INF2270, Mini-CPU write to memory instruction

P. Hafliger
March 9, 2011

Abstract

In this exercise we will have a closer look at a part of the mandatory
exercise

The Task
The Problem

One of the instructions of the Mini-CPU of the mandatory exercise 1 that poses
a bit of a challenge and that might cause problems is the one that writes the
content of the register into the data memory. Major cause of the problem is
that the WE signal (labelled 'R’ on the Diglog cell 'SRAMSK’) will write to
the memory as long as it is low. In other words, it is a level triggered writing
operation (i.e. writing proceeds while WE is low) and not an edge triggered
writing operation (i.e. writing would occure only at the very instance when
there is a signal transition of WE from high to low).

Thus, one needs to be careful that all other inputs to the RAM are for
the total duration while WE is low: the obvious way of implementing the write
operation where the WE signal is simply the decoded "write’ opcode (figure 1 on
the left) fails for the following reason: Since the decoding of the instruction takes
a small amount of time the WE will only go high after the new instruction is on
the instruction bus, and the data memory address here is directly connected to
the instruction bus. Thus, there appears a new address while WE is still low,
overwriting the memory at a wrong address.

Note that the same problem does not at all occure when writing into the
register 'R’ because that writing operation is edge triggered and one can conve-
niently use the falling edge of the clock and thus be very sure that all inputs to
the register are stable at that very moment, since they change with the rising
edge of the clock, i.e. half a clock cycle before.

Find a Patch

This problem can be patched by adding extra combinational logic between the
decoded write instruction signal (wr_inst in figure 1) and the actual WE signal,
making sure that WE is withdrawn before the new address appears. (Hint: the

program program
o 7/; Amemory | T ‘/L A memory

D gate delay! D gate delay!

inst(7:4) decode s inst(7:4) decode |
»| instruction | »| instruction |
wr_inst wr_inst ». comb
clk logic

inst(3:0) WE inst(3:0) WE

Figure 1: Tllustration of the problem (left) and outline of a solution (right)

Figure 2: Diglog file to simulate the problem: this circuit should only write the
byte 1 to memory address 0, but it actually also writes it to memory address 1

program memory does also have a gate delay which is longer than that of a
single logic gate. That’s an important consideration here!) Try to find that
(simple) combinational logic block indicated on the right hand side of the figure
1.

You may use the Diglog schematics in figure 2 to test your solution. Here the
toggle flipflop simulates both the write instruction (when its output is zero) and
the address (also zero when its supposed to write to the memory). It simulates
another instruction that is not supposed to touch the memory (when the toggle
flipflop’s output is one), where also the instruction operand is one. The first
two inverters simulate the gate delay of the program memory and the next the
delay of the decoder. Since the decoder’s output is delayed with respect to the
program memory the data memory is also overwritten at address 1. Try to solve
this!

