390 CHAPTER 9. SQL IN A SERVER ENVIRONMENT

9.3.10 Exercises for Section 9.3

Exercise 9.3.1: Write the following embedded SQL queries, based on the
database schema

Product (maker, model, type)

PC(model, speed, ram, hd, price)
Laptop(model, speed, ram, hd, screen, price)
Printer (model, color, type, price)

of Exercise 2.4.1. You may use any host language with which you are familiar,
and details of host-language programming may be replaced by clear comments
if you wish.

a) Ask the user for the maximum price and minimum values of the speed,
RAM, hard disk, and screen size that they will accept. Find all the laptops
that satisfy these requirements. Print their specifications (all attributes
of Laptop) and their manufacturer.

b) Ask the user for a manufacturer, model number, speed, RAM, hard-disk
size, and price of a new PC. Check that there is no PC with that model
number. Print a warning if so, and otherwise insert the information into
tables Product and PC.

c) Ask the user for a price and find the PC whose price is closest to the
desired price. Print the maker, model number, and RAM of the PC.

Ask the user for a manufacturer. Print the specifications of all products
by that manufacturer. That is, print the model number, product-type,
and all the attributes of whichever relation is appropriate for that type.

Ask the user for a “budget” (total price of a PC and printer), and a
minimum speed of the PC. Find the cheapest “system” (PC plus printer)
that is within the budget and minimum speed, but make the printer a
color printer if possible. Print the model numbers for the chosen system.

Exercise 9.3.2: Write the following embedded SQL queries, based on the
database schema

Classes(class, type, country, numGuns, bore, displacement)
Ships(name, class, launched)

Battles(name, date)

Outcomes(ship, battle, result)

of Exercise 2.4.3.

a) The firepower of a ship is roughly proportional to the number of guns
times the cube of the bore of the guns. Find the class with the largest
firepower.

9.4. STORED

b) Ask the u
for a tuple
of that clz
the first n.
gathered i

Examine t
in battle ]
error foun
of the bat

Ask the v
involved 1
the count:

9.4 Stor

In this section,
or just PSM). 1
SQL:2003. It a
guage and to st
use these proce
tations that can
own extension ¢
which captures
understand the
PSM extension
bibliographic n

9.4.1 Cres

In PSM, you d
definitions, terr
rations. The m

This form shou
sists of a proce
local-variable d
procedure. A fi
word FUNCTION
That is, the ele




CHAPTER 9. SQL IN A SERVER ENVIRONMENT
1) CREATE FUNCTION GetYear(t VARCHAR(255)) RETURNS INTEGER

2) DECLARE Not_Found CONDITION FOR SQLSTATE ’02000’;
3) DECLARE Too_Many CONDITION FOR SQLSTATE ’210007;

BEGIN

4) DECLARE EXIT HANDLER FOR Not_Found, Too_Many

5) RETURN NULL;

6) RETURN (SELECT year FROM Movies WHERE title = t);
END;

Figure 9.18: Handling exceptions in which a single-row select returns other than
one tuple

becomes the return-value. Also, since the handler is an EXIT handler, control
next passes to the point after the END. Since that point is the end of the function,
GetYear returns at that time, with the return-value NULL. O

9.4.8 Using PSM Functions and Procedures

. As we mentioned in Section 9.4.2, we can call a PSM procedure anywhere SQL
statements can appear, e.g., as embedded SQL, from PSM code itself, or from
SQL issued to the generic interface. We invoke a procedure by preceding it
by the keyword CALL. In addition, a PSM function can be used as part of an
expression, e.g., in a WHERE clause. Here is an example of how a function can
be used within an expression.

Example 9.17: Suppose that our schema includes a module with the function
GetYear of Fig. 9.18. Imagine that we are sitting at the generic interface, and
we want to enter the fact that Denzel Washington was a star of Remember the
Titans. However, we forget the year in which that movie was made. As long
as there was only one movie of that name, and it is in the Movies relation, we

-don’t have to look it up in a preliminary query. Rather, we can issue to the
generic SQL interface the following insertion:

INSERT INTO StarsIn(movieTitle, movieYear, starName)
VALUES (’Remember the Titans’, GetYear(’Remember the Titans’),
’Denzel Washington’);

Since GetYear returns NULL if there is not a unique movie by the name of
Remember the Titans, it is possible that this insertion will have NULL in the
middle component. O

9.4.9 Exercises for Séction 9.4

Exercise 9.4.1: Using our running movie database:

9.4. STORED P

Movies (ti-
StarsIn(m
MovieStar
MovieExec
Studio (na:

write PSM proce:

a) Given the n
movies from

b) Given the 1

¢) Given a nar
a movie ste
both, and O

d) Given an a
there is exa

! e) Given a sta
120 minute
return the ;

1f) Given a st
shortest mo
there is no
is no “secor

Exercise 9.4.2:
the database sche

Product (m:
PC(model,

Laptop (mo
Printer (m

of Exercise 2.4.1.

a) Take a mak
type of pro

b) Take a pric
whose price

! ¢) Take model
and insert -
ready a PC
a key const;
to 225000’
model num]



/TRONMEN

rns other th

ndler, cont
f the functic

h the funct
interface,

STORED PROCEDURES ' 403

Movies(title, year, length, genre, studioName, producerC#)
StarsIn(movieTitle, movieYear, starName)

MovieStar(name, address, gender, birthdate)
MovieExec(name, address, cert#, netWorth)

Studio (name, address, presC#)

PSM procedures or functions to perform the following tasks:

Given the name of a star, delete them from MovieStar and delete all their
movies from StarsIn and Movies.

Given the name of a movie studio, produce the address of its president.

Given a name and address, return 1 if the person is an executive but not
a movie star, 2 if the person is a movie star but not an executive, 3 if
both, and 0 if neither.

Given an address, find the name of the unique star with that address if
there is exactly one, and return NULL if there is none or more than one.

Given a star name, find the most recent (highest year) movie of more than
- 120 minutes length in which they appeared. If there is no such movie,
return the year 0.

 Given a studio name, assign to output parameters the titles of the two

~ shortest movies by that studio. Assign NULL to one or both parameters if
there is no such movie (e.g., if there is only one movie by a studio, there
is no “second-longest”).

reise 9.4.2: Write the following PSM functions or procedures, based on
database schema

 Product (maker, model, type)

PC(model, speed, ram, hd, price)

Laptop (model, speed, ram, hd, screen, price)
_ Printer(model, color, type, price)

| Take a maker and model as arguments, and return the price of whatever
 type of product that model is.

"’Ta,ke a price as argument and return the model number of the laptop
whose price is closest.

Take model, speed, ram, hard-disk, and price information as arguments,
and insert this information into the relation PC. However, if there is al-
ready a PC with that model number (tell by assuming that violation of
‘a’key constraint on insertion will raise an exception with SQLSTATE equal
- to 725000°), then keep adding 1 to the model number until you find a
‘model number that is not already a PC model number.




404 CHAPTER 9. SQL IN A SERVER ENVIRONMENT

! d) Given a price, produce the number of PC’s, the number of laptops, and
the number of printers selling for less than that price.

Exercise 9.4.3: Write the following PSM functions or procedures, based on
the database schema

Classes(class, type, country, numGuns, bore, displacement)
Ships(name, class, launched)

Battles(name, date)

Outcomes (ship, battle, result)

of Exercise 2.4.3.

a) Take as arguments a new class name, type, country, number of guns, bore,
and displacement. Add this information to Classes and also add the ship
with the class name to Ships.

The firepower of a ship is roughly proportional to the number of guns
times the cube of the bore. Given a class, find its firepower.

Given a ship name, determine if the ship was in a battle with a date before
the ship was launched. If so, set the date of the battle and the date the
ship was launched to —1.

Given the name of a battle, produce the two countries whose ships were
involved in the battle. If there are more or fewer than two countries
involved, produce NULL for both countries.

! Exercise 9.4.4: In Fig. 9.15, we used a tricky formula for computing the
variance of a sequence of numbers z1,Z2,...,%Zn. Recall that the variance is
the average square of the deviation of these numbers from their mean. That is,
the variance is (3.7, (z; — 7)?)/n, where the mean T is (}_;_, ;)/n. Prove
that the formula for the variance used in Fig. 9.15, which is

n

(Z(wz)z)/n - ((Xn: Ll?i)/n)2

i=1 =1

yields the same value.

9.5 Using a Call-Level Interface

When using a call-level interface (CLI), we write ordinary host-language code,
and we use a library of functions that allow us to connect to and access a
database, passing SQL statements to that database. The differences between
this approach and embedded SQL programming are, in one sense, cosmetic,
since the preprocessor replaces embedded SQL by calls to library functions
much like the functions in the standard SQL/CLI.

9.5. USINC

We shal
cover the stz
Connectivit;
database ac
embed data

9.5.1 In

A program
the header
definitions,
create and

1. Envi
progr

Conr

progy
ment

State
recor
an ir
same
state

. Desc
rame
sets
attri
impl
CLL

Each of t.
which is a
handles o
SQLHDBC,
as pointe
types wit
are provi
We sh
ever, (ha
function

Here, the



412 CHAPTER 9. SQL IN A SERVER ENVIRONMENT

in a loop, then each time around the loop, a new tuple, with a new name and
address for a studio, is inserted into Studio. O

9.5.5 Exercises for Section 9.5

Exercise 9.5.1: Repeat the problems of Exercise 9.3.1, but write the code in
C with CLI calls.

Exercise 9.5.2: Repeat the problems of Exercise 9.3.2, but write the code in
C with CLI calls.

9.6 JDBC

Java Database Connectivity, or JDBC, is a facility similar to CLI for allowing
Java programs to access SQL databases. The concepts resemble those of CLI,
although Java’s object-oriented flavor is evident in JDBC.

9.6.1 Introduction to JDBC
The first steps we must take to use JDBC are:

1. include the line:
import java.sql.*;

to make the JDBC classes available to your Java program.

_ Load a “driver” for the database system we shall use. The driver we need
depends on which DBMS is available to us, but we load the needed driver
with the statement:

Class.forName (<driver name>) ;
For example, to get the driver for a MySQL database, execute:
Class.forName("com.mysql.jdbc.Driver");
The effect is that a class called DriverManager is available. This class is

analogous in many ways to the environment whose handle we get as the
first step in using CLL

. Establish a connection to the database. A variable of class Connection is
created if we apply the method getConnection to DriverManager.

The Java statement to establish a connection looks like:

9.6. JDBC

Conne

That is, the
database to
returns an o

Example 9
getConnect
database, th

A JDBC
serves the sz
like myCon, -
objects, bin
and examin

9.6.2 C

There are tx
statements:

1. creat
associ
thoug
conne

. prepa
gumes
analo
CLIs
then :

There a
methods ak
argument.
that are qu
Note that t
terms an
inserts, an
“execute” 1




416 CHAPTER 9. SQL IN A SERVER ENVIRONMENT

9.6.4 Parameter Passing

As in CLI, we can use a question-mark in place of a portion of a query, and then
bind values to those parameters. To do so in JDBC, we need to create a prepared
statement, and we need to apply to that PreparedStatement object methods
such as setString(i, v) or setInt (i, v) that bind the value v, which must
be of the appropriate type for the method, to the ith parameter in the query.

Example 9.26: Let us mimic the CLI code in Example 9.21, where we pre-
pared a statement to insert a new studio into relation Studio, with parameters
for the name and address of that studio. The Java code to prepare this state-
ment, set its parameters, and execute it is shown in Fig. 9.22. We continue to
assume that connection object myCon is available to us.

1) PreparedStatement studioStat = myCon.prepareStatement (
2) "INSERT INTO Studio(name, address) VALUES(?, 7)");
/* get values for variables studioName and studioAddr
from the user */
3) studioStat.setString(l, studioName);
4) studioStat.setString(2, studioAddr);
5) studioStat.executeUpdate();

Figure 9.22: Setting and using parameters in JDBC

In lines (1) and (2), we create and prepare the insertion statement. It has
parameters for each of the values to be inserted. After line (2), we could begin
a loop in which we repeatedly ask the user for a studio name and address,
and place these strings in the variables studioName and studioAddr. This
assignment is not shown, but represented by a comment. Lines (3) and (4) set
the first and second parameters to the strings that are the current values of
studioName and studioAddr, respectively. Finally, at line (5), we execute the
insertion statement with the current values of its parameters. After line (5), we
could go around the loop again, beginning with the steps represented by the
comment. O

9.6.5 Exercises for Section 9.6

Exercise 9.6.1: Repeat Exercise 9.3.1, but write the code in Java using JDBC.

Exercise 9.6.2: Repeat Exercise 9.3.2, but write the code in Java using JDBC.

9.7 PHP

PHP is a scripting language for helping to create HTML Web pages. It provides
support for database operations through an available library, much as JDBC

Originally,
cently, it is
sor” in the

Not Unix”).

does. In this
database opere

9.7.1 PHI

All PHP code
that text is P

Many aspe
will be familis
explicitly. Ho
should be awa

Variables

Variables are t
$.

Often, a v
case certain fu
variable. The
Java or C++.

Strings

String values i
there is an img
literally, just i
it, any variabl

Example 9.2

$foo =
$x = ¢




422 CHAPTER 9. SQL IN A SERVER ENVIRONMENT 9.9. REFEREN(

9.7.8 Exercises for Section 9.7 4 Dynamic St
. . . . language pr
Exercise 9.7.1: Repeat Exercise 9.3.1, but write the code using PHP. interpreted

Exercise 9.7.2: Repeat Exercise 9.3.2, but write the code using PHP. 4 Persistent .

functions a
! Exercise 9.7.3: In Example 9.31 we exploited the feature of PHP that strings language tk
in double-quotes have variables expanded. How essential is this feature? Could ments.
we have done something analogous in JDBC? If so, how? o The Call-L
SQL/CLI c
9.8 Summary of Chapter 9 :‘;Ife i‘giec
4 Three-Tier Architectures: Large database installations that support large- 4 JDBC': Jax
scale user interactions over the Web commonly use three tiers of processes: gous to CL
web servers, application servers, and database servers. There can be many
processes active at each tier, and these processes can be at one processor + PHP: AI_lO
or distributed over many processors. PHP. 'fhl's
pages to in
4 Client-Server Systems in the SQL Standard: The standard talks of SQL
clients connecting to SQL servers, creating a connection (link between the 9.9 Refe:
two processes) and a session (sequence of operations). The code executed :
during the session comes from a module, and the execution of the module The PSM stanc
is called a SQL agent. Oracle’s version
4 The Database Environment: An installation using a SQL DBMS creates SQL Server has
a SQL environment. Within the environment, database elements such as [1]- .
relations are grouped into (database) schemas, catalogs, and clusters. A [3] is a popu
catalog is a collection of schemas, and a cluster is the largest collection of developed by on
elements that one user may see. 1. D. Bradst
” Windows,
4 Impedance Mismatch: The data model of SQL is quite different from the
data models of conventional host languages. Thus, information passes 2. Y.-M. Ch:
between SQL and the host language through shared variables that can http://i
represent components of tuples in the SQL portion of the program. 3. M. Fisher
4 Embedded SQL: Instead of using a generic query interface to express SQL Prentice-
queries and modifications, it is often more effective to write programs 4. 1SO/IEC
that embed SQL queries in a conventional host language. A preprocessor
converts the embedded SQL statements into suitable function calls of the 5. J. Melton
host language. . to SQL/F
4 Cursors: A cursor is a SQL variable that indicates one of the tuples of 6. Microsoft
a relation. Connection between the host language and SQL is facilitated http://m
by having the cursor range over each tuple of the relation, while the 7 K. Tatroe
components of the current tuple are retrieved into shared variables and Media, C:

processed using the host language.



	p390
	p402
	p403
	p404
	p412
	p416
	p422



