318 CHAPTER 7. CONSTRAINTS AND TRIGGERS

7.1.4 Exercises for Section 7.1

Exercise 7.1.1: Our running example movie database of Section 2.2.8 has
keys defined for all its relations.

Movies(title, year, length, genre, studioName, producerC#)
StarsIn(movieTitle, movieYear, starName)

MovieStar (name, address, gender, birthdate)
MovieExec(name, address, cert#, netWorth)

Studio(name, address, presC#)

Declare the following referential integrity constraints for the movie database as
in Exercise 7.1.1.

a) The producer of a movie must be someone mentioned in MovieExec. Mod-
ifications to MovieExec that violate this constraint are rejected.

b) Repeat (a), but violations result in the deletion or update of the

c¢) Repeat (a), but violations result in the producerC# in Movie being set to
NULL. offending Movie tuple.

d) A star appearing in StarsIn must also appear in MovieStar. Handle
violations by deleting violating tuples.

e) A movie that appears in StarsIn must also appear in Movie. Handle
violations by rejecting the modification.

Exercise 7.1.2: Suggest suitable keys and foreign keys for the relations of the
PC database:

Product (maker, model, type)

PC(model, speed, ram, hd, price)
Laptop(model, speed, ram, hd, screen, price)
Printer (model, color, type, price)

of Exercise 2.4.1. Modify your SQL schema from Exercise 2.3.1 to include
declarations of these keys.

Exercise 7.1.3: Suggest suitable keys for the relations of the battleships
database

Classes(class, type, country, numGuns, bore, displacement)
Ships(name, class, launched)

Battles(name, date)

Outcomes (ship, battle, result)

of Exercise 2.4.3. Modify your SQL schema from Exercise 2.3.2 to include
declarations of these keys.

7.2. CONST

Exercise 7.]
the relation P
so with a fore

Exercise 7.!
battleships d
from that exe
value to NULI

a) Everyl
b) Every ¢

c) Every «

7.2 Co
Within a SQ]
1. A cons

2. A cons

In Section 7.
value: the c
tion 7.2.2 we
CHECK const:
in Section 7.

There ar
Sections 7.4
whole relatic
single attrib

7.2.1 N

One simple ¢
disallow tup.
keywords NO
statement.

Example 7
haps by cha

4)

This change

’;ONSTRAIN TS ON ATTRIBUTES AND TUPLES

ise 7.1.4: We would like to declare the constraint that every movie in
ation Movie must appear with at least one star in StarsIn. Can we do
- a foreign-key constraint? Why or why not?

ise 7.1.5: Write the following referential integrity constraints for the
hips database as in Exercise 7.1.3. Use your assumptions about keys
hat exercise, and handle all violations by setting the referencing attribute
o NULL.

very battle mentioned in Outcomes must be mentioned in Battles.

ery ship mentioned in Outcomes must be mentioned in Ships.

ery class mentioned in Ships must be mentioned in Classes.

Constraints on Attributes and Tuples
é,’SQL CREATE TABLE statement, we can declare two kinds of constraints:

constraint on a single attribute.

constraint on a tuple as a whole.

7.2.1 we shall introduce a simple type of constraint on an attribute’s
he constraint that the attribute not have a NULL value. Then in Sec-
we cover the principal form of constraints of type (1): attribute-based
nstraints. The second type, the tuple-based constraints, are covered
1 7.2.3.
. are other, more general kinds of constraints that we shall meet in
7.4 and 7.5. These constraints can be used to restrict changes to
ations or even several relations, as well as to constrain the value of a
ribute or tuple.

ot-Null Constraints

constraint to associate with an attribute is NOT NULL. The effect is to
iples in which this attribute is NULL. The constraint is declared by the
0T NULL following the declaration of the attribute in a CREATE TABLE

7.5 : Suppose relation Studio required presC# not to be NULL, per-
anging line (4) of Fig. 7.1 to:
_ presC# INT REFERENCES MovieExec(cert#) NOT NULL

re has several consequences. For instance:

CONSTRAINTS ON ATTRIBUTES AND TUPLES

1) - CREATE TABLE MovieStar (
2) name CHAR(30) PRIMARY KEY,
3) address VARCHAR(255),
4) gender CHAR(1),
5) birthdate DATE,
6) CHECK (gender = ’F’ OR name NOT LIKE °Ms.%’)

Figure 7.3: A constraint on the table MovieStar

Writing Constraints Correctly

ny constraints are like Example 7.8, where we want to forbid tuples
t satisfy two or more conditions. The expression that should follow
 check is the OR of the negations, or opposites, of each condition; this
ansformation is one of “DeMorgan’s laws”: the negation of the AND of
ms is the OR of the negations of the same terms. Thus, in Example 7.8
first condition was that the star is male, and we used gender = ’F’
suitable negation (although perhaps gender <> ’M’ would be the
re normal way to phrase the negation). The second condition is that
name begins with *Ms. ’, and for this negation we used the NOT LIKE
omparison. This comparison negates the condition itself, which would be
 LIKE ’Ms.%’ in SQL.

Comparison of Tuple- and Attribute-Based
Constraints

onstraint on a tuple involves more than one attribute of that tuple, then
. be written as a tuple-based constraint. However, if the constraint
only one attribute of the tuple, then it can be written as either a
attribute-based constraint. In either case, we do not count attributes
d in subqueries, so even a attribute-based constraint can mention other

s of the same relation in subqueries.
1 only one attribute of the tuple is involved (not counting subqueries),
- condition checked is the same, regardless of whether a tuple- or
e-based constraint is written. However, the tuple-based constraint will
ed more frequently than the attribute-based constraint — whenever any
> of the tuple changes, rather than only when the attribute mentioned

nstraint changes.

Exercises for Section 7.2

7.2.1: Write the following constraints for attributes of the relation

CHAPTER 7. CONSTRAINTS AND TRIGGERS

Movies(title, year, length, genre, studioName, producerC#)

a) The length cannot be less than 30 nor more than 500.
b) The year cannot be before 1909.

¢) The genre can only be drama, comedy, sciFi, or teen.

Exercise 7.2.2: Write the following constraints on attributes from our exam-
ple schema

Product (maker, model, type)

PC(model, speed, ram, hd, price)
Laptop(model, speed, ram, hd, screen, price)
Printer (model, color, type, price)

of Exercise 2.4.1.

a) The only types of products are PC’s, laptops, and printers.
b) The speed of a laptop must be at least 2.2.
¢) The only types of printers are laser and ink-jet.

1d) A model of a product must also be the model of a PC, a laptop, or a
printer.

Exercise 7.2.3: Write the following constraints as tuple-based CHECK con-
straints on one of the relations of our running movies example:

Movies(title, year, length, genre, studioName, producerC#)
StarsIn(movieTitle, movieYear, starName)

MovieStar (name, address, gender, birthdate)
MovieExec(name, address, cert#, netWorth)

Studio(name, address, presC#)

If the constraint actually involves two relations, then you should put constraints
in both relations so that whichever relation changes, the constraint will be
checked on insertions and updates. Assume no deletions; it is not always pos-
sible to maintain tuple-based constraints in the face of deletions.

a) A star may not appear in a movie made before they were born.

b) A studio name that appears in Studio must also appear in at least one
Movies tuple.

c) No two movie executives may have the same address.

d) A name that appears in MovieExec must not also appear in MovieStar.

7.3. MODIF

Ite) If a pro
be the -

Exercise 7.:
our “PC” scl

a) A PC-
$600.

b) A laptc
gigaby

Exercise 7.
our “battlesl

Clas
Shij
Bat
Out

a) No cla

b) If acla
than 1

! ¢) No shi

! Exercise 7.
gender attri
straints enfo

73 M

It is possibl
express suck
ciated with

731 G

In order to
constraint b
CONSTRAINT

Example 7
that says at

2)

MODIFICATION OF CONSTRAINTS 325

If a producer of a movie is also the president of a studio, then they must
be the president of the studio that made the movie.

rcise 7.2.4: Write the following as tuple-based CHECK constraints about
‘PC” schema.

A PC with a processor speed less than 2.0 must not sell for more than
$600.

"A laptop with a screen size less than 15 inches must have at least a 40
gigabyte hard disk or sell for less than $1000.

cise 7.2.5: Write the following as tuple-based CHECK constraints about
attleships” schema:

Classes(class, type, country, numGuns, bore, displacement)
'Ships (name, class, launched)

Battles(name, date)

Outcomes (ship, battle, result)

No class of ships may have guns with larger than a 16-inch bore.

a class of ships has more than 9 guns, then their bore must be no larger
an 14 inches.

ship can be in battle before it is launched.

se 7.2.6: In Examples 7.6 and 7.8, we introduced constraints on the
attribute ofMovieStar. What restrictions, if any, do each of these con-
‘enforce if the value of gender is NULL?

Modification of Constraints

ssible to add, modify, or delete constraints at any time. The way to
such modifications depends on whether the constraint involved is asso-
th an attribute, a table, or (as in Section 7.4) a database schema.

Giving Names to Constraints

to modify or delete an existing constraint, it is necessary that the
t have a name. To do so, we precede the constraint by the keyword
[NT and a name for the constraint.

7.9: We could rewrite line (2) of Fig. 2.9 to name the constraint
ttribute name is a primary key, as

name CHAR(30) CONSTRAINT NameIsKey PRIMARY KEY,

DIFICATION OF CONSTRAINTS

Name Your Constraints

mber, it is a good idea to give each of your constraints a name, even
L do not believe you will ever need to refer to it. Once the constraint
ated without a name, it is too late to give it one later, should you
to alter it. However, should you be faced with a situation of having
er a nameless constraint, you will find that your DBMS probably has
 for you to query it for a list of all your constraints, and that it has
_your unnamed constraint an internal name of its own, which you
use to refer to the constraint.)

nstraints are now tuple-based, rather than attribute-based checks. We

ring them back as attribute-based constraints.

1ame is optional for these reintroduced constraints. However, we cannot

QL remembering the dropped constraints. Thus, when we add a former

t we need to write the constraint again; we cannot refer to it by its
name. 0O

Exercises for Section 7.3

se 7.3.1: Show how to alter your relation schemas for the movie exam-

ovie(title, year, length, genre, studioName, producerC#)
tarsIn(movieTitle, movieYear, starName)

oVieStar(name, address, gender, birthdate)
ovieExec(name, address, cert#, netWorth)

udio(name, address, presC#)

lake movieTitle, movieYear, and starName the key for StarsIn.

quire the referential integrity constraint that the president of every
dio appear in MovieExec.

equire that no movie length be less than 30 nor greater than 500.

equire that no name appear as both a movie star and movie executive
this constraint need not be maintained in the face of deletions).

quire that no two movie executives have the same address.

se 7.3.2: Show how to alter the schemas of the “battleships” database:

328

Classes(class, type, country, numGuns, bore, displacement)
Ships(name, class, launched)

Battles(name, date)

Qutcomes (ship, battle, result)
to have the following tuple-based constraints.
a) Require that no ship has more than 15 guns.

b) Class and country form a key for relation Classes.

¢) Require the referential integrity constraint that every battle appearing in
Outcomes also appears in Battles.

d) Require the referential integrity constraint that every ship appearing in

Outcomes appears in Ships.

! ¢) Disallow a ship being in battle before it is launched.

7.4 Assertions

The most powerful forms of active elements in SQL are not associated with
particular tuples or components of tuples. These elements, called “triggers”
and “assertions,” are part of the database schema, on a par with tables.

e An assertion is a boolean-valued SQL expression that must be true at all

times.

e A trigger is a series of actions that are associated with certain events, such
as insertions into a particular relation, and that are performed whenever

these events arise.

Assertions are easier for the programmer to use, since they merely require the
programmer to state what must be true. However, triggers are the feature
DBMS'’s typically provide as general-purpose, active elements. The reason is
that it is very hard to implement assertions efficiently. The DBMS must deduce
whether any given database modification could affect the truth of an assertion.
Triggers, on the other hand, tell exactly when the DBMS needs to deal with

them.

7.4.1 Creating Assertions

The SQL standard proposes a simple form of assertion that allows us to enforce
any condition (expression that can follow WHERE). Like other schema elements,
we declare an assertion with a CREATE statement. The form of an assertion is:

CHAPTER 7. CONSTRAINTS AND TRIGGERS

CREATE ASSERTION <assertion-name> CHECK (<condition>)

7.4. ASSERTION

The condition i
must remain true;
be rejected.’ Reca
can be violated un

7.4.2 Using

There is a differer
and the way we w
attributes of that1
such privilege. Ar
in the assertion, t
expression.

Since the conc
results in some w:
write the conditio:
is applied; that is
natively, we migkh
relation and comj
that a sum alway

Example 7.11:
ident of a studio
assertion to the e
worth less than $

MovieExec
Studio(na

The assertion is ¢

CREATE AS
(NOT

)

Figur

1However, reme
constraint until jus
briefly become false

330 CHAPTER 7. CONSTRAINTS AND TRIGGERS

Example 7.12: Here is another example of an assertion. It involves the rela-
tion

Movies(title, year, length, genre, studioName, producerC#)

and says the total length of all movies by a given studio shall not exceed 10,000
minutes.

CREATE ASSERTION SumLength CHECK (10000 >= ALL
(SELECT SUM(length) FROM Movies GROUP BY studioName)

As this constraint involves only the relation Movies, it seemingly could have
been expressed as a tuple-based CHECK constraint in the schema for Movies
rather than as an assertion. That is, we could add to the definition of table
Movies the tuple-based CHECK constraint

CHECK (10000 >= ALL
(SELECT SUM(length) FROM Movies GROUP BY studioName));

Notice that in principle this condition applies to every tuple of table Movies.
However, it does not mention any attributes of the tuple explicitly, and all the
work is done in the subquery.

Also observe that if implemented as a tuple-based constraint, the check
would not be made on deletion of a tuple from the relation Movies. In this
example, that difference causes no harm, since if the constraint was satisfied
before the deletion, then it is surely satisfied after the deletion. However, if the
constraint were a lower bound on total length, rather than an upper bound as
in this example, then we could find the constraint violated had we written it as
a tuple-based check rather than an assertion. O

As a final point, it is possible to drop an assertion. The statement to do so
follows the pattern for any database schema element:

DROP ASSERTION <assertion name>

7.4.3 Exercises for Section 7.4

Exercise 7.4.1: Write the following assertions. The database schema is from
the “PC” example of Exercise 2.4.1:

Product(maker, model, type)

PC(model, speed, ram, hd, price)
Laptop(model, speed, ram, hd, screen, price)
Printer (model, color, type, price)

a) No manufacturer of laptops may also make printers.

7.4. ASSERTIC(

The following
checks, tuple-

Type of

Constrain
Attribute.
based CHE

Tuple-
based CHE

Assertion

b) If a laptoy
have a hig

c¢) If the rels
must appe

d) A manufa
Processor

Exercise 7.4.2
from the battle:

Classe
Ships(
Battle
Qutcomn

a) No class1
!'b) For every
! ¢) No counts

!'d) No ship ¥
more thar

! e) No ship n
ship’s cla

1ves the rel

sducerC#)

exceed 10,0

e written it a

ment to do

Type of
Constraint

Comparison of Constraints

Where
Declared

When
Activated

he following table lists the principal differences among attribute-based
hecks, tuple-based checks, and assertions.

Guaranteed
to Hold?

Attribute-
based CHECK

With
attribute

On insertion
to relation or
attribute update

Not if
subqueries

Tuple-
based CHECK

Element of
relation schema

On insertion
to relation or
tuple update

Not if
subqueries

Assertion

Element of

On any change to

Yes

database schema | any mentioned
relation

If a laptop has a larger hard disk than a PC, then the laptop must also
~ have a higher price than the PC.

If the relation Product mentions a model and its type, then this model
must appear in the relation appropriate to that type.

- A manufacturer of a laptop must also make a PC with at least as great a
processor speed.

rcise 7.4.2: Write the following as assertions. The database schema is
the battleships example of Exercise 2.4.3.

Classes(class, type, country, numGuns, bore, displacement)
Ships(name, class, launched)

Battles(name, date)

Dutcomes (ship, battle, result)

No class may have more than 3 ships.

' For every class, there is a ship with the name of that class.

- No country may have both battleships and battlecruisers.

' No ship with fewer than 9 guns may be in a battle with a ship having
_more than 9 guns that was sunk.

No ship may be launched before the ship that bears the name of the first
ship’s class.

332 CHAPTER 7. CONSTRAINTS AND TRIGGERS k 7.5. TRI(

! Exercise 7.4.3: The assertion of Exercise 7.11 can be written as two tuple- ' Before

based constraints. Show how to do so. that will |
Notice in t
. they appe
7.5 Triggers

a) The
Triggers, sometimes called event-condition-action rules or ECA rules, differ)

from the kinds of constraints discussed previously in three ways. : b) A

uses
1. Triggers are only awakened when certain events, specified by the database

programmer, occur. The sorts of events allowed are usually insert, delete, ¢) ARE
or update to a particular relation. Another kind of event allowed in many ~ , refer
SQL systems is a transaction end. upd:

Once awakened by its triggering event, the trigger tests a condition. If bott

the condition does not hold, then nothing else associated with the trigger ‘ A cl

happens in response to this event. or o

. Tf the condition of the trigger is satisfied, the action associated with the The
trigger is performed by the DBMS. A possible action is to modify the ef-
fects of the event in some way, even aborting the transaction of which the
event is part. However, the action could be any sequence of database op- , The
erations, including operations not connected in any way to the triggering 10).
event.

(line

Each of th
7.5.1 Triggers in SQL | the examj

The SQL trigger statement gives the user a number of different options in the

15 g T O Example
event, condition, and action parts. Here are the principal features.

1. The check of the trigger’s condition and the action of the trigger may be tov

executed either on the state of the database (i.e., the current instances of
all the relations) that exists before the triggering event is itself executed
or on the state that exists after the triggering event is executed.

table. It
trigger is

1)
2)
3)
. Tt is possible to define update events that are limited to a particular 4)

attribute or set of attributes. ' 5)
6)
. The programmer has an option of specifying that the trigger executes , 7

either: 8)
9)
10)

. The condition and action can refer to both old and/or new values of tuples
that were updated in the triggering event.

(a) Once for each modified tuple (a row-level trigger), or

(b) Once for all the tuples that are changed in one SQL statement (a
statement-level trigger; remember that one SQL modification state-
ment can affect many tuples).

TRIGGERS

CREATE TRIGGER FixYearTrigger
BEFORE INSERT ON Movies
REFERENCING

NEW ROW AS NewRow

NEW TABLE AS NewStuff
FOR EACH ROW
WHEN NewRow.year IS NULL
UPDATE NewStuff SET year = 1915;

Figure 7.7: Fixing NULL’s in inserted tuples

he new row being inserted and a table consisting of only that row. Even
the trigger executes once for each inserted tuple [because line (6) declares
gger to be row-level], the condition of line (7) needs to be able to refer
ttribute of the inserted row, while the action of line (8) needs to refer to
in order to describe an update. 0O

Exercises for Section 7.5

e 7.5.1: Write the triggers analogous to Fig. 7.6 for the insertion and
_events on MovieExec.

se 7.5.2: Write the following as triggers. In each case, disallow or
1e modification if it does not satisfy the stated constraint. The database
s from the “PC” example of Exercise 2.4.1:

Product (maker, model, type)

PC(model, speed, ram, hd, price)
Laptop(model, speed, ram, hd, screen, price)
Printer (model, color, type, price)

en inserting a new laptop, check that the model number exists in
duct.

en updating the price of a printer, check that there is no lower priced
ter of the same type.

en inserting a new PC, laptop, or printer, make sure that the model
1ber did not previously appear in any of PC, Laptop, or Printer.

en making any modification to the PC relation, check that the average
e of PC’s for each manufacturer is at least $500.

en updating the hard disk of any PC, check that the updated PC has
east 100 times as much hard disk as RAM.

338 CHAPTER 7. CONSTRAINTS AND TRIGGERS

Exercise 7.5.3: Write the following as triggers. In each case, disallow or
undo the modification if it does not satisfy the stated constraint. The database
schema is from the battleships example of Exercise 2.4.3.

Classes(class, type, country, numGuns, bore, displacement)
Ships(name, class, launched)

Battles(name, date)

Outcomes (ship, battle, result)

a) When a new class is inserted with a displacement less than 20,000 tons,
allow the insertion, but change the displacement to 20,000.

b) When a new class is inserted into Classes, also insert a ship with the
name of that class and a NULL launch date.

When there is an insertion into Ships or an update of the class attribute
of Ships, check that no country has more than 30 ships.

If a tuple is inserted into Outcomes, check that the ship and battle are
listed in Ships and Battles, respectively, and if not, insert tuples into
one or both of these relations, with NULL components where necessary.

Check, under all circumstances that could cause a violation, that no ship
fought in a battle that was at a later date than another battle in which
that ship was sunk.

! Exercise 7.5.4: Write the following as triggers. In each case, disallow or undo
the modification if it does not satisfy the stated constraint. The problems are
based on our running movie example:

Movies(title, year, length, genre, studioName, producerC#)
StarsIn(movieTitle, movieYear, starName)

MovieStar (name, address, gender, birthdate)
MovieExec(name, address, cert#, netWorth)

Studio(name, address, presC#)

You may assume that the desired condition holds before any change to the
database is attempted. Also, prefer to modify the database, even if it means
inserting tuples with NULL or default values, rather than rejecting the attempted
modification.

a) Assure that the average length of all movies made in any year is no more
than 150. -

b) Assure that at all times, any star appearing in StarsIn also appears in
MovieStar.

c) Assure that every movie has at least one male and one female star.

7.6. SUMM!/

d) Assure
presider

e) Assure
more th

7.6 Sul

4 Referer
in some
ing att
we use

4+ Attribu
value o
be chec

4+ Tuple-!
of arel:
to the ¢

4+ Modify
an ALT!

4 Asserts
schema
may in’
the rel:
individ

4 Invokir
to one
only ck
by inse
they h

4 Trigge
(e.g., L
them.
ified se
modifi

7.7 Re

References |;
[1] discusses

UMMARY OF CHAPTER 7

\ssure that at all times every movie executive appears as either a studio
resident, a producer of a-movie, or both.

\ssure that the number of movies made by any studio in any year is no
1ore than 50.

Summary of Chapter 7

eferential-Integrity Constraints: We can declare that a value appearing
in some attribute or set of attributes must also appear in the correspond-
ng attribute(s) of some tuple of the same or another relation. To do so,
ve use a REFERENCES or FOREIGN KEY declaration in the relation schema.

Attribute-Based Check Constraints: We can place a constraint on the
alue of an attribute by adding the keyword CHECK and the condition to
e checked after the declaration of that attribute in its relation schema.

Tuple-Based Check Constraints: We can place a constraint on the tuples
f a relation by adding the keyword CHECK and the condition to be checked
o0 the declaration of the relation itself.

Modifying Constraints: A tuple-based check can be added or deleted with
an ALTER statement for the appropriate table.

Assertions: We can declare an assertion as an element of a database

chema. The declaration gives a condition to be checked. This condition
may involve one or more relations of the database schema, and may involve
the relation as a whole, e.g., with aggregation, as well as conditions about

nuoking the Checks: Assertions are checked whenever there is a change
0 one of the relations involved. Attribute- and tuple-based checks are
nly checked when the attribute or relation to which they apply changes
y insertion or update. Thus, the latter constraints can be violated if
hey have subqueries.

Triggers: The SQL standard includes triggers that specify certain events
e.g., insertion, deletion, or update to a particular relation) that awaken
hem. Once awakened, a condition can be checked, and if true, a spec-
fied sequence of actions (SQL statements such as queries and database
modifications) will be executed.

References for Chapter 7

rences [5] and [4] survey all aspects of active elements in database systems.
iscusses recent thinking regarding active elements in SQL-99 and future

	p318
	p319
	p323
	p324
	p325
	p327
	p328
	p330
	p331
	p332
	p337
	p338
	p339

