
IEEE TRANSACTIONS ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOL. ASP-27, NO. 1, FEBRUARY 1979 13

A Fast Two-Dimensional Median Filtering Algorithm

Aktmcz-We present a fast algorithm for two-dimensional median
fiitering. It is based on storing and updating the gray level histogram of
the picture elements in the window. The algorithm is much faster than
conventional sorting methods. For a window size of m X n, the com-
puter time required is O(n).

I. INTRODUCTION

T UKEY [13, [2] was among the first who suggested the use
of median filters for signal smoothing. More recently,

Rabiner, Samgur, and Schmidt [3] and Jayant [4] applied
median filters to speech processing;Pratt [5] and Frieden [6]
applied them to image processing.

In terms of image processing, median filtering is defmed as
follows. Let [xij] be the matrix representing a digitized image.
Then the result of the median filtering with an m X n (where
m, n = odd integers) window is an image [yij] where yij is
equal to the median of the gray levels of the picture elements
lying in an m X n window centered at the picture element xij
in the input image. Throughout this paper, by an m X n win-
dow, we mean a window which has m pels in the horizontal
direction and n pels in the vertical direction. In computer cal-
culation, the output image is usually computed in the conven-

Although it is well known that median filtering is useful for
reducing random noise (especially when the noise amplitude
probability density has large tails) and periodic patterns, theo-
retical results on its behavior are nonexistent in the open liter-
ature. Recently, Tyan [7] and Justusson [8] have obtained
some interesting analytical results. Justusson studied the sta-
tistical behavior of median filters, while Tyan studied the fixed
points of median filtering among other things. We hope their
results will be published soon.

In this paper, we are concerned with only the computational
aspects of two-dimensional median filtering. Conventional
sorting methods, such as Quicksort [9], are time-consuming.
To obtain the median of m X n numbers, the average number
of comparisons is typically proportional to mn assuming the
original ordering is random. The fast algorithm we report
here requires only approximately (2n t 10) comparisons.

tionalscanningorder:~,,,~l2,yl3,...,~2~,~22,~23,....

Manuscript received February 14, 1978; revised August 31, 1978.
This work was supported by the Defense Advanced Research Projects
Agency under Contract MDA 903-77-G-1.

The authors are with the School of Electrical Engineering, Purdue
University, West Lafayette, IN 47907.

11. A FAST TWO-DIMENSIONAL MEDIAN
FILTERING ALGORITHM

In doing median filtering, we are computingrunningmedians.
From one output picture element to the next, the m X n win-
dow moves only one column. To get the numbers in the new
window from those in the preceding window, we throw away
n points and add in n new points. The remaining mn-2n num-
bers are unchanged. To take advantage of this, a fast median
filtering algorithm is developed which is based on storing the
gray level histogram of the mn picture elements (pels) in the
window, and updating it as the window moves.

The algorithm consists of the following steps:
Step I: Set up the gray level histogram of the first window

and find the median. Also, make the count, ltmdn of the
number of pels with gray level less than the median.

Step 2: Move to the next window by deleting the leftmost
column of the (previous) window and adding one column to
the right. The histogram is updated. So is the count ltmdn.
Now ltmdn stores the number of pels in the current window
having gray levels less than the median of the previous window.

Step 3: Starting from the median of the previous window,
we move up/down the histogram bins one at a time if the
count ltmdn is not greaterlgreater than [number of pels in a
window divided by 21 and update the count ltmdn until the
median bin is reached.

Step 4: Stop if the end of the line is reached. Otherwise go
to Step 2 .

Note: In Step 3, if the count 1 tmdn is not greater than [num-
ber of pels in a window divided by 21 , then we may have the
same median as before and, therefore, do not need to move.

The exact procedure is described below in pidgin Algol:
Algorithm Fast Median Filtering

begin
comment This algorithm is doing median filtering of an

comment hist[0:255] : histogram array;
comment mdn : median value in a window;
comment 1 tmdn : number of pels having gray levels less

than mdn in a window;
comment left. column [0: wind0w.y size - 11 : the left-

most column of the previous window;
comment right. column [0: wind0w.y size - 11 : the

rightmost column of the current window;
comment All the above variables and arrays are global;

image ;

0096-3518/79/0200-0013$00.75 0 1979 IEEE

14 IEEE TRANSACTIONS ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOL. ASSP-27, NO. 1 , FEBRUARY 1979

comment This algorithm ignores border processingproblem;
th + [window.xsize * window.ysize/2] ; /*global; a param-

eter to help de-
cide median */

dow.ysize/2J do
/* i indicates pic-
ture line number*/

- for i +- [window.ysize/2] t 1 until picture.ysize - [win-

begin -
Set up array hist for the first window and find mdn
by moving through the histogram bins and updating
count 1 tmdn;
- for j + [window.xsize/2J t 2 __ until picture.xsize -
[window.xsize/2 J do
/* j indicates picturecolumn number */

begin
put the leftmost column of the previous win-
dow in array 1eft.column; put the rightmost
column of the current window in array right.
column; runningmdn

end
end -

end

procedure runningmdn:
-

begin -
for - k + 0 __ until window.ysize - 1 do - /* moving to the

next (i.e. the
current) win-
dow */

begin
g l + 1eft.column [k] ;/* delete the leftmost col-

umn of the previous
window */

hist[gl] +hist[gl] - 1;
- if g l < mdn then ltmdn +- ltmdn - 1 ; /* check

to up-
date the
counter
ltmdn */

g l + right .column [k] ; /* add the rightmost col-
umn of the current
window */

hist [gl] +- hist [gl] t 1 ;
if gl < mdn then ltmdn +- ltmdn t 1 /* check to - __

update
the
counter
ltmdn */

end;
comment find
if 1 tmdn > th

the median;
/* the median in the current window is -

smaller than the one in the previous
window */

then repeat
begin

-
-

mdn + mdn - 1 ; /* move down one
histogram bin */

ltmdn + ltmdn - hist [mdn] /* update
counter
ltmdn */

end
u n t E t m d n < th /* mdn is the desired

median */
___ else while ltmdn t hist[mdn] < th /* the desired

median is
(still)
greater than
mdn */

-~ do begin
ltmdn +- ltmdn t hist [mdn] ; /* update

counter
1 tmdn
*/

mdn +- mdn t 1 /* move up one histo-
gram bin */

end;
comment Atthis point, mdn is the desired median in all
cases.

end -

A Fortran version of the algorithm was implemented and
tested on a PDP 11/45 computer under the UNIX operating
system. A listing of the Fortran program is available on
request.

We note that the storage requirement of the algorithm is
minimal. Mainly, we have to store the histogram which oc-
cupies 256 locations if the image amplitude is quantized to
8 bits.

111. EXPERIMENTAL RESULTS ON
COMPUTING TIME REQUIREMENTS

The Fortran version of the fast median filtering algorithm
was applied (on the PDP 11/45 computer) to six images.

Images
1) Girl, original;
2) Girl, with BSC noise;
3 j Girl, with Gaussian noise ;
4) Airport, original;
5) Airport, with BSC noise ;
6) Airport, with Gaussian noise.

Each image contains 256 X 256 picture elements and 8 bits
(256 gray levels) per picture element. Images 2) and 5) were
obtained by passing images 1) and 4), respectively, bit by bit
through a binary symmetrical channel with a bit error prob-
ability of 0.035. Images 3) and 6) were obtained by adding to
images 1) and 4), respectively, zero-mean white Gaussian noise.
The signal-to-noise ratios of all four noisy images are approxi-
mately 19.5 dB. Images 1)-6) are shown in Fig. 1 (a)-(f),
respectively. The median-filtered results (using a 3 X window)
are shown in Fig. 2 (a)-(f).

As a comparison, the Quicksort algorithm was programmed
in Fortran and applied to the same six images. In running
each of the six images, the average number of comparisons

HUANG e t a!.: TWO-DIMENSIONAL MEDIAN FILTERING ALGORITHM 15

(e)
Fig. 1. Images before filtering. (a

noise. (c) Girl, with Gaussian n4
port, with BSC noise. (f) Airport.

v
(T

5 700
._ -. -.
v)
c
0 .-

600
a s

LC
0
L 9 500

c
Q
OI
m
L
Q

4
400

300

200

100

(f)
L) Girl, original. (b) Girl, with BSC
oise. (d) Airport, original. (e) Air-
, with Gaussian noise.

(e) (f)
Fig. 2. The six images of Fig. 1 after 3 X 3 median filtering.

Quicksort

A i rpor t , BSC ---
Girl, BSC -

0 20 40 60 80 100 I20 140 I G O 180

window s i z e (p e l s)

Fig. 3. Number of comparisons per window plotted against window size. The images filtered were girl with BSC noise and
airport with BSC noise.

16 IEEE TRANSACTIONS ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOL. ASSP-27, NO. 1, FEBRUARY 1979

A i r p o r t , BSC ---
Girl, BSC -c-.

Fig. 4. Computer time per image plotted against window size. The images filtered were girl with BSC noise and airport
with BSC noise.

TABLE I
NUMBER OF COMPARISONS PER WINDOW (GIRL-IMAGES 1-3)

Window Size Histogran
Method

Quicksort

Girl Girl Girl Girl
Gaussian

16.01 117.50

16.37 i30.69

18.99 256.07

Girl
BSC

47-03

127.70

249.27

414.51

622.72

876.56
__

Gaussian
Girl

46.22

123.34

237.72

386.06

569.23

792.98

TABLE I1
COMPUTER TIME IN SECONDS (GIRL-IMAGES 1-3)

BSC Gaussian

7 Quicksort

Girl Girl Girl
BSC Gaussian

180.4 143.7 155.8

443.32 341.5 372.7

833.3 651.0 690.5

1087.4 1053.3

HUANG et al.: TWO-DIMENSIONAL MEDIAN FILTERING ALGORITHM 17

r

TABLE I11
NUMBER OF COMPARISONS PER WINDOW (AIRPORT-IMAGES 4-6)

dindow S i 2

3 x 3

5 x 3

7 x 3

5 x 5

3 x 5

3 x 7

7 x 7

9 x 9

11 x 11

13 x 13

_ 1 .

3 x 3

5 x 3

7 x 3

5 x 5

3 x 5

3 x 7

7 x 7

9 x 9

1 1 x 11

13 x 13

I His togram
Method

A i r p o r t A i r p o r t A I w o r t
BSC Gaussian

12.84 13.17 16.7

11.06 11.3

10.32 10.47

14.95 15.10 16.56

16.82

20.50

18.10 18.15 18.94

21.53 21.57 22.06

25.23 25.24 25.56

28.95 28.96 29.21

Q u l c k s o r t I
A i r p o r t A i r p o r t A i r p o r t

BSC Gaussian

46.37 46.19 45.54

239.24 236.83 233.03

388.35 385.03 378.72

574.01 571.09 559.37

808.00 802.86 775.48

I

TABLE IV
COMPUTER TIME IN SECONDS (AIRPORT-IMAGES 4-6)

His togram
Method

L

A i r p o r t A i r p o r t A i r p o r t
BSC Gaussian

50.0 52.8 69.1

44.3 42.0

42.3 42.8

56.4 59.5 72.5

63.1

76.1

67.5 67.4 83.3

79.7 78.0 96.1

90.8 101.1 109.0

101.0 112.7 121.8

r Q u i c k s o r t

A i r p o r t A i r p o r t A i r p o r t
BSC Gaussian

156.5 142.1 154.8

378.? 339.1 368.5

628.8 627.9 680.6

995.5 1083.3

per window (i.e., per output point) and the computational
time per image are measured. The results are listed in Tables
I-IV. The results for the two images with BSC noise are also
plotted in Figs. 3 and 4. As we can see, the histogram method
is much faster than the Quicksort method. According to
these results, for median filtering with an n X n window, the
computer time required for the first is approximately O(n),
and for the second O(nz). Some of the nonsquare rectangular
windows are also used. For an m X n window (moving hori-
zontally), the computer time required is approximately O(n).

N. ANALYSIS
We show that for the fast median filtering algorithm, the

average number of comparisons per window is approximately

2n t mt 1.5 t 0 . 5 ~ ~

where

n X n = square window size or m X n = rectangular window
size

po = probability of d being zero in one picture

and

d = horizontally adjacent pel gray level difference of the
- median filtered picture
Id I = the average of absolute value of d.

Proof: From the procedure running mdn in the pidgin
Algol algorithm, we see that 1) exactly 2n comparisons are
made in the for statement, and 2) number of comparisons
and d are related as shown in the following table for the - if
statement.

18 IEEE TRANSACTIONS ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOL. ASSP-21, NO. 1, FEBRUARY 1979

d number of comparisons

-3 4
-2 3
-1 2

0 2
1 3

2 4

3 5

Assuming d is symmetrically distributed (confirmed in the
experiment for the chosen images), we then have the table

Id 1 average number of comparisons

2

2.5

3.5

4.5

Let C be the average number of comparisons and pi be the
probability that Id I = i, i = 0, 1, * * . ,255. Then

-
c = 2p0 -b 2 . 5 ~ ~ i- 3.5p2 + 4 . 5 ~ ~ -t a * t 256.5 pzSs t 2n

= 0 . 5 ~ ~ t (i t 1.5)pi + 2n
255

i =O

= 0 . 5 p o + 1 . 5 + C i p i + 2 n
2 5 5

i =o

= 0 . 5 p 0 t 1 . 5 t I d l t 2 n . (1)

Q.E.D.

Therefore, C is loosely upper bounded by 2n t idl t 2 and
lower bounded by 2n i- t 1.5. Clearly, this algorithm takes
advantage of the fact that for typical images the value of ldl
is small. The value of Idl is less than 10 for the images we
used. Hence, approximately only (2n t 10) comparisons are
needed on the average. Equation (1) agrees well with the ex-
perimental results reported in Section 111.

Note: This analysis ignores the comparisons made in finding
the median of the first window in each line. That, on average,
amounts to mdn/(q - m) comparisons per window for an
q X r image, an m X n filtering window, and mdn being the
average median of the first windows in each line. This addi-
tional number of comparisons can be significant compared to
(1) for large number of gray levels and small image size in the
horizontal direction. This effect can be easily eliminated by
applying the proposed algorithm vertically at the end of each
line and scanning alternate lines in reverse direction.

-

REFERENCES
[l] J. W. Tukey, Exploratory Data Analysis (preliminary ed.). Read-

ing, MA: Addison-Wesley, 1971.
[2] -, Exploratory Data Analysis. Reading, MA: Addison-Wesley,

1977.
[3] L. R. Rabiner, M. R. Sambur, and C. E. Schmidt, “Applications of

a nonlinear smoothing algorithm to speech processing,” ZEEE
Trans. Acoust., Speech, Signal Processing, vol. ASSP-23, pp. 552-
557, Dec. 1975.

[4] N. S . Jayant, “Average and median-based smoothing techniques
for improving digital speech quality in the presence of transmis-
sion errors,”IEEE Trans. Commun., vol. COM-24, pp. 1043-1045,
Sept. 1976.

[5] W. K. Pratt, “Median filtering,” in Semiannual Report, Image Pro-
cessing Institute, Univ. of Southern California, Sept. 1975, pp.

[6] B. R. Frieden, “A new restoring algorithm for the preferential
enhancement of edge gradients,” J. Opt. SOC. Amer., vol. 66,

[7] S . G . Tyan, “Fixed points of running medians” (unpublished
report), Dep. Elec. Eng. Electrophysics, Polytechnic Inst. of
New York, Brooklyn, NY, 1977.

[8] B. Justusson, “Statistical properties of median filters in signal
and image processing” (unpublished report), Math. Inst., Royal
Inst. of Technology, Stockholm, Sweden, Dec. 1977.

[9] A. V. Aho, 3. E. Hopcroft, and J. D. Ullman, The Design and
Analysis of Computer Algorithms. Reading, MA: Addison-
Wesley, 1974, p. 101.

116-123.

pp. 280-283,1976.

