
INF2270 — Spring 2011

Lecture 7: Pipelining, I/O



content

Pipelining
Resource Hazards
Data Hazards
Control Hazards
Conclusion

Input/Output (I/O)

Lecture 7: Pipelining, I/O 2



content

Pipelining
Resource Hazards
Data Hazards
Control Hazards
Conclusion

Input/Output (I/O)

Lecture 7: Pipelining, I/O 3



Pipelining Concept

CPUs today divide the execution of a single instruction
into several uniform steps. The CPU is designed in a way
that allows to execute these steps by independent
subunits in a single clock cycles. All instructions go
through the same steps. The first sub-unit can already
fetch a new instruction, while the second sub-unit is still
busy with the first, i.e. several instructions are already
started before the first completes.
To achieve the necessary uniformity of the instructions,
the set of instructions is kept small, which used to be
known as reduced instruction set computer (RISC)
architecture as opposed to complex instruction set
computer (CISC).

Lecture 7: Pipelining, I/O 4



Modern CPU “Hardware Compiler”

Today, however, the
instruction sets tend to
be quite complex
again. Pipelining is still
achieved by pipelining
micro-instructions
(different meaning
than in
micro-architecture!).

instruction buffer
(IR is now a queue)

decoded Op
buffer

 Complex
Decoder

 Simple
Decoder

“complex”
instruction set

“reduced”/micro-
instruction set

pipelined CU

Lecture 7: Pipelining, I/O 5



Pipelining Instruction Steps

An example of steps of instruction execution in pipelining
are:

æ IF: instruction fetch (get the instruction)

æ DE: decode and load (from a register)

æ EX: execute

æ WB: write back (write the result to a register)

Lecture 7: Pipelining, I/O 6



Pipelining Illustration
The pipeline in this example
achieves a 4 times bigger
instruction throughput.
Note, though, that
instruction 0 has the same
delay. Problematic are e.g.
jumps (see ’control
hazards’): the execution of
the pre-fetched instructions
is interrupted and the
pipeline restarted.

Lecture 7: Pipelining, I/O 7



4-Stage Pipeline Simplified Block Diagram

Lecture 7: Pipelining, I/O 8



Pipelines with More Stages

The 4-stage pipeline is the shortest pipeline that has been
used for CPU design and modern processors use generally
more stages. The Pentium III had 16 and the Pentium 4
had 31 stages.

Lecture 7: Pipelining, I/O 9



Effective Speed-Up (1/2)

The speed-up is the ratio of the time T needed to execute a
specific program for pipelined and non-pipelined
execution. The maximal speed-up of a 4-stage pipeline is
not exactly a factor 4, since the pipeline first needs to be
’filled up’, before it finishes 4 times more instructions
than a purely sequential execution. For example, if a
program contains only one single instruction the
pipelined architecture is obviously no faster at all.

Lecture 7: Pipelining, I/O 10



Effective Speed-Up (1/2)

In a k-stage pipeline requiring one clock cycle per stage
the execution of n instructions with a clock cycle time t
will be finished in:

T � �k� �n� 1�� t (1)

The speed-up is, thus:

knt
�k� �n� 1�� t

� kn
k�n� 1

(2)

It may approach k for very long programs according to
this formula. Unfortunately there are other reasons why it
never quite gets there: pipelining hazards

Lecture 7: Pipelining, I/O 11



Pipelining Hazards

Other causes that limit the pipelining speed-up are called
pipelining hazards. There are three major classes of these
hazards:

æ resource hazards

æ data hazards

æ control hazards

Hazards can be decimated by clever program compilation.
In the following however, we will look at hardware
solutions. In practice both are used in combination.

Lecture 7: Pipelining, I/O 12



content

Pipelining
Resource Hazards
Data Hazards
Control Hazards
Conclusion

Input/Output (I/O)

Lecture 7: Pipelining, I/O 13



Resource Hazard Example: Memory Access

We have earlier referred to the von Neumann bottle neck
as the limitation to only one memory access at a time. For
pipelined operation, this means that only one instruction
in the pipeline can have memory access at a time. Since
always one of the instructions will be in the instruction
fetch phase, a load or write operation of data to the
memory is not possible without stalling the pipeline.

Lecture 7: Pipelining, I/O 14



Improvement 1: Register File

To ameliorate the problem of the memory bottle neck,
most instructions in pipelined architectures use local
registers organized in a register file for data input and
output. The register file is in effect a small RAM (e.g. with
only a 3bit address space) with (commonly) two parallel
read ports (addresses and data) and (commonly) one
parallel write port. It does, thus, allow three parallel
accesses at the same time. In addition it is a specialized
very fast memory within the CPU allowing extremely short
access times. Still, also registers in the register file can be
cause for resource hazards if two instructions want to
access the same port in different pipeline stages.

Lecture 7: Pipelining, I/O 15



Improvement 2: Separate Data and
Instruction Cache

Another improvement is the so called Harvard
architecture, different from the von Neumann model
insofar as there are two separate memories again for data
and instructions, on the level of the cache memory. Thus,
the instruction fetch will not collide with data access
unless there is a cache miss of both.

Lecture 7: Pipelining, I/O 16



About Memory Access

Memory access still constitutes a hazard in pipelining. E.g.
in the first 4-stage SPARC processors memory access uses
5 clock cycles for reading and 6 for writing, and thus
impede pipe-line speed up.

Lecture 7: Pipelining, I/O 17



Other Resource Hazards

Dependent on the CPU architecture a number of resources
may be used by different stages of the pipeline and may
thus be cause for resource hazards, for example:

æ memory, caches,

æ register files

æ buses

æ ALU

æ ...

Lecture 7: Pipelining, I/O 18



content

Pipelining
Resource Hazards
Data Hazards
Control Hazards
Conclusion

Input/Output (I/O)

Lecture 7: Pipelining, I/O 19



Data Hazards

Data hazards can occur when instructions that are in the
pipeline simultaneously access the same data (i.e.
register). Thus, it can happen that an instruction reads a
register, before a previous instruction has written to it.

Lecture 7: Pipelining, I/O 20



Data Hazard Illustration

Lecture 7: Pipelining, I/O 21



A Solution: Stalling

A simple solution is to detect a dependency in the IF stage
and stall the execution of subsequent instructions until
the crucial instruction has finished its WB

Lecture 7: Pipelining, I/O 22



Improvement: Shortcuts/Forwarding

In this solution there is a direct data path from the EX/WB
intermediate result register to the execution stage input
(e.g. the ALU). If a data hazard is detected this direct data
path supersedes the input from the DE/EX intermediate
result register.

Lecture 7: Pipelining, I/O 23



content

Pipelining
Resource Hazards
Data Hazards
Control Hazards
Conclusion

Input/Output (I/O)

Lecture 7: Pipelining, I/O 24



Control Hazards

Pipelining assumes in a first approximation that there are
no program jumps and ’pre-fetches’ always the next
instruction from memory into the pipeline. The target of
jump instructions, however, is usually only computed in
the EX stage of a jump instruction. A this time, two more
instructions have already entered the pipeline and are in
the IF and DE stage. If the jump is taken these instructions
should not be executed and be prevented from writing
their results in the WB stage or accessing the memory in
the EX stage.

Lecture 7: Pipelining, I/O 25



Control Hazard Illustration

Lecture 7: Pipelining, I/O 26



A solution: Always Stall

Simply do not fetch any more instructions until it is clear
if the branch is taken or not.

Lecture 7: Pipelining, I/O 27



Improvement 1: Jump Prediction

Make a prediction and fetch the predicted instructions.
Only if the prediction is proven wrong, flush the pipeline.
Variants:

æ assume branch not taken (also a static prediction)

æ static predictions

æ dynamic predictions

Lecture 7: Pipelining, I/O 28



Improvement 2: Hardware Doubling

By doubling the hardware of some of the pipeline stages
one can continue two pipelines in parallel for both
possible instruction addresses. After it is clear, if the
branch was taken or not, one can discard/flush the
irrelevant pipeline and continue with the right one.
Of course, if there are two jumps or more just after each
other, this method fails on the second jump and the
pipeline needs to stall.

Lecture 7: Pipelining, I/O 29



Pipelining Conclusion

Pipelining speeds up the instruction throughput (although
the execution of a single instruction is not accelerated).
The ideal speed-up cannot be reached, because of this, and
because of instruction inter-dependencies that sometimes
require that an instruction is finished before another can
begin. There are techniques to reduce the occurrence of
such hazards, but they can never be avoided entirely.

Lecture 7: Pipelining, I/O 30



Test Yourself (Exam 2010)

Riktig eller feil?

æ Problemet med “resource hazard”-er en del redusert i
en Harvard arkitektur sammenlignet med en von
Neumann arkitektur.

æ En “pipelined” arkitektur med 4 “pipelining stages” vil
eksekvere et program 4 ganger fortere enn en
tilsvarende arkitektur uten “pipelining”.

æ Uten “jump prediction” vil eksekvering med
“pipelining” av et program alltid være like langsom
som uten “pipelining”.

æ “Resource hazard”-er skjer utelukkende når to
instruksjoner i “pipelinen” vil ha tilgang til
hovedminnen samtidig.Lecture 7: Pipelining, I/O 31



content

Pipelining
Resource Hazards
Data Hazards
Control Hazards
Conclusion

Input/Output (I/O)

Lecture 7: Pipelining, I/O 32



I/O Block Diagram
A computer is
connected to various
devices transferring
data to and from the
main memory. This is
referred to as
Input/output (I/O).
Examples: Keyboard,
Graphics, Mouse,
Network (Ethernet,
Bluetooth ...), USB,
Firewire, PCI,
PCI-express, SATA ...

Lecture 7: Pipelining, I/O 33



I/O Controller Principle
An I/O controller translates
and synchronizes a
peripheral device protocol
(communication language)
for the system bus. It
normally has at least one
data buffer referred to as I/O
port, a control register that
allows some SW
configuration and a status
register with information for
the CPU.

Lecture 7: Pipelining, I/O 34



I/O Addressing (1/2)

Memory mapped I/O is to access I/O ports and I/O
control- and status registers (each with its own
address) with the same functions as the
memory. Thus, in older systems, the system
interface might simply have been a single
shared I/O and memory bus. A disadvantage is
that the use of memory addresses may
interfere with the expansion of the main
memory.

Lecture 7: Pipelining, I/O 35



I/O Addressing (2/2)

Isolated I/O (as in the 80x86 family) means that separate
instructions accessing an I/O specific address
space are used for I/O access. An advantage
can be that these functions can be made
privileged, i.e. only available in certain modes
of operation, e.g. only to the operating system.

Lecture 7: Pipelining, I/O 36



Modes of Transfer(1/3)

Programmed/Polled: The processor is in full control of all
aspects of the transfer. It polls the I/O status register in a
loop to check if the controller has data to be collected
from the port or is ready to receive data to the port.
Polling uses up some CPU time and prevents the CPU from
being used for other purposes while waiting for I/O.

Lecture 7: Pipelining, I/O 37



Modes of Transfer(2/3)

Interrupt Driven: The I/O controller signals with a
dedicated 1bit data line (interrupt request (IRQ)) to the
CPU that it needs servicing. The CPU is free to run other
processes while waiting for I/O. If the interrupt is not
masked in the corresponding CPU status register, the
current instruction cycle is completed, the processor
status is saved (PC and flags pushed onto stack) and the
PC is loaded with the starting address of an interrupt
handler. the start address is found, either at a fixed
memory location specific to the interrupt priority
(autovectored) or stored in the controller and received by
the CPU after having sent an interrupt acknowledge
control signal to the device (vectored)

Lecture 7: Pipelining, I/O 38



Modes of Transfer(3/3)

Direct Memory Access (DMA): The processor is not
involved, but the transfer is negotiated directly with the
memory, avoiding copying to CPU registers first and the
subroutine call to the interrupt handler. DMA is used for
maximum speed usually by devices that write whole
blocks of data to memory (e.g. disk controllers). The CPU
often requests the transfer but then relinquishes control
of the system bus to the I/O controller, which only at the
completion of the block transfer notifies the CPU with an
interrupt.
(DMA poses another challenge to the cache as data can
now become stale, i.e. invalid in the cache)

Lecture 7: Pipelining, I/O 39



Test Yourself (Exam 2010)

Riktig eller feil?

æ “Stale” data betyr at data i hovedminnen ikke er
oppdatert.

æ “Direct memory access” (DMA) er en metode som gir
som regel fort transfer av inngangs- og utgangsdata

Lecture 7: Pipelining, I/O 40


	Pipelining
	Resource Hazards
	Data Hazards
	Control Hazards
	Conclusion

	Input/Output (I/O)

