212 CHAPTER 5. ALGEBRAIC AND LOGICAL QUERY LANGUAGES

The computation of the join is as follows. Tuple (1,2) from R and (4, 5) from S
meet the join condition. Since each appears twice in its relation, the number of
times the joined tuple appears in the result is 2 X 2 or 4. The other possible join
of tuples — (1,2) from R with (2, 3) from S — fails to meet the join condition,
so this combination does not appear in the result. O

5.1.7 Exercises for Section 5.1

Exercise 5.1.1: Let PC be the relation of Fig. 2.21(a), and suppose we compute
the projection 7p4(PC). What is the value of this expression as a set? As a bag?
What is the average value of tuples in this projection, when treated as a set?
As a bag?

Exercise 5.1.2: Repeat Exercise 5.1.1 for the projection mspeeq(PC).

Exercise 5.1.3: This exercise refers to the “battleship” relations of Exer-
cise 2.4.3.

a) The expression TpumGuns(Classes) yields a single-column relation with
the numbers of guns of the various classes. For the data of Exercise 2.4.3,
what is this relation as a set? As a bag?

!'b) Write an expression of relational algebra to give the numbers of guns of
the ships (not the classes). Your expression must make sense for bags;
that is, the number of times a value g appears must be the number of
ships that have g guns.

! Exercise 5.1.4: Certain algebraic laws for relations as sets also hold for re-
lations as bags. Explain why each of the laws below hold for bags as well as
sets.

a) The commutative law for union: (RU S) = (S U R).
The commutative law for intersection: (RN S) = (S N R).
The commutative law for natural join: (R S) = (S < R).

The associative law for union: (RUS)UT =RU(SUT).

The associative law for intersection: (RNSNT=RN{(SNT).

The associative law for natural join: (R S) T = R (S T).
7 (RUS) =nr(R) Unr(S). Here, L is an arbitrary list of attributes.

The distributive law of union over intersection:

RU(SNT)=(RUS) N(RUT)

1! Exerci:
Explain
not holc

Section
the moc
The ide
languag
have pr¢
operatic
section.

1. T]
all

LA

re
Ay
su
in

hold for
s as well

"XTENDED OPERATORS OF RELATIONAL ALGEBRA 213

7c mw D(R) = 0c(R) N op(R). Here, C and D are arbitrary conditions
bout the tuples of R.

ise 5.1.5: The following algebraic laws hold for sets but not for bags.
in why they hold for sets and give counterexamples to show that they do
old for bags.

'he distributive law of intersection over union:

TNRUS)=TNR)U(TNS)

o¢c or D(R) = 0¢(R) U op(R). Here, C and D are arbitrary conditions
about the tuples of R.

(SNT)~R=8n(T -R).

Extended Operators of Relational Algebra

n 2.4 presented the classical relational algebra, and Section 5.1 introduced
odifications necessary to treat relations as bags of tuples rather than sets.
deas of these two sections serve as a foundation for most of modern query
ages. However, languages such as SQL have several other operations that
roved quite important in applications. Thus, a full treatment of relational
ations must include a number of other operators, which we introduce in this
The additions:

The duplicate-elimination operator & turns a bag into a set by eliminating

all but one copy of each tuple.

Aggregation operators apply to attributes (columns) of a relation; e.g., the
um of a column produces the one number that is the sum of all the values
in that column.

Grouping of tuples according to their value in one or more attributes has

the effect of partitioning the tuples of a relation into “groups.” Agegre-
gation can then be applied to columns within-each group, giving us the
ability to express a number of queries that are impossible to express in
the classical relational algebra. The grouping operator 7 is an operator
that combines the effect of grouping and aggregation.

Extended projection gives additional power to the operator 7. In addition
to projecting out some columns, in its generalized form 7 can perform
computations involving the columns of its argument relation to produce
new columns.

929 CHAPTER 5. ALGEBRAIC AND LOGICAL QUERY LANGUAGES

|uB|UC|V.B|VC]|D
5 6 3 10
3 11
3 10
3 11
4

7

1
12

5 6
8 9
8 9
2 3
4 1

Figure 5.7: Result of a theta-outerjoin

5.2.8 Exercises for Section 5.2

Exercise 5.2.1: Here are two relations:
R(A, B): {(1,2), (3,4), (1,2), (3,5), (4, 5}
S(B,0): {(1,2), (3,5), (3,6), (4,5), (1,3), (4,5)}

Compute the following:) ma2,B2, a+B(R); D) np—1,0+1(5); © 74,B(R);
d) ro.p5(S); € 8(R); £)3(S); &) va, wem)(B); h) vB.smc)(S); 1) va(®);
1) vamxc) (B> S); k) R g S; DRk, S; m) R1 S; n) R KR B<S.B S-

1 Exercise 5.2.2: A unary operator f is said to be idempotent if for all relations
R, f(f (R)) = f(R). That s, applying f more than once is the same as applying
it once. Which of the following operators are idempotent? Either explain why
or give a counterexample.

a) Tr; b) o¢;) VL d) 7; e) 4.

! Exercise 5.2.3: One thing that can be done with an extended projection,
but not with the original version of projection that we defined in Section 2.4.5,
is to duplicate columns. For example, if R(4, B) is a relation, then m4,4(R)
produces the tuple (a, a) for every tuple (a,b) in R. Can this operation be done
using only the classical operations of relation algebra from Section 2.47 Explain
your reasoning.

5.3 A Logic for Relations

As an alternative to abstract query languages based on algebra, one can use a
form of logic to express queries. The logical query language Datalog (“database
logic”) consists of if-then rules. Each of these rules expresses the idea that from
certain combinations of tuples in certain relations, we may infer that some other
tuple must be in some other relation, or in the answer to a query.

930 CHAPTER 5. ALGEBRAIC AND LOGICAL QUERY LANGUAGES

is the head relation defined by this rule. More generally, had tuple (1, 2) ap-
peared n times in R and tuple (2,3) appeared m times in S, then tuple (1,3)
would appear nm times in H. U

If a relation is defined by several rules, then the result is the bag-union of
whatever tuples are produced by each rule.

Example 5.23: Consider a relation H defined by the two rules

H(x,y) « S(x,y) AND x>1
H(xz,y) + S(x,y) AND y<5

where relation S(B, C) is as in Example 5.22; that s, S ={(2,3), (4,5), (4,5)}
The first rule puts each of the three tuples of S into H, since they each have a
first component greater than 1. The second rule puts only the tuple (2,3) into
H, since (4,5) does not satisfy the condition y < 5. Thus, the resulting relation
H has two copies of the tuple (2,3) and two copies of the tuple (4,5). O

5.3.7 Exercises for Section 5.3

Exercise 5.3.1: Write each of the queries of Exercise 2.4.3 in Datalog. You
should use only safe rules, but you may wish to use several IDB predicates
corresponding to subexpressions of complicated relational-algebra expressions.

Exercise 5.3.2: Write each of the queries of Exercise 2.4.1 in Datalog. Again,
use only safe rules, but you may use several IDB predicates if you like.

1t Exercise 5.3.3: The requirement we gave for safety of Datalog rules is suffi-
cient to guarantee that the head predicate has a finite relation if the predicates
of the relational subgoals have finite relations. However, this requirement is
too strong. Give an example of a Datalog rule that violates the condition, yet
whatever finite relations we assign to the relational predicates, the head relation
will be finite.

54 Relational Algebra and Datalog

Each of the relational-algebra operators of Section 2.4 can be mimicked by one
or several Datalog rules. In this section we shall consider each operator in turn.
We shall then consider how to combine Datalog rules to mimic complex algebraic
expressions. It is also true that any single safe Datalog rule can be expressed in
relational algebra, although we shall not prove that fact here. However, Datalog
queries are more powerful than relational algebra when several rules are allowed
to interact; they can express recursions that are not expressable in the algebra
(see Example 5.35).

5.4. RELA

54.1 B

The boolea
difference -
techniques 1
attributes,
the head pr
name of the
the results .

e To ta

and |
if an

Example
S(A,B,C)
results, raf

To take

Rule (1) s
similarly s
To con

Finally, tk

computes

938 CHAPTER 5. ALGEBRAIC AND LOGICAL QUERY LANGUAGES

5.4.7 Comparison Between Datalog and Relational
Algebra

We see from Section 5.4.6 that every expression in the basic relational algebra
of Section 2.4 can be expressed as a Datalog query. There are operations in the
extended relational algebra, such as grouping and aggregation from Section 5.2,
that have no corresponding features in the Datalog version we have presented
here. Likewise, Datalog does not support bag operations such as duplicate
elimination.

It is also true that any single Datalog rule can be expressed in relational
algebra. That is, we can write a query in the basic relational algebra that
produces the same set of tuples as the head of that rule produces.

However, when we consider collections of Datalog rules, the situation chan-
ges. Datalog rules can express recursion, which relational algebra can not. The
reason is that IDB predicates can also be used in the bodies of rules, and the
tuples we discover for the heads of rules can thus feed back to rule bodies
and help produce more tuples for the heads. We shall not discuss here any of
the complexities that arise, especially when the rules have negated subgoals.
However, the following example will illustrate recursive Datalog.

Example 5.35: Suppose we have a relation Edge(X,Y) that says there is a
directed edge (arc) from node X to node Y. We can express the transitive
closure of the edge relation, that is, the relation Path(X,Y) meaning that there
is a path of length 1 or more from node X to node Y, as follows:

1. Path(X,Y) + Edge(X,Y)
2. Path(X,Y) + Edge(X,Z) AND Path(Z,Y)

Rule (1) says that every edge is a path. Rule (2) says that if there is an
edge from node X to some node Z and a path from Z to Y, then there is also a
path from X to Y. If we apply Rule (1) and then Rule (2), we get the paths of
length 2. If we take the Path facts we get from this application and use them in
another application of Rule (2), we get paths of length 3. Feeding those Path
facts back again gives us paths of length 4, and so on. Eventually, we discover
all possible path facts, and on one round we get no new facts. At that point,
we can stop. If we haven’t discovered the fact Path(a, b), then there really is
no path in the graph from node a to node b. O

5.4.8 Exercises for Section 5.4

Exercise 5.4.1: Let R(a,b,c), S(a,b,c), and T(a,b,c) be three relations.
Write one or more Datalog rules that define the result of each of the following
expressions of relational algebra: -

a) Rn S.
b) R U S.

5.4. RI

)
d R
e) (I
M) 7
lg) (1

Exerci
that de

a) y
b) z
c) z
d) N
le) N
'y N

Exerci
single 1

t:

Exerc
more 1
one of
each a;
attribu

Exerc
relatio;
doing :
of the .
the sai

a) 1

b) 1

c) 1

",b(R) n PU(a,b) (Tb,c(S))'
-5 n (R-1).

ise 5.4.2: Let R(z,y, z) be a relation. Write one or more Datalog rules
efine o (R), where C' stands for each of the fo

llowing conditions:

ise 5.4.3: Let R(a,b,¢), S(b,¢,d),

and T'(d, e) be three relations. Write
Datalog rules for each of the natural joins:

S T) < R. (Note: since the natural join is associative and commuta-
ive, the order of the join of these three relations is irrelevant.)

se 5.4.4: Let R(z,y,2) and S(z,y,
Jatalog rules to define each of the
the conditions of Exercise 5 4.2. For

z) be two relations. Write one or
theta-joins R a4 S, where C is

cise 5.4.5: Tt is also possible to convert Datalog rules into equivalent
nal-algebra expressions. While we have not discussed the method of
80 in general, it is possible

to work out many simple examples. For each
Datalog rules below, write an expression of relational algebra that defines
e relation as the head of the rule.

X,y) + S(x,z) AND S(z,y)
x,y) « S(x,z) AND R(z,y)

(x,7) + S(x,z) AND R(z,y) AND x < y

	p212
	p213
	p222
	p230
	p238
	p239

