
INF2270 — Spring 2011

Lecture 2: Boolean Functions, Combinational Logic



content

Simplifying Boolean Functions with Karnaugh Maps

Combinational Logic Circuits
Concepts
Encoder/Decoder
Multiplexer/Demultiplexer

Lecture 2: Boolean Functions, Combinational Logic 2



content

Simplifying Boolean Functions with Karnaugh Maps

Combinational Logic Circuits
Concepts
Encoder/Decoder
Multiplexer/Demultiplexer

Lecture 2: Boolean Functions, Combinational Logic 3



Simplification Example 2 (Lecture 1)
Revisited

F � a^b^c_ ā^b^c_ ā^b^ c̄^ �a_c� !

a b c F

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 0

1 1 0 0

1 1 1 1
Lecture 2: Boolean Functions, Combinational Logic 4



Transscribing a Truth Table into a K-Map

a b c F

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 0

1 1 0 0

1 1 1 1

!

The input
variables are
listed on the x-
and y-axis as
Gray-code: only
one bit shift
between two
subsequent
positions.

Lecture 2: Boolean Functions, Combinational Logic 5



Identify the ’minterms’
Identify rectangles filled with 1’s and
containing 2n 1’s (i.e. 1,2,4,8 ... elements).
Find a set of a minimal number of such
rectangles that covers all 1’s. Overlap of the
rectangles is allowed, actually desired to
maximize their size. Note that the K-map
wraps around at its boundaries, i.e rectangles
can be formed across the map edges.

Lecture 2: Boolean Functions, Combinational Logic 6



The minterms define a ’sum’ of ’products’

!

�b^ c�

Each rectangle defines a
’product’ (elements and-ed)
where the elements are the
input variables that remain
constant within the
rectangle. Finally, all
’products’ are or-ed. (Note:
there is only one ’product’ in
this first example. See next
example!)

Lecture 2: Boolean Functions, Combinational Logic 7



K-map simplification: Example 2

�a� _ �b̄^ d̄� _ �b^ c̄^ d�

Lecture 2: Boolean Functions, Combinational Logic 8



K-Maps Based on the ’0’s

One can also use the 0 to form the minterms and derive an
expression for the inverse function F̄ instead of F by exact
same procedure. Then one can use the deMorgan theorem
to turn the sum of product into a product of sums to
derive F.

Lecture 2: Boolean Functions, Combinational Logic 9



K-Maps Based on the ’0’s: Example

F � �b^ d�_ �a^ d�_ �a^ b�_ �c^ d�

Employing deMorgan’s theorem:

F � F � �b_ d�^ �a_ d�^ �a_ b�^ �c_ d�

Lecture 2: Boolean Functions, Combinational Logic 10



Properties of K-maps

æ Karnaugh maps are useful to a size of up to 6 Boolean
variables

æ It is only possible to have up to two variables along
one axis. Karnaugh maps with 5-8 variables become,
thus, 3-dimensional. (Example in the weekly exercise
for lecture 3)

Lecture 2: Boolean Functions, Combinational Logic 11



content

Simplifying Boolean Functions with Karnaugh Maps

Combinational Logic Circuits
Concepts
Encoder/Decoder
Multiplexer/Demultiplexer

Lecture 2: Boolean Functions, Combinational Logic 12



content

Simplifying Boolean Functions with Karnaugh Maps

Combinational Logic Circuits
Concepts
Encoder/Decoder
Multiplexer/Demultiplexer

Lecture 2: Boolean Functions, Combinational Logic 13



Combinational Logic

Combinational logic circuits are feed-forward logic/digital
circuits with no memory that can be described by Boolean
functions.

Note what is implied here: logic gates can also be
connected in ways that include feed-back connections that
implement/include memory that cannot be described as
Boolean functions! This is then not ’combinational logic’,
but ’sequential logic’, of which we will talk later.

Lecture 2: Boolean Functions, Combinational Logic 14



Design and Analysis of Digital Circuits

Design of a digital circuit is the process of assembling
circuit blocks to form a bigger digital circuit.

Analysis of a digital circuit is the process of finding out
what it is doing, e.g. (in the case of
combinational logic!) by finding an equivalent
Boolean function or a complete truth table.

Lecture 2: Boolean Functions, Combinational Logic 15



A complete analysis of a digital circuit is quite trivial for
small digital circuits but neigh impossible for circuits of
the complexity of a modern CPU. Hierarchical approaches
in design and analysis provide some help.

The first Pentium on the market had a mistake in its
floating point unit.

After the Intel 286 there was the 386 and then the
486, but the 585.764529 was then dubbed
’Pentium’ for simplicity sake.

Lecture 2: Boolean Functions, Combinational Logic 16



Logic Gate Signals

A certain range of input voltage is defined as ’high’ or
logic ’1’ and another range is defined as ’low’ or ’0’. Note:
the range is defined bigger at a logic gate input
E.g. in a digital circuit with a 1.8V supply one can, for
instance, guarantee an input voltage of 0V to 0.5V to be
recognised as ’0’ and 1.2V to 1.8V as ’1’ by a logic gate.
On the output side the gate can guarantee to deliver a
voltage of either >1.75V or <0.05V.
The assymetric ranges correct ‘errors’ in a cascade of
gates, adding a safety margin between input and output,
makeing (correctly designed!) digital circuits very robust
(which is necessary with millions of logic gates in a CPU,
where a single error might impair the global function!)

Lecture 2: Boolean Functions, Combinational Logic 17



Analysis Example

� a^ b̄| {z }
x4

_b^ c| {z }
x5

_ ā^ b̄^ c| {z }
x6

Lecture 2: Boolean Functions, Combinational Logic 18



Design Example (Universality of NAND and
NOR)

Design equivalent circuits with only NANDs (NORs)

!

!

!
Lecture 2: Boolean Functions, Combinational Logic 19



Standard Combinational Logic

Some combinational logic (and of course also sequential
logic ! later) is often used in computational devices and
are usually provided as ’black boxes’ guaranteeing a
defined function.
Examples:

æ encoder/decoder

æ multiplexer/demultiplexer

æ adders/multipliers

There are actually variations on how those functions are
implemented, resulting in different processing speeds
and/or power consumption and/or scalability (i.e. how
easy it is to adapt the same function for more inputs).

Lecture 2: Boolean Functions, Combinational Logic 20



content

Simplifying Boolean Functions with Karnaugh Maps

Combinational Logic Circuits
Concepts
Encoder/Decoder
Multiplexer/Demultiplexer

Lecture 2: Boolean Functions, Combinational Logic 21



3-bit Encoder Specification

An encoder in digital electronics refers to a circuit that
converts 2n inputs (one-hot code) into n outputs (binary
number), as specified by the following truth table.

Lecture 2: Boolean Functions, Combinational Logic 22



Simple 3-bit Encoder Truth Table

I7 I6 I5 I4 I3 I2 I1 I0 O2 O1 O0

0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0 0 0 1

0 0 0 0 0 1 0 0 0 1 0

0 0 0 0 1 0 0 0 0 1 1

0 0 0 1 0 0 0 0 1 0 0

0 0 1 0 0 0 0 0 1 0 1

0 1 0 0 0 0 0 0 1 1 0

1 0 0 0 0 0 0 0 1 1 1

Lecture 2: Boolean Functions, Combinational Logic 23



3-bit Encoder Implementation Variant

Lecture 2: Boolean Functions, Combinational Logic 24



3-bit Encoder Remarks

The truth table that was given is not complete: some
inputs are ‘illegal’ (not one-hot codes). Circuitry that
produces the input should ensure to only produce legal
states. In our specific digital circuit implementation we
can deduct what the output in each illegal case would be,
but other implementation may provide different outputs
in those non-defined cases, and still be valid encoders!
The following truth table is a deterministic specification
of an encoder, without ‘illegal’ inputs, where the ’highest’
active input bit determines the output. ’X’ in the table
means ‘do not care’, or ‘for any state’ and allows to
abbreviate the truth table. This would require a different
implementation, but we will not present it here.

Lecture 2: Boolean Functions, Combinational Logic 25



3-bit Priority Encoder Truth Table

I7 I6 I5 I4 I3 I2 I1 I0 O2 O1 O0

0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 X 0 0 1

0 0 0 0 0 1 X X 0 1 0

0 0 0 0 1 X X X 0 1 1

0 0 0 1 X X X X 1 0 0

0 0 1 X X X X X 1 0 1

0 1 X X X X X X 1 1 0

1 X X X X X X X 1 1 1

Lecture 2: Boolean Functions, Combinational Logic 26



3-bit Decoder Specification

A decoder is the inverse function of a encoder, in digital
circuits usually decoding n (binary number) inputs into 2n

outputs (one-hot code).

Lecture 2: Boolean Functions, Combinational Logic 27



3-bit Decoder Truth Table

I2 I1 I0 O7 O6 O5 O4 O3 O2 O1 O0

0 0 0 0 0 0 0 0 0 0 1

0 0 1 0 0 0 0 0 0 1 0

0 1 0 0 0 0 0 0 1 0 0

0 1 1 0 0 0 0 1 0 0 0

1 0 0 0 0 0 1 0 0 0 0

1 0 1 0 0 1 0 0 0 0 0

1 1 0 0 1 0 0 0 0 0 0

1 1 1 1 0 0 0 0 0 0 0

Lecture 2: Boolean Functions, Combinational Logic 28



3-bit Decoder Implementation Variant

Lecture 2: Boolean Functions, Combinational Logic 29



content

Simplifying Boolean Functions with Karnaugh Maps

Combinational Logic Circuits
Concepts
Encoder/Decoder
Multiplexer/Demultiplexer

Lecture 2: Boolean Functions, Combinational Logic 30



3-bit Multiplexer Specification

A multiplexer routes one of 2n input signals as defined by
the binary control number S to the single output.

S2 S1 S0 O

0 0 0 I0

0 0 1 I1

0 1 0 I2

0 1 1 I3

1 0 0 I4

1 0 1 I5

1 1 0 I6

1 1 1 I7Lecture 2: Boolean Functions, Combinational Logic 31



3-bit Multiplexer Implementation Variant

Lecture 2: Boolean Functions, Combinational Logic 32



Bus Multiplexer

A bus-multiplexer combines several multiplexers in
parallel, i.e. routing an entire bus of digital signals.

Lecture 2: Boolean Functions, Combinational Logic 33



3-bit Demultiplexer Specification

A demultiplexer performs the inverse function of a
multiplexer, routing one input signal to one of 2n outputs
as defined by the binary control number S

Lecture 2: Boolean Functions, Combinational Logic 34



3-bit Demultiplexer Truth Table

S2 S1 S0 O7 O6 O5 O4 O3 O2 O1 O0

0 0 0 0 0 0 0 0 0 0 I

0 0 1 0 0 0 0 0 0 I 0

0 1 0 0 0 0 0 0 I 0 0

0 1 1 0 0 0 0 I 0 0 0

1 0 0 0 0 0 I 0 0 0 0

1 0 1 0 0 I 0 0 0 0 0

1 1 0 0 I 0 0 0 0 0 0

1 1 1 I 0 0 0 0 0 0 0

Lecture 2: Boolean Functions, Combinational Logic 35



3-bit Demultiplexer Implementation Variant

Lecture 2: Boolean Functions, Combinational Logic 36


	Simplifying Boolean Functions with Karnaugh Maps
	Combinational Logic Circuits
	Concepts
	Encoder/Decoder
	Multiplexer/Demultiplexer


