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A Fast Two-Dimensional Median Filtering Algorithm 

Aktmcz-We present  a fast algorithm for two-dimensional median 
fiitering. It is  based on storing and  updating the gray level histogram of 
the picture elements in the window. The  algorithm is much faster than 
conventional sorting methods. For a window  size of m X n, the com- 
puter time required is O(n). 

I. INTRODUCTION 

T UKEY [ 13, [ 2 ]  was among  the  first who suggested the use 
of median  filters  for signal smoothing. More recently, 

Rabiner,  Samgur,  and  Schmidt [3] and Jayant [4] applied 
median  filters to speech  processing;Pratt  [5]  and  Frieden [6] 
applied them  to image processing. 

In  terms  of image processing,  median  filtering  is  defmed as 
follows. Let [xij] be the  matrix  representing  a  digitized image. 
Then the result  of  the  median  filtering  with an m X n (where 
m, n = odd integers)  window  is  an image [yij]  where  yij  is 
equal to  the median  of  the gray levels of  the  picture  elements 
lying in an  m X n  window  centered at  the  picture element xij 
in the  input image. Throughout  this  paper,  by  an m X n  win- 
dow, we mean  a  window  which  has m pels in the  horizontal 
direction  and n pels in the vertical  direction.  In  computer  cal- 
culation,  the  output image  is usually computed in  the conven- 

Although it is well known that median  filtering  is  useful  for 
reducing  random noise (especially  when  the noise amplitude 
probability  density  has large tails) and  periodic  patterns,  theo- 
retical  results  on  its  behavior  are  nonexistent  in  the  open  liter- 
ature.  Recently,  Tyan  [7]  and  Justusson [8] have obtained 
some  interesting  analytical  results.  Justusson  studied  the  sta- 
tistical  behavior  of  median  filters, while Tyan  studied  the  fixed 
points  of  median  filtering  among  other  things. We hope  their 
results  will be published  soon. 

In this paper, we are concerned  with  only the  computational 
aspects  of  two-dimensional  median  filtering.  Conventional 
sorting  methods,  such as Quicksort [9], are time-consuming. 
To obtain  the  median  of  m X n  numbers,  the average number 
of  comparisons is typically  proportional to mn assuming the 
original  ordering  is  random. The fast  algorithm we report 
here  requires  only  approximately  (2n t 10)  comparisons. 
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11. A  FAST TWO-DIMENSIONAL MEDIAN 
FILTERING ALGORITHM 

In  doing  median  filtering, we are computingrunningmedians. 
From  one output picture  element to the  next,  the  m X n  win- 
dow moves only  one  column. To get the  numbers in  the  new 
window  from  those  in the preceding  window, we throw away 
n  points  and  add  in n new points.  The  remaining  mn-2n  num- 
bers  are  unchanged. To  take  advantage of this,  a  fast  median 
filtering  algorithm is developed  which is based on storing  the 
gray level histogram  of  the mn  picture elements (pels) in  the 
window,  and  updating it as the window moves. 

The algorithm  consists of  the following  steps: 
Step I: Set  up  the gray level histogram  of the first  window 

and  find  the  median.  Also,  make  the count,  ltmdn of  the 
number of pels with gray level less than  the median. 

Step 2: Move to  the next  window by deleting the  leftmost 
column of the  (previous)  window  and  adding  one  column to 
the right. The histogram is updated. So is  the  count  ltmdn. 
Now ltmdn stores the  number  of pels  in  the  current  window 
having gray levels less than  the median of the previous window. 

Step 3: Starting  from  the  median  of  the  previous  window, 
we move up/down the  histogram  bins  one at  a time  if  the 
count  ltmdn is not greaterlgreater than  [number  of  pels in a 
window divided by 21 and  update  the  count  ltmdn  until  the 
median  bin is reached. 

Step 4: Stop if the  end  of  the  line  is  reached.  Otherwise go 
to  Step 2 .  

Note: In Step 3, if the  count  1  tmdn  is not greater than [num- 
ber  of  pels in a  window divided by 21 , then we may have the 
same median as before and,  therefore, do  not need to move. 

The  exact  procedure is described  below in pidgin Algol: 
Algorithm  Fast Median Filtering 

begin 
comment This  algorithm is doing  median  filtering  of  an 

comment  hist[0:255] : histogram  array; 
comment  mdn : median value in a window; 
comment 1 tmdn : number of  pels  having gray  levels less 

than  mdn in a  window; 
comment  left. column [0: wind0w.y size - 11 : the  left- 

most column  of the previous  window; 
comment right.  column [0: wind0w.y size - 11 : the 

rightmost  column  of  the  current  window; 
comment All the  above variables and  arrays are global; 

image ; 
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comment This algorithm ignores border processingproblem; 
th  + [window.xsize * window.ysize/2] ; /*global; a param- 

eter to  help  de- 
cide median */ 

dow.ysize/2J do 
/* i  indicates pic- 
ture line number*/ 

- for i +- [window.ysize/2] t 1 until picture.ysize - [win- 

begin - 
Set  up array hist for  the first window  and  find  mdn 
by moving through  the histogram bins  and  updating 
count 1 tmdn; 
- for j + [window.xsize/2J t 2 __ until picture.xsize - 
[window.xsize/2 J do 
/* j indicates picturecolumn  number */ 

begin 
put  the  leftmost column of the previous win- 
dow in array  1eft.column;  put  the  rightmost 
column of  the  current window in array right. 
column; runningmdn 

end 
end - 

end 

procedure  runningmdn: 
- 

begin - 
for - k + 0 __ until window.ysize - 1 do - /* moving to  the 

next (i.e. the 
current) win- 
dow */ 

begin 
g l  + 1eft.column [k] ;/* delete  the  leftmost col- 

umn of the previous 
window */ 

hist[gl]  +hist[gl] - 1;  
- if g l  < mdn then ltmdn +- ltmdn - 1 ; /*  check 

to  up- 
date  the 
counter 
ltmdn */  

g l  + right .column [k] ; /* add the rightmost col- 
umn  of  the  current 
window */ 

hist [gl] +- hist [gl] t 1 ; 
if gl  < mdn  then  ltmdn +- ltmdn t 1 /* check to - __ 

update 
the 
counter 
ltmdn */ 

end; 
comment find 
if 1 tmdn > th 

the median; 
/* the median in the  current window is - 

smaller than  the one in the previous 
window */ 

then  repeat 
begin 

- 
- 

mdn + mdn - 1 ; /* move down one 
histogram bin */ 

ltmdn + ltmdn - hist [mdn] /* update 
counter 
ltmdn */ 

end 
u n t E t m d n  < th  /* mdn is the desired 

median */ 
___ else  while ltmdn t hist[mdn] < th  /* the desired 

median is 
(still) 
greater than 
mdn */ 

-~ do begin 
ltmdn +- ltmdn t hist [mdn] ; /* update 

counter 
1 tmdn 
*/ 

mdn +- mdn t 1 /*  move up  one  histo- 
gram bin */ 

end; 
comment  Atthis  point,  mdn is the desired median in all 
cases. 

end - 

A Fortran version of the algorithm was implemented  and 
tested on a PDP 11/45 computer under  the UNIX operating 
system. A listing of the  Fortran program is  available on 
request. 

We note  that  the storage requirement  of the algorithm is 
minimal. Mainly, we have to store  the histogram which  oc- 
cupies 256  locations if the image amplitude is quantized to 
8 bits. 

111. EXPERIMENTAL RESULTS ON 
COMPUTING  TIME  REQUIREMENTS 

The Fortran version of the fast median filtering algorithm 
was applied (on the PDP 11/45 computer) to six  images. 

Images 
1) Girl, original; 
2)  Girl,  with BSC noise; 
3 j Girl,  with Gaussian noise ; 
4) Airport, original; 
5) Airport, with BSC noise ; 
6)  Airport, with Gaussian noise. 

Each  image contains  256 X 256  picture elements  and 8 bits 
(256 gray  levels) per  picture  element. Images 2)  and 5 )  were 
obtained by passing  images 1) and  4), respectively, bit  by  bit 
through a binary symmetrical channel with a bit  error  prob- 
ability of 0.035. Images 3) and 6) were obtained by adding to 
images 1) and 4), respectively, zero-mean white Gaussian  noise. 
The signal-to-noise ratios  of all four noisy images are approxi- 
mately 19.5 dB.  Images  1)-6)  are shown in Fig. 1 (a)-(f), 
respectively. The median-filtered results (using a 3 X window) 
are shown in  Fig. 2 (a)-(f). 

As a comparison, the Quicksort algorithm was programmed 
in Fortran  and applied to  the same  six  images.  In running 
each of the six  images, the average number of comparisons 
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(e) 
Fig. 1. Images  before  filtering. (a 

noise.  (c)  Girl,  with  Gaussian n4 
port,  with BSC noise. (f) Airport. 
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(f) 
L) Girl,  original.  (b)  Girl,  with BSC 
oise. (d)  Airport,  original.  (e) Air- 
, with  Gaussian  noise. 

(e) (f) 
Fig. 2. The six images  of  Fig. 1 after 3 X 3 median  filtering. 

Quicksort  

A i rpor t ,  BSC --- 
Girl, BSC - 

0 20 40 60 80 100 I20 140 I G O  180 

window s i z e  ( p e l s )  

Fig. 3. Number of comparisons  per  window  plotted  against  window  size.  The  images  filtered  were girl with BSC noise  and 
airport with BSC noise. 
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A i r p o r t ,  BSC --- 
Girl, BSC -c-. 

Fig. 4. Computer time  per image plotted against window size. The images filtered were girl with BSC noise and airport 
with BSC noise. 

TABLE I 
NUMBER OF COMPARISONS PER WINDOW (GIRL-IMAGES 1-3) 

Window Size Histogran 
Method 

Quicksort 

Girl Girl Girl Girl 
Gaussian 

16.01  117.50 

16.37 i30.69 

18.99  256.07 

Girl 
BSC 

47-03 

127.70 

249.27 

414.51 

622.72 

876.56 
__ 

Gaussian 
Girl 

46.22 

123.34 

237.72 

386.06 

569.23 

792.98 

TABLE I1 
COMPUTER TIME IN  SECONDS (GIRL-IMAGES 1-3) 

BSC Gaussian 

7 Quicksort 

Girl Girl Girl 
BSC Gaussian 

180.4 143.7  155.8 

443.32  341.5  372.7 

833.3  651.0  690.5 

1087.4  1053.3 



HUANG et al.: TWO-DIMENSIONAL MEDIAN FILTERING ALGORITHM 17 

r 

TABLE I11 
NUMBER OF COMPARISONS PER WINDOW (AIRPORT-IMAGES 4-6) 

dindow S i 2  

3 x 3  

5 x 3  

7 x 3  

5 x 5  

3 x 5  

3 x 7  

7 x 7  

9 x 9  

11 x 11 

13 x  13 

_ 1 .  

3 x 3  

5 x 3  

7 x 3  

5 x 5  

3 x 5  

3 x 7  

7 x 7  

9 x 9  

1 1  x 11 

13  x  13 

I His togram 
Method 

A i r p o r t   A i r p o r t  A I  w o r t  
BSC Gaussian 

12.84 13.17 16.7 

11.06 11.3 

10.32 10.47 

14.95 15.10 16.56 

16.82 

20.50 

18.10 18.15 18.94 

21.53 21.57  22.06 

25.23  25.24  25.56 

28.95 28.96 29.21 

Q u l c k s o r t  I 
A i r p o r t   A i r p o r t   A i r p o r t  

BSC Gaussian 

46.37 46.19 45.54 

239.24 236.83  233.03 

388.35 385.03  378.72 

574.01 571.09 559.37 

808.00 802.86 775.48 

I 

TABLE IV 
COMPUTER TIME IN SECONDS  (AIRPORT-IMAGES 4-6) 

His togram 
Method 

L 

A i r p o r t   A i r p o r t   A i r p o r t  
BSC Gaussian 

50.0 52.8 69.1 

44.3 42.0 

42.3 42.8 

56.4 59.5 72.5 

63.1 

76.1 

67.5 67.4 83.3 

79.7 78.0 96.1 

90.8 101.1 109.0 

101.0 112.7 121.8 

r Q u i c k s o r t  

A i r p o r t   A i r p o r t   A i r p o r t  
BSC Gaussian 

156.5 142.1 154.8 

378.? 339.1  368.5 

628.8 627.9  680.6 

995.5  1083.3 

per window (i.e., per output  point) and  the  computational 
time  per image are measured. The results  are  listed  in  Tables 
I-IV. The  results for  the  two images with BSC noise are also 
plotted  in Figs. 3 and 4. As  we can see,  the  histogram  method 
is much faster  than  the  Quicksort  method.  According to 
these  results, for median  filtering  with an n X n  window, the 
computer  time  required  for  the  first is approximately O(n), 
and for  the second  O(nz). Some of  the  nonsquare  rectangular 
windows are also used.  For an m X n window (moving hori- 
zontally),  the  computer  time  required  is  approximately O(n). 

N. ANALYSIS 
We show that  for  the fast  median  filtering  algorithm,  the 

average number of comparisons  per  window  is  approximately 

2n t mt 1.5 t 0 . 5 ~ ~  

where 

n X n = square  window size or m X n = rectangular  window 
size 

po = probability  of  d being zero  in  one  picture 

and 

d = horizontally  adjacent  pel gray level difference of the 
- median  filtered  picture 
Id I = the average of  absolute value of d. 

Proof: From  the procedure  running  mdn  in  the pidgin 
Algol algorithm, we  see that 1) exactly  2n  comparisons are 
made  in  the  for statement, and 2) number  of  comparisons 
and  d are related as shown in  the  following  table  for  the - if 
statement. 
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d  number  of  comparisons 

-3 4 
-2 3 
-1 2 

0 2 
1 3 

2 4 

3 5 

Assuming d is symmetrically  distributed  (confirmed in the 
experiment  for  the  chosen  images), we then have the table 

Id 1 average number  of  comparisons 

2 

2.5 

3.5 

4.5 

Let C be  the average number  of  comparisons  and pi be the 
probability  that Id I = i, i = 0, 1, * * . ,255. Then 

- 
c = 2p0 -b 2 . 5 ~ ~  i- 3.5p2 + 4 . 5 ~ ~  -t a * t 256.5 pzSs t 2n 

= 0 . 5 ~ ~  t (i t 1.5)pi + 2n 
255 

i =O 

= 0 . 5 p o + 1 . 5 + C   i p i + 2 n  
2 5 5  

i =o 

= 0 . 5 p 0 t 1 . 5 t I d l t 2 n .  (1) 

Q.E.D. 

Therefore, C is loosely  upper  bounded by 2n t idl t 2  and 
lower  bounded  by  2n i- t 1.5. Clearly,  this  algorithm  takes 
advantage  of the  fact  that  for typical images the value of ldl 
is small. The value of Idl is less than 10 for  the images we 
used.  Hence,  approximately  only  (2n t 10) comparisons are 
needed  on the average. Equation  (1) agrees  well with  the  ex- 
perimental results reported in Section 111. 

Note: This analysis ignores the comparisons  made in finding 
the median of  the first window in each line. That,  on average, 
amounts to mdn/(q - m)  comparisons  per  window for an 
q X r image, an m X n filtering window,  and  mdn being the 
average median of the first windows in each line. This addi- 
tional  number  of  comparisons  can  be significant compared to 
(1) for large number  of  gray levels and small  image  size in  the 
horizontal  direction. This effect  can be  easily eliminated by 
applying the proposed  algorithm vertically at  the end of each 
line and  scanning  alternate lines in reverse direction. 

- 
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