INF2270, exercise Lba: example solution

P. Hafliger
March 3, 2011

Task 1

The top of figure 1 shows the schematic to simulate writing and reading from
the memory cell included in Diglog. Figure 3 shows a correct signal sequence.
For simplicity sake we show only two address bits (A0,A1, all others are zero),
two data bits (D0,D1) and two bits of the input lines (10,I1).

’_CS’ needs to be low for any action to affect the memory and for it to be
able to drive the data lines at all. For writting to the memory ’_OE’ needs to
be kept high and ’_IE’ needs to be low for the inputs to drive the data lines (D7
to D0)). Then as ""WE’ goes low the signals on D are stored into the memory.
Note that it is unwise to change the address lines A while *"WE’ is low! Thus,

Now by setting ’_IE’ high, no-one is driving the data lines any longer which
briefly show an intermediate value 0.5 on the scope, until *_OF’ is set low. Now
the data lines D are driven from the memory, first from address 00000011 to the

Task 2

The bottom of figure 1 and figure 2 show one possible implementation of a 4-bit
comparator.

The ’equal’ comparison per bit is rather straight forward: the XNOR checks
if the bits at this position are equal and the output AND requires that also all
more significant bits be equal.

The a>b comparison (written as ’agb’) checks if a is greater than b for
just the local position (first AND gate), then verifies that the more significant
bits have not determined that a<b (second AND), or if a>b has already been
determined for a higher order bit (rightmost OR). Note in figure 1 that the MSB
input is simply: the MSB is the sign bit and a number is greater which has a

b it ced b omped bonled bome

Figure 1: Schematic drawn in Diglog for Task 1 and Task 2. Task two uses
hierarchical design, i.e. you need to draw/load the schematic of figure 2 onto
another page of Diglog. (Pages are selected by pressing the number buttons ’1’
t0'9%.)

= mylib E]@

Figure 2: Single bit comparator cascaded to a four bit comparator in figure 1.
Note that redundancy is not exploited here: each of the three outputs could
simply be 'none of the other two’.

O mylib Q@@

Trigger

Figure 3: Scope output for writing values into the memory and then reading
them. Signal names refere to figure 1.

0’ as MSB if the other has a ’1’ as MSB. Thus, the MSB 1-bit comparison is
reversed as compared to the less significant bits.

Figure 4 shows an implementation that uses the redundancy. The notation is
from the ISE tools that have been used before in the course, where bus lines are
labelled seperated with commas or indices to letters. The gates are representing
n gates in parallel where n is the width of the input bus.

The a>b comparison (written as ’agb’) is also implemented slightly differ-
ently: it checks if a is greater than b for just the local position (first AND gate),
then verifies that all more significant bits were equal (second AND), or if a>b
has already been determined for a higher order bit (rightmost OR). Note the
difference between signed and unsigned here: the MSB is the sign bit. Therefore
that number is greater which has a '0’ as MSB if the other has a ’1’ as MSB.
Thus, the MSB 1-bit comparison is reversed as compared to the less significant
bits. In figure 4, the MSBs on the input bus are swapped as a consequence.
The least siginficant output bits (eq(0) and agb(0)) are the final result.

The a<b (bga) does not have to be computed explicitly but can be derived
from the other two since it is then simply equivalent to NOT agh(0) AND NOT
eq(0).

eq(0),agh(0),bga ™~ @0
b0 2 L0]
eq(0)
bga
L agb(0)
AND2B2
GND b(3).a(2:0)

240
vce a(3),b(2:0;
" HeaelD) XNOR2

agh(3:0)

L,agb(3:1)

Figure 4: A 4-bit comparator for two’s complement binary numbers

