344

CREATE VIEW MovieProd(movieTitle, prodName) AS

SELECT title, name
FROM Movies, MovieExec

WHERE producerC# = cert#;
The view is the same, but its columns are headed by attributes movieTitle

and prodName instead of title and name.

8.1.4 Exercises for Section 8.1

Exercise 8.1.1: From the following base tables of our running example

MovieStar (name, address, gender, birthdate)
MovieExec(name, address, cert#, netWorth)
Studio(name, address, presC#)

Construct the following views:

a) A view StudioPres giving the name, address, and certificate number of
all executives who are studio presidents.

b) A view ExecutiveStar giving the name, address, gender, birth date, cer-
tificate number, and net worth of all individuals who are both executives

and stars.

c) A view RichExec giving the name, address, certificate number and net
worth of all executives with a net worth of at least $5,000,000.

Exercise 8.1.2: Write each of the queries below, using one or more of the
views from Exercise 8.1.1 and no base tables.

a) Find the names of those executives who are both studio presidents and

worth at least $5,000,000.

b) Find the names of females who are both stars and executives.

! ¢) Find the names of studio presidents who are also stars and are worth at

least $10,000,000.

8.2 Modifying Views

In limited circumstances it is possible to execute an insertion, deletion, or up-
date to a view. At first, this idea makes no sense at all, since the view does not
exist the way a base table (stored relation) does. What could it mean, say, to
insert a new tuple into a view? Where would the tuple go, and how would the
database system remember that it was supposed to be in the view?

For many views, the answer is simply “you can’t do that.” However, for
sufficiently simple views, called updatable views, it is possible to translate the

CHAPTER 8. VIEWS AND INDEXES

8.2. MODIFYING '

modification of the
the modification can
of” triggers can be t
tables. In that way
view modification is

8.2.1 View R

An extreme modific
may be done wheth
is

DROP VIEW P:

Note that this state
make queries or iss
dropping the view ¢
In contrast,

DROP TABLE

would not only ma
ParamountMovies1
the nonexistent rel

8.2.2 Updats

SQL provides a for
ted. The SQL rul
views that are defi
attributes from on
important technice

o The WHERE ¢

o The FROM cl
relation.

o The list in
every tuple
with NULL v:
to project o1

An insertion on t]
The only nuance
clause of the view

MODIFYING VIEWS

CREATE TRIGGER ParamountInsert
INSTEAD QOF INSERT ON ParamountMovies
REFERENCING NEW ROW AS NewRow

FOR EACH ROW

INSERT INTOQ Movies(title, year, studioName)
VALUES (NewRow.title, NewRow.year, ’Paramount’);

8.2: Trigger to replace an insertion on a view by an insertion on the
ying base table

Exercises for Section 8.2

cise 8.2.1: Which of the views of Exercise 8.1.1 are updatable?
ise 8.2.2: Using the base tables

roduct (maker, model, type)
C(model, speed, ram, hd, price)

e we create the view:

REATE VIEW NewPC AS

ELECT maker, model, speed, ram, hd, price

‘ROM Product, PC

WHERE Product.model = PC.model AND type = ’pc’;

that we have made a check for consistency: that the model number not

pears in the PC relation, but the type attribute of Product indicates
e product is a PC.

ite an instead-of trigger to handle an insertion into this view.
ite an instead-of trigger to handle an update of the speed.

rite an instead-of trigger to handle a deletion of a specified tuple from
s view.

?

8.2.3: Suppose we create the view:

ATE VIEW LongDisneyMovies AS
SELECT title, year, genre FROM Movies
WHERE studioName = ’Disney’ AND length > 120;

ite an instead-of trigger to handle an insertion into this view.

ite an instead-of trigger to handle an update of the genre for a movie
iven by title and year) in this view.

352 CHAPTER 8. VIEWS AND INDEXES

than a year for a movie, then we would prefer to order the attributes as above;
if a year were more likely to be specified, then we would ask for an index on
(year, title). 0O

If we wish to delete the index, we simply use its name in a statement like:

DROP INDEX YearIndex;

8.3.3 Exercises for Section 8.3

Exercise 8.3.1: For our running movies example:

Movies(title, year, length, genre, studioName, producerC#)
StarsIn(movieTitle, movieYear, starName)

MovieExec(name, address, cert#, netWorth)

Studio(name, address, presC#)

Declare indexes on the following attributes or combination of attributes:

a) length.
b) address of Studio.

c) year and genre.

8.4 Selection of Indexes

Choosing which indexes to create requires the database designer to analyze
a trade-off. In practice, this choice is one of the principal factors that influ-
ence whether a database design gives acceptable performance. Two important
factors to consider are:

e The existence of an index on an attribute may speed up greatly the exe-
cution of those queries in which a value, or range of values, is specified for
that attribute, and may speed up joins involving that attribute as well.

e On the other hand, every index built for one or more attributes of some
relation makes insertions, deletions, and updates to that relation more
complex and time-consuming.

8.4.1 A Simple Cost Model

To understand how to choose indexes for a database, we first need to know
where the time is spent answering a query. The details of how relations are
stored will be taken up when we consider DBMS implementation. But for
the moment, let us state that the tuples of a relation are normally distributed

8.4. SELECTION

among many pages
bytes at least, will 1

To examine eve:
main memory. On
tuples on a page th:
page you want is al
that never to be th
disk.

8.4.2 Some U

Often, the most use
There are two reasc

1. Queries in wh
index on the |

2. Since there is
either nothing
be retrieved t
other pages tl

The following exar
involves a join.

Example 8.11: R
of tuples of Movies
this way requires u
each of the pages hc
pages may be too r
have to read each p:
query might be dor

An index on the
Movies tuple for St
tuple — would be 1
number in that tup
quickly find the on
only one page with
might need to read

‘When the index
time spent retrievir
two situations in w

1Pages are usually r
with a paged-memory
into pages.

MATERIALIZED VIEWS

5 Exercises for Section 8.4
rcise 8.4.1: In this problem, we consider indexes for the relation
Ships(name, class, launched)

ur running battleships exercise. Assume:

The relation Ships is stored over 100 pages.

The relation is clustered on class so we expect that only one disk access
is needed to find the ships of a given class.

On average, there are 4 ships of a class, and 20 ships launched in any
given year.

With probability p; the operation on this relation is a query of the form
SELECT * FROM Ships WHERE class = c. ‘

ith probability ps the operation on this relation is a query of the form
ELECT * FROM Ships WHERE launched = y.

ith probability ps the operation on this relation is a query of the form
ELECT * FROM Ships WHERE name = n.

ith probability 1 — p; — ps — p3 the operation on this relation is an
insertion of a new tuple into Ships.

n also make the assumptions about accessing indexes and finding empty
or insertions that were made in Example 8.14.
sider the creation of indexes on name, class, and launched. For each
ation of indexes, estimate the average cost of an operation. As a function
5, and ps, what is the best choice of indexes?

ise 8.4.2: Suppose that the relation StarsIn discussed in Example 8.14
100 pages rather than 10, but all other assumptions of that example
d to hold. Give formulas in terms of p; and ps to measure the cost of

@1 and @ and insertion I, under the four combinations of index/no in-

ussed there.

Materialized Views

describes how a new relation can be constructed from base tables by
a query on those tables. Until now, we have thought of views only as
escriptions of relations. However, if a view is used frequently enough,
even be efficient to materialize it; that is, to maintain its value at all
with maintaining indexes, there is a cost involved in maintaining a
zed view, since we must recompute parts of the materialized view each
of the underlying base tables changes.

MATERIALIZED VIEWS

Have a list of relations in the FROM clause that is a subset of those in the
FROM clause of at least one query of the workload.

Have a WHERE clause that is the AND of conditions that each appear in at
east.one query.

Have a list of attributes in the SELECT clause that is sufficient to be used
n at least one query.

evaluate the benefit of a materialized view, let the query optimizer esti-
the running times of the queries, both with and without the materialized
Of course, the optimizer must be designed to take advantage of materi-
views; all modern optimizers know how to exploit indexes, but not all
ploit materialized views. Section 8.5.3 was an example of the reasoning
uld be necessary for a query optimizer to perform, if it were to take
bage of such views.
ere is another issue that comes up when we consider automatic choice of
lized views, but that did not surface for indexes. An index on a relation
erally smaller than the relation itself, and all indexes on one relation
oughly the same amount of space. However, materialized views can vary
lly in size, and some — those involving joins — can be very much larger
he relation or relations on which they are built. Thus, we may need to
‘the definition of the “benefit” of a materialized view. For example, we
ant to define the benefit to be the improvement in average running time
uery workload divided by the amount of space the view occupies.

Exercises for Section 8.5

ise 8.5.1: Suppose the view NewPC of Exercise 8.2.2 were a materialized
hat modifications to the base tables Product and PC would require a
tion of the materialized view? How would you implement those modi-
ns incrementally?

e 8.5.2: Complete Example 8.15 by considering updates to either of
tables.

e 8.5.3: This exercise explores materialized views that are based on
ion of data. Suppose we build a materialized view on the base tables

asses(class, type, country, numGuns, bore, displacement)
ips(name, class, launched)

 running battleships exercise, as follows:

EATE MATERIALIZED VIEW ShipStats AS

 SELECT country, AVG(displacement), COUNT (%)
FROM Classes, Ships
WHERE Classes.class = Ships.class
GROUP BY country;

366 CHAPTER 8. VIEWS AND INDEXES , 8.7. REFER

What modifications to the base tables Classes and Ships would require a , 4+ Mainta:
modification of the materialized view? How would you implement those modi- make tl
fications incrementally? ' affected
it is po
! Exercise 8.5.4: In Section 8.5.3 we gave conditions under which a materialized , recomp
view of simple form could be used in the execution of a query of similar form.
For the view of Example 8.15, describe all the queries of that form, for which
this view could be used.

Rewriti
a query
if the qu
sign too

creating
8.6 Summary of Chapter 8 ically.

4 Virtual Views: A virtual view is a definition of how one relation (the view)
may be constructed logically from tables stored in the database or other 8.7 Rel
views. Views may be queried as if they were stored relations. The query '
processor modifies queries about a view so the query is instead about the The technolog
base tables that are used to define the view. [3] introduces

)]))) Two proje
Updatable Views: Some virtual views on a single relation are updatable, crosoft and S

meaning that we can insert into, delete from, and update the view as if ~ on-line at [8].
it were a stored table. These operations are translated into equivalent

°) ! AllB A survey «
modifications to the base table over which the view is defined.

project is desc
Reference

Instead-Of Triggers: SQL allows a special type of trigger to apply to a and related st

virtual view. When a modification to the view is called for, the instead- ,
of trigger turns the modification into operations on base tables that are 1. S. Agra
specified in the trigger. , material

Large D
Indexes: While not part of the SQL standard, commercial SQL systems

allow the declaration of indexes on attributes; these indexes speed up . - A Gupt
certain queries or modifications that involve specification of a value, or ’ tations,
range of values, for the indexed attribute(s). V. Hariz

cubes ef

Choosing Indezes: While indexes speed up queries, they slow down data- Data (1€

base modifications, since the indexes on the modified relation must also
be modified. Thus, the choice of indexes is a complex problem, depending . S.S. Lig
on the actual mix of queries and modifications performed on the database. with DB

Automatic Index Selection: Some DBMS’s offer tools that choose indexes " - S. S. Lig
for a database automatically. They examine the typical queries and mod- Morgan-
ifications performed on the database and evaluate the cost trade-offs for . G. Lohn

different indexes that might be created. visor: ar

Materialized Views: Instead of treating a view as a query on base tables, Stateent]

we can use the query as a definition of an additional stored relation, whose . D. Lome
value is a function of the values of the base tables. data war

	p344
	p349
	p352
	p359
	p365
	p366

