
INF2270 — Spring 2011

Lecture 4: Signed Binaries and Arithmetic



content

Karnaugh maps revisited

Binary Addition

Signed Binary Numbers

Binary Subtraction

Arithmetic Right-Shift and Bit Number Extension

Lecture 4: Signed Binaries and Arithmetic 2



content

Karnaugh maps revisited

Binary Addition

Signed Binary Numbers

Binary Subtraction

Arithmetic Right-Shift and Bit Number Extension

Lecture 4: Signed Binaries and Arithmetic 3



Karnaugh maps with X’s

With 3 variables along
one edge a Karnaugh
map needs to be folded
into 3-dimensions and
one has to look for
cubes instead of
rectangels.
X’s can arbitrarily be
assigned a ’0’ or a ’1’
and can thus be used
to extend cubes.

h � �c2�
_ �t̄1 ^ c1�
_ �t̄0 ^ t̄1 ^ c0�
_ �t̄0 ^ c0 ^ c1�

Lecture 4: Signed Binaries and Arithmetic 4



content

Karnaugh maps revisited

Binary Addition

Signed Binary Numbers

Binary Subtraction

Arithmetic Right-Shift and Bit Number Extension

Lecture 4: Signed Binaries and Arithmetic 5



Half Adder

Example:
0001

+ 0011

= 0100

Truth table
for a 1-bit half
adder:

a b S C

0 0 0 0

0 1 1 0

1 0 1 0

1 1 0 1

S is the result
and C is the carry
bit, i.e. a bit
indicating if
there is an
overflow and an
additional bit is
necessary to
represent the
result.

Schematics:

Lecture 4: Signed Binaries and Arithmetic 6



Full Adder (1/2)

A half adder cannot be
cascaded to a binary
addition of an arbitrary
bit-length since there is no
carry input. An extension of
the circuit is needed.

Full Adder truth table:

Cin a b S Cout

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

Lecture 4: Signed Binaries and Arithmetic 7



Full Adder (2/2)

Schematics:

Lecture 4: Signed Binaries and Arithmetic 8



content

Karnaugh maps revisited

Binary Addition

Signed Binary Numbers

Binary Subtraction

Arithmetic Right-Shift and Bit Number Extension

Lecture 4: Signed Binaries and Arithmetic 9



Sign and Magnitude representation

Maybe the most obvious way of representing positive and
negative binary numbers is to add a sign-bit. Example for 8
bit numbers (7-bit magnitude and 1 sign-bit, -127 to +127):

87 � 01010111

�87 � 11010111

A problem here is that there is also a ’signed zero’, i.e. +0
and -0, which does not really make sense.

Lecture 4: Signed Binaries and Arithmetic 10



Two’s complement Representation

The two’s complement (used in most digital circuits
today) is a signed binary number representation that does
not have this problem and comes with a number of other
convenient properties. In 8-bit two’s complement the
unsigned numbers 0 to 127 represent themselves, whereas
the unsigned numbers 128 to 255 represent the numbers
-128 to -1 (=the unsigned number -256). Thus, also in this
representation all numbers with the first bit equal to ’1’
are negative numbers.

87 = 01010111

-41 = 11010111 (= 215-256)

-87 = 10101001 (= 169-256)
Lecture 4: Signed Binaries and Arithmetic 11



Inverting in Two’s Complement

Finding the inverse of a number in two’s complement is
simple. The same operation is performed for both,
positive to negative and negative to positive:

1. invert each bit

2. add 1

Example:
1. 87=01010111 ! 10101000

2. 10101000+1 = 10101001=-87

1. -87=10101001 ! 01010110

2. 01010110+1 = 01010111=87

Lecture 4: Signed Binaries and Arithmetic 12



content

Karnaugh maps revisited

Binary Addition

Signed Binary Numbers

Binary Subtraction

Arithmetic Right-Shift and Bit Number Extension

Lecture 4: Signed Binaries and Arithmetic 13



Binary Subtraction

A really cool property of the two’s complement
representation is that one can simply add two positive or
two negative or a negative and a positive number with a
full-adder of the same length, ignore an eventual
overflowing carry, and the result will be correct (provided
the result is not bigger than the positive maximum (e.g.
127 with 8 bit numbers) and no smaller than the negative
minimum(e.g. -128 with 8 bit numbers)). Note that
’ignoring an overflowing carry’ in effect is a modulo
operation of the result. For example adding two unsigned
8 bit numbers and ignoring an eventual overflow carry
(which would mean that the unsigned result is bigger than
255) is performing a modulo 256 operation on the result.

Lecture 4: Signed Binaries and Arithmetic 14



Two’s Complement Addition/Subtraction
8-bit Examples

signed op equiv. un-
signed op

mod 256 signed res

-41-87 215+169 =
384

128 -128

87-41 87+215 =
302

46 46

Lecture 4: Signed Binaries and Arithmetic 15



Two’s Complement Addition/Subtraction
8-bit Graphically

Lecture 4: Signed Binaries and Arithmetic 16



Two’s Complement Subtraction

Thus, if negative and positive numbers can simply be
added, a subtraction can be performed by inverting the
number that is to be subtracted and adding them.
Thus, to compute a-b:

1. invert b by inverting every single bit

2. add the two numbers and set the carry in signal for
the adder to 1 (in order to complete the inversion of b)

Lecture 4: Signed Binaries and Arithmetic 17



Arithmetic Right-Shift

An arithmetic right-shift is a shift operation that performs
a division by two correctly in the two’s complement
representation. Obviously a so called logic shift that shifts
in a ’0’ from the left would turn a negative number into a
positive one, which cannot be correct. Instead, the bit that
is shifted in from the left needs to be the former most
significant bit (MSB). Note that the result is rounded
towards �1 and not towards zero.
Examples:

decimal binary shifted decimal

-3 1101 1110 -2

-88 10101000 11010100 -44
Lecture 4: Signed Binaries and Arithmetic 18



Extending the bit-length in two’s
complement

A last note that will come in handy for the mandatory
exercise: To extend the number of bits with which to
represent a signed integer, the additional bits on the left
need to be filled in with the formar MSB.
Examples:

decimal 4 bit 8 bit

-2 1110 ! 11111110

-5 1011 ! 11111011

5 0101 ! 00000101

Lecture 4: Signed Binaries and Arithmetic 19


	Karnaugh maps revisited
	Binary Addition
	Signed Binary Numbers
	Binary Subtraction
	Arithmetic Right-Shift and Bit Number Extension

