
INF2270 — Spring 2011

Lecture 6: Memory Hierarchy



content

Cache
Mapping Strategy
Write Strategy
Replacement Strategy
Architecture

Virtual Memory

Lecture 6: Memory Hierarchy 2



Memory Hierarchy

Lecture 6: Memory Hierarchy 3



Memory Hierarchy access speeds

registers � 1ns � 100B

L1 (on CPU) cache �� 1ns � 10kB

L2,L3 (off CPU) cache � 2ns-10ns � 1MB

main memory (DRAM) � 20ns-100ns � 1GB

SSD/flash � 100ns-1�s � 10-100GB

hard disc � 1ms � 0.1-1TB

Lecture 6: Memory Hierarchy 4



content

Cache
Mapping Strategy
Write Strategy
Replacement Strategy
Architecture

Virtual Memory

Lecture 6: Memory Hierarchy 5



Cache

Cache is used to ameliorate the von Neumann memory
access bottleneck. Cache refers to a small high speed RAM
integrated into the CPU or close to the CPU. Access time to
cache memory is considerably faster than to the main
memory. Cache is small to reduce cost, but also because
there is always a trade off between access speed and
memory size. Thus, modern architectures include also
several hierarchical levels of cache (L1, L2, L3 ...).

Lecture 6: Memory Hierarchy 6



Locality of Code and Data

Cache uses the principle of locality of code and data of a
program, i.e. that code/data that is used close in time is
often also close in space (memory address). Thus, instead
of only fetching a single word from the main memory, a
whole block around that single word is fetched and stored
in the cache. Any subsequent load or write instructions
that fall within that block (a cache hit,) will not access the
main memory but only the cache. If an access is attempted
to a word that is not yet in the cache (a cache miss) a new
block is fetched into the cache (paying a penalty of longer
access time).

Lecture 6: Memory Hierarchy 7



content

Cache
Mapping Strategy
Write Strategy
Replacement Strategy
Architecture

Virtual Memory

Lecture 6: Memory Hierarchy 8



Checking for Hits

Checking for hits or misses quickly is a prerequisite for
the usefulness of cache memory.

æ associative cache
Parallel search (extremely specialized HW) among
memory block tags in the cache.

æ direct mapped cache
A hash-function assigns each memory block to only
one cache slot, only one tag needs to be checked

æ set-associative cache
A combination of the previous two: each memory
block is hashed to one block-set in the cache. Quick
search for the tag needs only to be conducted within
the set.

Lecture 6: Memory Hierarchy 9



Associative Cache

Lecture 6: Memory Hierarchy 10



Direct Mapping

Lecture 6: Memory Hierarchy 11



Set Associative Cache

Lecture 6: Memory Hierarchy 12



content

Cache
Mapping Strategy
Write Strategy
Replacement Strategy
Architecture

Virtual Memory

Lecture 6: Memory Hierarchy 13



Cache Coherency

A write operation will lead to a temporary inconsistency
between the content of the cache and the main memory.
Several strategies are used in different designs to correct
this inconsistency with varying delay. Major strategies:

write through : a simple policy where each write to the
cache is followed by a write to the main
memory. Thus, the write operations do not
really profit from the cache.

write back : delayed write back where a block that has
been written to in the cache is marked as
dirty. Only when dirty blocks are reused for
another memory block will they be written
back into the main memory.

Lecture 6: Memory Hierarchy 14



content

Cache
Mapping Strategy
Write Strategy
Replacement Strategy
Architecture

Virtual Memory

Lecture 6: Memory Hierarchy 15



Replacement Strategy (1/3)

As a consequence of a cache miss a new block needs to be
loaded into the cache. In associative and set associative
cache it might happen that all available slots are already
occupied and a choice needs to be made, which block in
the cache that will be replaced by the new block. There are
different strategies for this choice, most prominently:

æ first in first out (FIFO)

æ least recently used (LRU)

æ random

æ hybrid solutions

(Note that in direct mapping cache there is no choice as to
which block to replace).

Lecture 6: Memory Hierarchy 16



Replacement Strategy (2/3)

LRU seems intuitively quite reasonable but
requires a good deal of administrative
processing (causing delay): Usually a ’used’
flag is set per block when it is accessed. This
flag is reset in fixed intervals and a time tag is
updated for all blocks that have been used.
These time tags have either to be searched
before replacing a block or a queue can be
maintained and updated whenever the time
tags are updated.

FIFO is simpler. The cache blocks are simply
organized in a queue (ring buffer)

Lecture 6: Memory Hierarchy 17



Replacement Strategy (3/3)

random Both LRU and FIFO are in trouble if a program
works several times sequentially through a
portion of memory that is bigger than the
cache: the block that is cast out will very soon
be needed again. A random choice will do
better here

hybrid solutions, e.g. using FIFO within a set of
blocks that is randomly chosen are also used
in an attempt to combine the positive
properties of the approaches

Lecture 6: Memory Hierarchy 18



content

Cache
Mapping Strategy
Write Strategy
Replacement Strategy
Architecture

Virtual Memory

Lecture 6: Memory Hierarchy 19



Cache Architectures

æ look-through

æ look-aside

Lecture 6: Memory Hierarchy 20



Look-Through

The cache is physically placed between
CPU and memory

æ memory access is initiated after a
cache miss is determined (i.e. with a
delay)

æ only if a cache miss is determined,
is a memory access initiated

æ CPU can use cache while memory is
in use by other units

Lecture 6: Memory Hierarchy 21



Look-Aside
The cache shares the bus between
CPU and memory (system
interface)

æ memory access is initiated
before a cache miss is
determined (i.e. with no delay)

æ with a miss the cache just
listens in ’snarfs’ the data

æ only if a cache hit is
determined, does the cache
take over

æ CPU cannot use cache while
other units access memory

Lecture 6: Memory Hierarchy 22



Cache Summary

æ Mapping Strategy
æ associative
æ direct
æ set associative

æ Write Strategy
æ write through
æ write back

æ Replacement Strategy
æ least recently used

(LRU)
æ FIFO
æ random

æ Architecture
æ look aside
æ look through

Lecture 6: Memory Hierarchy 23



content

Cache
Mapping Strategy
Write Strategy
Replacement Strategy
Architecture

Virtual Memory

Lecture 6: Memory Hierarchy 24



Virtual Memory

Virtual memory extends the amount of main memory as
seen by programs/processes beyond the capacity of the
physical memory. Additional space on the hard drive
(swap space) is used to store a part of the virtual memory
that is, at present, not in use. The task of the virtual
memory controller is quite similar to a cache controller: it
distributes data between a slow and fast storage medium.
A virtual memory controller may simply be part of the
operating system rather than a hardware component, but
most often there is a HW memory management unit (MMU)
using a translation look-aside buffer (TLB) that supports
virtual memory.

Lecture 6: Memory Hierarchy 25



Virtual Memory Principle

The principle of virtual
memory is that each logic
address is translated into a
physical address, either in
the main memory or on the
hard drive. processes
running on the CPU only see
the logic addresses and a
coherent the virtual memory.

Lecture 6: Memory Hierarchy 26



Virtual Memory Paging
A pointer for each individual
logic address would require
as much space as the entire
virtual memory. Thus, a
translation table is mapping
memory blocks (called pages
(fixed size) and segment
(variable size)). A logic
address can, thus, be divided
into a page number and a
page offset. A location in
memory that holds a page is
called page frame.

Lecture 6: Memory Hierarchy 27



Translation Look-Aside Buffer (TLB)

A translation look-aside buffer is a cache for the page
table, accelerating the translation of logic to physical
address by the MMU.

Lecture 6: Memory Hierarchy 28



MMU Flow Chart and Block Diagram

Lecture 6: Memory Hierarchy 29


	Cache
	Mapping Strategy
	Write Strategy
	Replacement Strategy
	Architecture

	Virtual Memory

