger at a logic gate input

E.g. in a digital circuit with a 1.8V supply one can, for
instance, guarantee an input voltage of OV to 0.5V to be
recognised as '0’ and 1.2V to 1.8V as ’1’ by a logic gate.
On the output side the gate can guarantee to deliver a
voltage of either >1.75V or <0.05V.

The assymetric ranges correct ‘errors’ in a cascade of
gates, adding a safety margin between input and output,
makeing (correctly designed!) digital circuits very robust
(which is necessary with millions of logic gates in a CPU,
where a single error might impair the global function!)
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Analysis Example
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Design Example (Universality of NAND and
NOR)

Design equivalent circuits with only NANDs (NORs)

r O » Oor




Standard Combinational Logic

Some combinational logic (and of course also sequential
logic T later) is often used in computational devices and
are usually provided as ’black boxes’ guaranteeing a
defined function.

Examples:

@ encoder/decoder
@ multiplexer/demultiplexer
@ adders/multipliers

There are actually variations on how those functions are
implemented, resulting in different processing speeds
and/or power consumption and/or scalability (i.e. how
easy it is to adapt the same function for more inputs).
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3-bit Encoder Specification

An encoder in digital electronics refers to a circuit that
converts 2" inputs (one-hot code) into n outputs (binary
number), as specified by the following truth table.

n

2

! —/— encoder

n

_/_o
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Simple 3-bit Encoder Truth Table
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3-bit Encoder Implementation Variant

Yy

0, 0, O
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3-bit Encoder Remarks

The truth table that was given is not complete: some
inputs are ‘illegal’ (not one-hot codes). Circuitry that
produces the input should ensure to only produce legal
states. In our specific digital circuit implementation we
can deduct what the output in each illegal case would be,
but other implementation may provide different outputs
in those non-defined cases, and still be valid encoders!
The following truth table is a deterministic specification
of an encoder, without ‘illegal’ inputs, where the "highest’
active input bit determines the output. ’X’ in the table
means ‘do not care’, or ‘for any state’ and allows to
abbreviate the truth table. This would require a different
implementation, but we will not present it here.
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3-bit Decoder Specification

A decoder is the inverse function of a encoder, in digital
circuits usually decoding n (binary number) inputs into 2"
outputs (one-hot code).

n
|—/— decoder —/— o
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3-bit Decoder Truth Table
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3-bit Decoder Implementation Variant
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3-bit Multiplexer Specification

A multiplexer routes one of 2" input signals as defined by
the binary control number S to the single output.
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3-bit Multiplexer Implementation Variant
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Bus Multiplexer

A bus-multiplexer combines several multiplexers in
parallel, i.e. routing an entire bus of digital signals.
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3-bit Demultiplexer Specification

A demultiplexer performs the inverse function of a
multiplexer, routing one input signal to one of 2" outputs
as defined by the binary control number S
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3-bit Demultiplexer Truth Table
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3-bit Demultiplexer Implementation Variant
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