
INF2270, performance degradation due to

pipelining hazards, cache misses and page failures

P. Häfliger

March 23, 2011

Abstract

In this exercise you will try to gauge the dependence of computer
performance on cache hit rate and page failure rate, and the dependence
of pipeline speedup on (control) hazards.

Cache Miss and Page Failure

1. Imagine you have implemented a program that will execute 1000 instruc-
tions. Assume that each of these instructions that do not access the mem-
ory require one clock cycle to execute and that the clock frequency is
3GHz. 200 of these instructions, however, will access the memory. Let’s
assume that there is no penalty at all for a cache access and that these
instructions also just need one clock cycle to execute. If the program is
made well or the programmer is lucky, all of the memory accesses will be
cache hits (even the first memory access, since the block is already in the
cache prior to execution). How long will the program take to execute?

2. Let’s be more realistic and assume that the cache hit rate is 95%. Let us
further assume that a cache miss will cause a memory access to last 20
clock cycles. How much time will the program need to execute? (Do not
assume any fancy compiler level pipeline tricks that allow some instruc-
tions to be executed while waiting for the memory access to complete!
Assume that execution stalls until each memory access is complete, i.e.
the full 20 clock cycle penalty will be felt.)

3. Let us be more nasty still and assume that at the start of the program
the data is stored on a virtual memory page that is not at present in
the memory at all and needs to be loaded first (or simply assume that
the program needs to be loaded from the hard drive into the memory for
execution). The penalty for the page failure is 1 million clock cycles. How
long, before execution is complete?

4. So what would be your comment on the usefulness of optimizing the num-
ber of instructions for very short programs? How would your statement

1



change if this short program is part of a bigger program and will be exe-
cuted many times over in the course of the execution of the big program?

Pipeline Speedup

1. The speedup of a pipelined program is the ratio between execution time
of a sequential execution and pipelined execution of the program. In the
lecture we have seen that the ‘filling’ of the pipeline causes some initial
delay, i.e. an ‘offset’ in the execution time that pipelining cannot get
rid of. Thus, if a program needs executes n instructions on a processor
with k pipelining stages and each stage is executed within one clock cycle
period of duration t, the speedup is never exactly equal to k but somewhat
smaller. What’s the speedup when considering the penalty for illing’ the
pipeline, given that n=100, k=5, and t=1ns?

2. Pipeline hazards are another cause for the speedup to fall short of the
theoretical optimum k. Let us try to estimate the penalty of, let’s say,
control hazards in a CPU with no branch prediction. Let’s say that the
probability of a branch instruction in a certain program is Pb=20% and
the probability of it being taken is Pt=70%. Let us further assume that a
branch not being taken causes no penalty but a branch being taken causes
the branch instruction to cost 3 clock cycles instead of just 1. In a pro-
gram that executes 1000 instructions what is the speedup that pipelining
achieves in this scenario? For the entire program, what is the average num-
ber of clock cycles needed per instruction (CPI). (Ignore the penalty for
filling up the pipeline: it’s relatively small for a 1000 instruction program)

3. How do these numbers improve if branch prediction is included and pre-
dicts correctly in Pc=70% of the executed branch instructions? Assume
that a correctly predicted branch causes no penalty and an incorrect pre-
diction again causes the branch to use 3 clock cycles instead of 1.

2


