1. FUNCTIONAL DEPENDENCIES

What Is “Functional” About Functional
Dependencies?

A;As--- A, — Bis called a “functional” dependency because in principle
there is a function that takes a list of values, one for each of attributes
Ay, As, ..., A, and produces a unique value (or no value at all) for B.
For instance, in the Moviesl relation, we can imagine a function that
takes a string like "Star Wars" and an integer like 1977 and produces the
unique value of length, namely 124, that appears in the relation Movies1.
However, this function is not the usual sort of function that we meet in
- mathematics, because there is no way to compute it from first principles.
That is, we cannot perform some operations on strings like "Star Wars"
and integers like 1977 and come up with the correct length. Rather, the
 function is only computed by lookup in the relation. We look for a tuple
_with the given title and year values and see what value that tuple has
for length.

1.3 Superkeys

et of attributes that contains a key is called a superkey, short for “superset
a key.” Thus, every key is a superkey. However, some superkeys are not
inimal) keys. Note that every superkey satisfies the first condition of a key: it
ctionally determines all other attributes of the relation. However, a superkey
ed not satisfy the second condition: minimality.

cample 3.3 : In the relation of Example 3.2, there are many superkeys. Not
ly is the key

{title, year, starName}
uperkey, but any superset of this set of attributes, such as
{title, year, starName, length, studioName}

superkey. O

4 Exercises for Section 3.1

ercise 3.1.1: Consider a relation about people in the United States, includ-
their name, Social Security number, street address, city, state, ZIP code,
a code, and phone number (7 digits). What FD’s would you expect to hold?
at are the keys for the relation? To answer this question, you need to know
ething about the way these numbers are assigned. For instance, can an area

72 CHAPTER 3. DESIGN THEORY FOR RELATIONAL DATABASES

Other Key Terminology

In some books and articles one finds different terminology regarding keys.
One can find the term “key” used the way we have used the term “su-
perkey,” that is, a set of attributes that functionally determine all the
attributes, with no requirement of minimality. These sources typically use
the term “candidate key” for a key that is minimal — that is, a “key” in
the sense we use the term.

code straddle two states? Can a ZIP code straddle two area codes? Can two
people have the same Social Security number? Can they have the same address
or phone number?

11 Exercise 3.1.2: Suppose R is a relation with attributes A1, As, ..., Ap. Asa
function of n, tell how many superkeys R has, if:

a) The only key is A;.

b) The only keys are A; and As.

¢) The only keys are {A1, A} and {41, A3}
d) The only keys are {A1, Az} and {As, A4}

Exercise 3.1.3: Consider a relation representing the present position of mole-
cules in a closed container. The attributes are an ID for the molecule, the
u, v, and w coordinates of the molecule, and its velocity in the u, v, and w
dimensions. What FD’s would you expect to hold? What are the keys?

3.2 TRules About Functional Dependencies

In this section, we shall learn how to reason about FD’s. That is, suppose we
are told of a set of FD’s that a relation satisfies. Often, we can deduce that the
relation must satisfy certain other FD’s. This ability to discover additional FD’s
is essential when we discuss the design of good relation schemas in Section 3.3.

3.2.1 Reasoning About Functional Dependencies.

Let us begin with a motivating example that will show us how we can infer a
functional dependency from other given FD’s.

Example 3.4: If we are told that a relation R(A, B,C) satisfies the FD’s
A — B and B — C, then we can deduce that R also satisfies the FD A — C.
How does that reasoning go? To prove that A — C, we must consider two
tuples of R that agree on A and prove they also agree on C.

RULES ABOUT FUNCTIONAL DEPENDENCIES 83

o If we already know that the closure of some set X is all attributes, then
we cannot discover any new FD’s by closing supersets of X.

~ Thus, we may start with the closures of the singleton sets, and then move
n to the doubleton sets if necessary. For each closure of a set X, we add the

- First, {A}" = {A,B,C,D}. Thus, A = C and A — D hold in R;. Note
nat A — B is true in R, but makes no sense in R; because B is not an attribute

Next, we consider {C}* = {C, D}, from which we get the additional FD
— D for Ry. Since {D}T = {D}, we can add no more FD’s, and are done
ith the singletons.
Since {A}* includes all attributes of Ry, there is no point in considering any
superset of { A}. The reason is that whatever FD we could discover, for instance
C — D, follows from an FD with only A on the left side: A — D in this case.
hus, the only doubleton whose closure we need to take is {C, D}* = {C, D}.
This observation allows us to add nothing. We are done with the closures, and
e FD’s we have discovered are A -+ C, A —+ D, and C — D.
s of Ry, ' If we wish, we can observe that A — D follows from the other two by
he set of ansitivity. Therefore a simpler, equivalent set of FD’s for R; is A — C and
' but not C —+ D. This set is, in fact, a minimal basis for the FD’s of R;. O
Xt and

ojection

3.2.9 Exercises for Section 3.2

‘minimal] xercise 3.2.1: Consider a relation with schema R(A,B,C,D) and FD’s
OwS: BC — D, D— A, and A — B.

Vs in T, ' a) What are all the nontrivial FD’s that follow from the given FD’s? You
should restrict yourself to FD’s with single attributes on the right side.

7, and let b) What are all the keys of R?
ows from

7 - B. ¢) What are all the superkeys for R that are not keys?

hanges to Exercise 3.2.2: Repeat Exercise 3.2.1 for the following schemas and sets of
FD’s:

i) S(4,B,C,D) with FD’s A -+ B, A — C, and C — D.

dC = D. i) T(A,B,C,D) with FD’'s A— B, B— C,C — D, and D — A.

a relation i) U(A, B,C,D) with FD’s AD — B, AB — C, BC — D, and CD — A.
he closure

ling those Exercise 3.2.3: Show that the following rules hold, by using the closure test

make.

nontrivial ' a) Augmenting left sides. If A1 As--- A, — B is an FD, and C is another
attribute, then 4145 --- A,C — B follows.

84 CHAPTER 3. DESIGN THEORY FOR RELATIONAL DATABASES 3.3. DE

b) Full augmentation. If AjAs--- A, — Bis an FD, and C is another at- P b) Th
tribute, then A;As---A,C — BC follows. Note: from this rule, the |
“augmentation” rule mentioned in the box of Section 3.2.7 on “A Com- , c) Th

plete Set of Inference Rules” can easily be proved. . | Exercis
¢) Pseudotransitivity. Suppose FD’s AjAs--- Ap = B1By--- By, and . E};]I))’s, zf
’s the

CIC’Z---C;;—%D , a)A-
hold, and the B’s are each among the C’s. Then ; b) B(

AlAg-"AnElEQ'“Ej——)D , C) C

holds, where the E’s are all those of the C’s that are not found among d) Al

the B’s. In each

d) Addition. If FD’s AjAy--- A, =& BBy~ By and - 11 Exercis
0102"'Ck-—)D1D2'“Dj]‘;Ve Caf;]

ox
Algoritl

hOld, then FD AlAQ L AnC’lC'g s Ck - BlBg .. BleDg .- 'Dj also
inferring

holds. In the above, we should remove one copy of any attribute that
appears among both the A’s and C’s or among both the B’s and D’s. , Exercis
FExampl

1 Exercise 3.2.4: Let X and Y be sets of attributes. Show that if X CY, then
X+ C Y1, where the closures are taken with respect to the same set of FD’s.

3.3

! Exercise 3.2.6: Show that each of the following are not valid rules about FD’s ' i?;izsf

by giving example relations that satisfy the given FD’s (following the “f”) but P
not the FD that allegedly follows (after the “then”). , reprodu
and W¢
a) If AB— C, then A= Cor B — C. repetiti
several
In t}
in the f

1. W

| Exercise 3.2.5: Prove that (X*)T = X

b) If A — B then B = A.
c) If AB— C and A — C, then B = C.

1 Exercise 3.2.7: Show that if a relation has no attribute that is functionally
determined by all the other attributes, then the relation has no nontrivial FD’s

at all.

11 Exercise 3.2.8: We say a set of attributes X is closed (with respect to a given
set of FD’s) if X+ = X. Consider a relation with schema R(A, B,C, D) and an

unknown set of FD’s. If we are told which sets of attributes are closed, we can
discover the FD’s. What are the FD’s if:

a) All sets of the four attributes are closed.

DESIGN OF RELATIONAL DATABASE SCHEMAS

) The only closed sets are () and {4, B, C, D}.

) The closed sets are §, {A,B}, and {4, B,C, D}.

rcise 3.2.9: Suppose we have relation R(A,B,C,D, E), with some set of
s, and we wish to project those FD’s onto relation S (4,B,C). Give the
s that hold in S if the FD’s for R are:

a) A-C,C—-B,B—D,D—E,and E — A.
BC - DE,A—>E,D - A and E — B.
0D, AD - E, BC - E, and DE — A.
 AB— E,AC - D,BC - E,E— A, and D — B.
each case, it is sufficient to give a minimal basis for the full set of FD’s of S.

ercise 3.2.10: Show that if an FD F follows from some given FD’s, then
an prove F' from the given FD’s using Armstrong’s axioms (defined in the
“A Complete Set of Inference Rules” in Section 3.2.7). Hint: Examine

sorithm 3.7 and show how each step of that algorithm can be mimicked by
ring some FD’s by Armstrong’s axioms.

ercise 3.2.11: Find all the minimal bases for the FD’s and relation of
ple 3.11.

Design of Relational Database Schemas

reless selection of a relational database schema can lead to redundancy and
aLted anomalies. For instance, consider the relation in Fig. 3.2, which we
roduce here as Fig. 3.6. Notice that the length and genre for Star Wars
| Wayne’s World are each repeated, once for each star of the movie. The
etition of this information is redundant. It also introduces the potential for
eral kinds of errors, as we shall see.

In this section, we shall tackle the problem of design of good relation schemas
he following stages:

. We first explore in more detail the problems that arise when our schema,
is poorly designed.

- Then, we introduce the idea of “decomposition,” breaking a relation
schema (set of attributes) into two smaller schemas.

Next, we introduce “Boyce-Codd normal form,” or “BCNEF,” a condition
on a relation schema that eliminates these problems.

. These points are tied together when we explain how to assure the BCNF
condition by decomposing relation schemas.

92 CHAPTER 3. DESIGN THEORY FOR RELATIONAL DATABASES

{title, year, studioName}
{studioName, president}
{president, presAddr}

O
In general, we must keep applying the decomposition rule as many times as
needed, until all our relations are in BCNF. We can be sure of ultimate success,
because every time we apply the decomposition rule to a relation R, the two
resulting schemas each have fewer attributes than that of R. As we saw in
Example 3.17, when we get down to two attributes, the relation is sure to be

in BONF; often relations with larger sets of attributes are also in BCNF. The
strategy is summarized below.

Algorithm 3.20: BCNF Decomposition Algorithm.
INPUT: A relation Ry with a set of functional dependencies So-

OUTPUT: A decomposition of Ry into a collection of relations, all of which are
in BCNF.

METHOD: The following steps can be applied recursively to any relation R and
set of FD’s S. Initially, apply them with R = Ry and S = So.

1. Check whether R is in BCNF. If so, nothing more needs to be done.
Return {R} as the answer.

_ Tf there are BCNF violations, let one be X — Y. Use Algorithm 3.7 to
compute X*. Choose Ry = X + as one relation schema and let Ry have
attributes X and those attributes of R that are not in X +.

. Use Algorithm 3.12 to compute the sets of FD’s for R, and Rj; let these
be S; and S, respectively.

. Recursively decompose R; and R, using this algorithm. Return the union
of the results of these decompositions.

O

3.3.5 Exercises for Section 3.3

‘Exercise 3.3.1: For each of the following relation schemas and sets of FD’s:
a) R(A,B,C,D) with FD’s B—+ A, C — B, D — C, and A—=D.
b) R(A,B,C,D) with FD’s BC — D, D — A, and A= B.
¢) R(4,B,C,D) with FD’s A — B and A = C.

d) R(4,B,C,D) with FD’s AB = D, BD — C, CD — 4, and AC — B.

ABASES

- times as
s success,
, the two
/e saw in
ure to be
'NE. The

which are

on R and

be done.

hm 3.7 to
. R have

- let these

the union

4. DECOMPOSITION: THE GOOD, BAD, AND UGLY 93

¢) R(4,B,C,D,E) with FD’s AB - C, C » E, E — A, and E — D.
f) R(4, B, C,D, E) with FD’s AB— C, DE — C,and B — E.
do the following:

i) Indicate all the BONF violations. Do not forget to consider FD’s that are
not in the given set, but follow from them. However, it is not necessary
to give violations that have more than one attribute on the right side.

#7) Decompose the relations, as necessary, into collections of relations that
are in BCNF.

Exercise 3.3.2: Suppose we have a relation schema, R(A,B,C) with FD B —
C. Suppose also that we decide to decompose this schema into S(A,C) and
T(B,C). Give an example of an instance of relation R whose projection onto
S and T and subsequent rejoining as in Section 3.4.1 does not vield the same
relation instance. That is, 7B,c(R) <74 0(R) # R.

: We mentioned in Section 3.3.4 that we would exercise our
option to expand the right side of an FD that is a BCNF violation if possible.

Consider a relation R whose schema, is the set of attributes {4, B, C, D} with

FD’s A — B and A — C. Either is a BONF violation, because the only key
or Ris {4, D}. Suppose we begin by decomposing R according to A — B. Do

we ultimately get the same result as if we first expand the BCNF violation to
A — BC? Why or why not?

'Exercise 3.3.4: Let R be as in Exercise 3.3.3, but let the FD’s be A — B and

B — C. Again compare decomposing using A — B first against decomposing

by A — BC first.

3.4 Decomposition: The Good, Bad, and Ugly

So far, we observed that before we decompose a relation schema into BCNF,
it can exhibit anomalies; after we decompose, the resulting relations do not
exhibit anomalies. That’s the “good.” But decomposition can also have some
bad, if not downright ugly, consequences. In this section, we shall consider
three distinct properties we would like 2 decomposition to have.

1. Elimination of Anomalies by decomposition as in Section 3.3.

2. Recoverability of Information. Can we recover the original relation from
the tuples in its decomposition?

3. Preservation of Dependencies. If we check the projected FD’s in the rela-
tions of the decomposition, can we can be sure that when we reconstruct
the original relation from the decomposition by Jjoining, the result will
satisfy the original FD’s?

102 CHAPTER 3. DESIGN THEORY FOR RELATIONAL DATABASES

3.4.5 Exercises for Section 3.4

Exercise 3.4.1: Let R(4, B,C, D, E) be decomposed into relations with the
~ following three sets of attributes: {4, B,C}, {B,C, D}, and {4, C, E}. For each
of the following sets of FD’s, use the chase test to tell whether the decomposition
of R is lossless. For those that are not lossless, give an example of an instance
of R that returns more than R when projected onto the decomposed relations
and rejoined.

a) BC — D and AC = E.

b) B~ E,E— D, and B = E.
¢) B»E,CE—D,and D— E.
d) A— D and CD — B.

Exercise 3.4.2: For each of the sets of FD’s in Exercise 3.4.1, are dependencies
preserved by the decomposition?

3.5 Third Normal Form

The solution to the problem illustrated by Example 3.25 is to relax our BONF
requirement slightly, in order to allow the occasional relation schema that can-
not be decomposed into BCNF relations without our losing the ability to check
the FD’s. This relaxed condition is called “third normal form.” In this section
we shall give the requirements for third normal form, and then show how to
do a decomposition in a manner quite different from Algorithm 3.20, in order
to obtain relations in third normal form that have both the lossless-join and
dependency-preservation properties.

3.5.1 Definition of Third Normal Form

A relation R is in third normal form (3NF) if:

e Whenever A; Ay --- A, — B1Bs--- By, is a nontrivial FD, either
{A17A27 s 7An}

is a superkey, or those of By, Bs, ... , By, that are not among the A’s, are
each a member of some key (not necessarily the same key).

An attribute that is a member of some key is often said to be prime. Thus, the
3NF condition can be stated as “for each nontrivial FD, either the left side is a
superkey, or the right side consists of prime attributes only.”

Note that the difference between this 3NF condition and the BCNF condi-
tion is the clause “is a member of some key (i-e., prime).” This clause “excuses”
an FD like theater — city in Example 3.25, because the right side, city, is
prime.

3.5.2

We ca
relatio

a) '

Algor
Join a

INPU"

OUTP
in 3N]
proper

METE

MULTIVALUED DEPENDENCIES

.4 Exercises for Section 3.5

ercise 3.5.1: For each of the relation schemas and sets of FD’S of Exer-

4) Indicate all the 3NF violations.

u) Decompose the relations, as necessary, into collections of relations that
are in 3NF.

xercise 3.5.2: Verify, using the chase, that the decomposition of Exam-
327 has a lossless join. - [Eksempel 3.27: Se neste to sider

xercise 3.5.3: Consider the relation Courses(C,T,H, R, S, @), whose at-
butes may be thought of informally as course, teacher, hour, room, student,
d grade. Let the set of FD’s for Courses be C' — T,HR - C, HT — R,
S = R, and CS — G. Intuitively, the first says that a course has a unique
acher, and the second says that only one course can meet in a given room at
given hour. The third says that a teacher can be in only one room at a given
ur, and the fourth says the same about students. The last says that students
et only one grade in a course.

a) What are all the keys for Courses?

b) Verify that the given FD’s are their own minimal basis.

¢) Use the 3NF synthesis algorithm to find a lossless-join, dependency-pres-
erving decomposition of R into 3NF relations. Are any of the relations
not in BCNF?

xercise 3.5.4: Consider arelation Stocks(B, 0, I, S, Q, D), whose attributes

ay be thought of informally as broker, office (of the broker), investor, stock,
quantity (of the stock owned by the investor), and dividend (of the stock). Let
the set of FD’s for Stocks be S —+ D, I — B, IS — @, and B — O. Repeat
Exercise 3.5.3 for the relation Stocks.

Exermse 3.5.5: Suppose we modified Algorithm 3.20 (BNCF decomposition)
so that instead of decomposing a relation R whenever R was not in BCNF, we
only decomposed R if it was not in 3NF. Provide a counterexample to show that
this modified algorithm would not necessarily produce a 3NF decomposition
with dependency preservation.

3.6 Multivalued Dependencies

A “multivalued dependency” is an assertion that two attributes or sets of at-
tributes are independent of one another. This condition is, as we shall see,
a generalization of the notion of a functional dependency, in the sense that

ellenmk
Text Box
Eksempel 3.27: Se neste to sider

vith the
or each
position
nstance
elations

ndencies

r BCNF
hat can-
to check
3 section
- how to
in order
join and

 A’s, are

“hus, the
side is a

T condi-
excuses”
city, is

' 3.5. THIRD NORMAL FORM

Other Normal Forms

If there is a “third normal form,” what happened to the first two “nor-
mal forms”? They indeed were defined, but today there is little use for
them. First normal form is simply the condition that every component
of every tuple is an atomic value. Second normal form is a less restrictive
verison of 3NF. There is also a “fourth normal form” that we shall meet
in Section 3.6.

3.5.2 The Synthesis Algorithm for 3NF Schemas

We can now explain and justify how we decompose a relation R into a set of
relations such that:

a) The relations of the decomposition are all in 3NF.

b) The decomposition has a lossless join.

¢) The decomposition has the dependency-preservation property.

Algorithm 3.26: Synthesis of Third-Normal-Form Relations With a Lossless
Join and Dependency Preservation.

NPUT: A relation R and a set F of functional dependencies that hold for R.

OUTPUT: A decomposition of R into a collection of relations, each of which is
n 3NF. The decomposition has the lossless-join and dependency-preservation
roperties.

METHOD: Perform the following steps:
1. Find a minimal basis for F, say G.

2. For each functional dependency X — A in G, use X A4 as the schema of
one of the relations in the decomposition.

3. If none of the sets of relations from Step 2 is a superkey for R, add another
relation whose schema is a key for R.

xample 3.27: Consider the relation R(A,B,C, D, F) with FD’s AB — C,
— B, and A — D. To start, notice that the given FD’s are their own
minimal basis. To check, we need to do a bit of work. First, we need to verify
hat we cannot eliminate any of the given dependencies. That is, we show,

ing Algorithm 3.7, that no two of the FD’s imply the third. For example,
we must take the closure of {4, B}, the left side of the first FD, using only the

104 CHAPTER 3. DESIGN THEORY FOR RELATIONAL DATABASES

second and third FD’s, C — B and A — D. This closure includes D but not
C, so we conclude that the first FD AB — C is not implied by the second and
third FD’s. We get a similar conclusion if we try to drop the second or third
FD.

We must also verify that we cannot eliminate any attributes from a left
side. In this simple case, the only possibility is that we could eliminate A or
B from the first FD. For example, if we eliminate A, we would be left with
B — C. We must show that B — C is not implied by the three original FD’s,
AB — C,C — B, and A — D. With these FD’s, the closure of {B} is just B,
so B — C does not follow. A similar conclusion is drawn if we try to drop B
from AB — C. Thus, we have our minimal basis.

We start the 3NF synthesis by taking the attributes of each FD as a relation
schema. That is, we get relations S1(A, B,C), Sa(B,C), and S3(A, D). It is
never necessary to use a relation whose schema is a proper subset of another
relation’s schema, so we can drop Ss.

We must also consider whether we need to add a relation whose schema is
a key. In this example, R has two keys: {4, B, E} and {4,C, E}, as you can
verify. Neither of these keys is a subset of the schemas chosen so far. Thus, we
must add one of them, say S¢(4, B, E). The final decomposition of R is thus
S1(4,B,C), S3(A, D), and S4(4,B,E). O

3.5.3 Why the 3NF Synthesis Algorithm Works

We need to show three things: that the lossless-join and dependency-preser-
vation properties hold, and that all the relations of the decomposition are in
3NF.

1. Lossless Join. Start with a relation of the decomposition whose set of
attributes K is a superkey. Consider the sequence of FD’s that are used
in Algorithm 3.7 to expand K to become KT. Since K is a superkey,
we know K7 is all the attributes. The same sequence of FD applications
on the tableau cause the subscripted symbols in the row corresponding
to K to be equated to unsubscripted symbols in the same order as the
attributes were added to the closure. Thus, the chase test concludes that
the decomposition is lossless.

. Dependency Preservation. Each FD of the minimal basis has all its at-
tributes in some relation of the decomposition. Thus, each dependency
can be checked in the decomposed relations.

. Third Normal Form. If we have to add a relation whose schema is a key,
then this relation is surely in 3NF. The reason is that all attributes of this
relation are prime, and thus no violation of 3NF could be present in this
relation. For the relations whose schemas are derived from the FD’s of a
minimal basis, the proof that they are in 3NF is beyond the scope of this
book. The argument involves showing that a 3NF violation implies that
the basis is not minimal.

3.6. MUI

3.5.4 1

Exercise
cise 3.3.1:

i) Indi

1) Decc
are i

Exercise
ple 3.27 h:

Exercise
tributes m
and grade
HS - R,
teacher, a
a given ho
hour, and
get only o

a) Whe
b) Veri

c) Use
ervir
not

Exercise
may be th
quantity (;
the set of
Exercise 3

! Exercise

so that ins
only decorn
this modif
with depe

3.6 N

A “multiv
tributes a
a generali

NF', we

s with
ntually
ey are
e gave
elation
ugh to
lations

hat the
yosition
though
mposed
further

MULTIVALUED DEPENDENCIES

Relationships Among Normal Forms

e have mentioned, 4NF implies BCNF, which in turn implies 3NF. Thus,

s of relation schemas (including dependencies) satisfying the three normal

s are related as in Fig. 3.12. That is, if a relation with certain dependen-

 is in 4NF, it is also in BCNF and 3NF. Also, if a relation with certain
ndencies is in BCNF, then it is in 3NF.

Relations in 3NF

Relations in BCNF

Relations in 4NF

Figure 3.12: 4NF implies BCNF implies 3NF

Another way to compare the normal forms is by the guarantees they make
bout the set of relations that result from a decomposition into that normal
rm. These observations are summarized in the table of Fig. 3.13. That is,

NF (and therefore 4NF) eliminates the redundancy and other anomalies
', at are caused by FD’s, while only 4NF eliminates the additional redundancy
at is caused by the presence of MVD’s that are not FD’s. Often, 3NF is
nough to eliminate this redundancy, but there are examples where it is not.
CNF does not guarantee preservation of FD’s, and none of the normal forms

guarantee preservation of MVD’s, although in typical cases the dependencies
are preserved.

Property | 3NF | BCNF | 4NF |

Eliminates redundancy | No | Yes Yes
due to FD’s
Eliminates redundancy | No | No Yes
due to MVD’s
Preserves FD’s No No
Preserves MVD’s | No No No

Figure 3.13: Properties of normal forms and their decompositions

'3.6.7 Exercises for Section 3.6

xercise 3.6.1: Suppose we have a relation R(A4, B,C) with an MVD B —

114 CHAPTER 3. DESIGN THEORY FOR RELATIONAL DATABASES
C. If we know that the tuples (a1,b,c1), (a2,b,¢2), and (as,b,c3) are in the
current instance of R, what other tuples do we know must also be in R?
Exercise 3.6.2: For each of the following relation schemas and dependencies
a) R(A,B,C,D) with MVD’s D —+ A and A —+ BC.
b) R(A,B,C,D) with MVD AB = D and FD B — C.

¢) R(A,B,C,D,E) with MVD’s A = C and AC —» D and FD’s A - E
and AC — B.

d) R(A,B,C,D) with MVD’s B —+ C and B =~ D.
do the following:
i) Find all the 4NF violations.
i1) Decompose the relations into a collection of relation schemas in 4NF.

Exercise 3.6.3: Suppose we have a relation in which we want to record for
each person their name, Social Security number, and birthdate. Also, for each
child of the person, the name, Social Security number, and birthdate of the
child, and for each automobile the person owns, its serial number and make.
To be more precise, this relation has all tuples

(n, s, b,cn,cs, cb,as, am)
such that

n is the name of the person with Social Security number s.
. bis n’s birthdate.

. ¢n is the name of one of n’s children.

. ¢b is en’s birthdate.

. as is the serial number of one of n’s automobiles.

1.
2
3
4. csis en’s Social Security number.
5
6
7

. am is the make of the automobile with serial number as.
For this relation:
a) Tell the functional and multivalued dependencies we would expect to hold.
b) Suggest a decomposition of the relation into 4NF.

Exercise 3.6.4: Give informal arguments why we would not expect any of the
five attributes in Example 3.28 to be functionally determined by the other four.

120 CHAPTER 3. DESIGN THEORY FOR RELATIONAL DATABASES

1. Tt is surely not necessary to check the trivial FD’s and MVD’s.

2. For FD’s, we can restrict ourselves to looking for FD’s with a singleton
right side, because of the combining rule for FD’s.

. An FD or MVD whose left side does not contain the left side of any given
dependency surely cannot hold, since there is no way for its chase test
to get started. That is, the two rows with which you start the test are
unchanged by the given dependencies.

3.7.5 Exercises for Section 3.7

Exercise 3.7.1: Use the chase test to tell whether each of the following depen-
dencies hold in a relation R(A4,B,C, D, E) with the dependencies A —- BC,
B = E,and C =+ D.

a) A= D.
b) A—= D.
c) A= E.
d) A— E.

Exercise 3.7.2: If we project the relation R of Exercise 3.7.1 onto S(4, C, D),
what nontrivial FD’s and MVD’s hold in 5?7

Exercise 3.7.3: Show the following rules for MVD’s. In each case, you can
set up the proof as a chase test, but you must think a little more generally than
in the examples, since the set of attributes are arbitrary sets X,Y, Z, and the
other unnamed attributes of the relation in which these dependencies hold.

a) Removing attributes shared by left and right side. ¥ X —+ Y holds, then
X = (Y — X) holds.

b) The Union Rule. If X, Y, and Z are sets of attributes, X — Y, and
X -+ Z,then X - (Y U Z).

¢) The Intersection Rule. If X, Y, and Z are sets of attributes, X =+ Y,
and X == Z, then X - (Y N Z).

d) The Difference Rule. If X, Y, and Z are sets of attributes, X =+ Y, and
X — Z, then X = (Y — Z).

! Exercise 3.7.4: Give counterexample relations to show why the following rules
for MVD’s do not hold. Hint: apply the chase test and see what happens.

a) If A—» BC, then A —» C.
b) If BC —+ A, then B — A.
c) If A— B, then A — B.

