436 CHAPTER 10. ADVANCED TOPICS IN RELATIONAL DATABASES |

(b) After step (3)

Figure 10.5: Revoking a grant option leaves the underlying privilege

(a) After step (2)

10.1.7 Exercises for Section 10.1

Exercise 10.1.1: Indicate what privileges are needed to execute the following
queries. In each case, mention the most specific privileges as well as general

privileges that are sufficient.

a) The tuple-based check of Fig. 7.3.

b) The assertion of Example 7.11.

¢) The query of Fig. 6.5.

d) The query of Fig. 6.7.

e) The insertion of Fig. 6.15.

f) The deletion of Example 6.37.

g) The update of Example 6.39.

Exercise 10.1.2: Show the grant diagrams after steps (4) through (6) of the
sequence of actions listed in Fig. 10.6. Assume A is the owner of the relation

to which privilege p refers.

Step

Action

Sy UL W =

Figufe 10.6: Sequence of actions for Exercise 10.1.2

Exercise 10.1.3: Show the grant diagrams after steps (5) and (6) of the se-
quence of actions listed in Fig. 10.7. Assume A is the owner of the relation to
which privilege p refers.

e QE Qe

GRANT p TO C WITH GRANT OPTION
GRANT p TO D
GRANT p TO E WITH GRANT OPTION

GRANT p TO B, C, D WITH GRANT OPTION

REVOKE p FROM E CASCADE
REVOKE p FROM D CASCADE

10.2. RECURSIO!I

Step

O Or o W RO
E SRR R o

Figﬁrc

Exercise 10.1.4:
_suming A is the ow

Step

W N =

10.2 Recur

The SQL-99 stand
Although this feat
DBMS is expected
does implement the

10.2.1 Defini

The WITH statemen
r not. To define a
tatement itself. A

WITH

That is, one define
query. The tempor
he WITH statement
More generally,
heir definitions by
eral defined relatio;

 RECURSION IN SQL

Step By Action
GRANT p TO D, E WITH GRANT OPTION
GRANT p TO B WITH GRANT OPTION
GRANT p TO C WITH GRANT OPTION
GRANT p TO B
GRANT p TO C WITH GRANT OPTION
REVOKE GRANT OPTION FOR p FROM E CASCADE

Figure 10.7: Sequence of actions for Exercise 10.1.3

ise 10.1.4: Show the final grant diagram after the following steps, as-
A is the owner of the relation to which privilege p refers.

Step By Action
1 A GRANT p TO B WITH GRANT OPTION
2 B GRANT p TO B WITH GRANT OPTION
3 A REVOKE p FROM B CASCADE

- Recursion in SQL

QL-99 standard includes provision for recursive definitions of queries.
gh this feature is not part of the “core” SQL-99 standard that every
is expected to implement, at least one major system — IBM’s DB2 —
iplement the SQL-99 proposal, which we describe in this section.

Defining Recursive Relations in SQL

TH statement in SQL allows us to define temporary relations, recursive
o define a recursive relation, the relation can be used within the WITH
nt itself. A simple form of the WITH statement is:

WITH R AS <definition of R> <query involving R>

one defines a temporary relation named R, and then uses R in some
The temporary relation is not available outside the query that is part of
H statement.
generally, one can define several relations after the WITH, separating
finitions by commas. Any of these definitions may be recursive. Sev-
ned relations may be mutually recursive; that is, each may be defined
of some of the other relations, optionally including itself. However,
tion that is involved in a recursion must be preceded by the keyword
[VE. Thus, a more general form of WITH statement is shown in Fig. 10.8.

e 10.8: Many examples of the use of recursion can be found in a study
n a graph. Figure 10.9 shows a graph representing some flights of two

' ECURSION IN SQL

| Round | P Q

1) {(12), (34)} {NULL}
2) | {(12),(34),NULL} | {(46)}
3) | {(12),(34), (46)} | {(46)}
4) | {(12),(34), (46)} | {(92)}
5) | {(12),(34),(92)} | {(92)}
6) | {(12),(34),(92)} [{(138)}

igure 10.14: Iterative calculation for a nonmonotone aggregation

e same as R, and @ is {NULL}, since the old, empty value of P is used
7).

he second round, the union of lines (3) through (5) is the set
R U {NULL} = {(12), (34), NULL}

set becomes the new value of P. The old value of P was {(12), (34)},
e second round @ = {(46)}. That is, 46 is the sum of 12 and 34.
he third round, we get P = {(12), (34), (46)} at lines (2) through (5).
e old value of P, {(12), (34),NULL}, Q is defined by lines (6) and (7) to
} again. Remember that NULL is ignored in a sum.
he fourth round, P has the same value, {(12),(34), (46)}, but Q gets
e {(92)}, since 12+34+46=92. Notice that Q has lost the tuple (46),
L it gained the tuple (92). That is, adding the tuple (46) to P has
. tuple (by coincidence the same tuple) to be deleted from @. That
is the nonmonotonicity that SQL prohibits in recursive definitions,
ng that the query of Fig. 10.13 is illegal. In general, at the 2ith round,

onsist of the tuples (12), (34), and (467 — 46), while Q consists only of
e (46i). O

Exercises for Section 10.2
e 10.2.1: The relation

ights(airline, frm, to, departs, arrives)

ample 10.8 has arrival- and departure-time information that we did not

Suppose we are interested not only in whether it is possible to reach
from another, but whether the Jjourney has reasonable connections.
when using more than one flight, each flight must arrive at least an
ore the next flight departs. You may assume that no journey takes
r more than one day, so it is not necessary to worry about arrival close
ght followed by a departure early in the morning.

ite the recursion in SQL.

444 CHAPTER 10. ADVANCED TOPICS IN RELATIONAL DATABASES

b) Write this recursion in Datalog.

! Exercise 10.2.2: In Example 10.8 we used frm as an attribute name. Why
did we not use the more obvious name from?

Exercise 10.2.3: Suppose we have a relation
Sequellf (movie, sequel)

that gives the immediate sequels of a movie, of which there can be more than
one. We want to define a recursive relation FollowOn whose pairs (z,y) are
movies such that y was either a sequel of z, a sequel of a sequel, or so on.

a) Write the definition of FollowOn as a SQL recursion.
b) Write the definition of FollowOn as recursive Datalog rules.

c) Write a recursive SQL query that returns the set of pairs (z,v) such that
movie y is a follow-on to movie z, but is not a sequel of z.

Write a recursive SQL query that returns the set of pairs (z,y) meaning
that y is a follow-on of z, but is neither a sequel nor a sequel of a sequel.

Write a recursive SQL query that returns the set of pairs (z,y) such that
movie y is a follow-on of z but y has at most one follow-on.

Write a recursive SQL query that returns the set of movies z that have
at least two follow-ons. Note that both could be sequels, rather than one
being a sequel and the other a sequel of a sequel.

Exercise 10.2.4: Suppose we have a relation
Rel(class, rclass, mult)

that describes how one ODL class is related to other classes. Specifically, this
relation has tuple (c,d,m) if there is a relation from class ¢ to class d. This
relation is multivalued if m = ’multi’ and it is single-valued if m = ’single’.
It is possible to view Rel as defining a graph whose nodes are classes and in
which there is an arc from ¢ to d labeled m if and only if (¢,d,m) is a tuple
of Rel. Write a recursive SQL query that produces the set of pairs (c,d) such
that:

a) There is a path from class ¢ to class d in the graph described above.
b) There is a path from c to d along which every arc is labeled multi.

!'c¢) There is a path from ¢ to d with at least one arc labeled single.

d) There is a path from ¢ to d but no path along which all arcs are labeled
multi.

10.3. THE

!'e) There
multi

f) There
labele

10.3 ~

The relatio:
important g
extended pe
world. Obj
never succe

_lational DF

incorporate
proposals.
are now cal

This se
important ¢
relational e
Section 10.
tions — in ¢
in Section 1
with the pu

10.3.1 J

While the 1
been extenc
as:

1. Struc
attrib
types
bags,
which
tuple

. Meth
progr.
. Ident
object
have

that 1
identi

n be more
pairs (z,y
1, or so on

es.

(

.

z,y) such 1

s (z,y) mear
quel of a seq

(z,y) such
on.

ies x that
rather tha

Specifically, ,:

pairs (c,d) -

ibed abov
led multi
single.

arcs are lab

THE OBJECT-RELATIONAL MODEL 445

) There is a path from ¢ to d along which arc labels alternate single and
multi. i

) There are paths from ¢ to d and from d to ¢ along which every arc is
labeled multi.

0.3 The Object-Relational Model

: relational model and the object-oriented model typified by ODL are two
ortant points in a spectrum of options that could underlie a DBMS. For an
ended period, the relational model was dominant in the commercial DBMS
orld. Object-oriented DBMS’s made limited inroads during the 1990’s, but
er succeeded in winning significant market share from the vendors of re-
onal DBMS’s. Rather, the vendors of relational systems have moved to
rporate many of the ideas found in ODL or other object-oriented-database
posals. As a result, many DBMS products that used to be called “relational”
now called “object-relational.”
‘This section extends the abstract relational model to incorporate several
ortant object-relational ideas. It is followed by sections that cover object-
tional extensions of SQL. We introduce the concept of object-relations in
ion 10.3.1, then discuss one of its earliest embodiments — nested rela-
s — in Section 10.3.2. ODL-like references for object-relations are discussed
ection 10.3.3, and in Section 10.3.4 we compare the object-relational model
h the pure object-oriented approach.

3.1 From Relations to Object-Relations

ile the relation remains the fundamental concept, the relational model has
n extended to the object-relational model by incorporation of features such

Structured types for attributes. Instead of allowing only atomic types for
attributes, object-relational systems support a type system like ODL’s:
~ types built from atomic types and type constructors for structs, sets, and
_ bags, for instance. Especially important is a type that is a bag of structs,
__which is essentially a relation. That is, a value of one component of a
tuple can be an entire relation, called a “nested relation.”

. Methods. These are similar to methods in ODL or any object-oriented
. programming system.

. Identifiers for tuples. In object-relational systems, tuples play the role of
~ objects. It therefore becomes useful in some situations for each tuple to
~ have a unique ID that distinguishes it from other tuples, even from tuples
that have the same values in all components. This ID, like the object-
identifier assumed in ODL, is generally invisible to the user, although

450 CHAPTER 10. ADVANCED TOPICS IN RELATIONAL DATABASES

Backwards Compatibility

With little difference in essential features of the two models, it is interesting to
consider why object-relational systems have dominated the pure object-oriented
systems in the marketplace. The reason, we believe, is as follows. As relational
DBMS’s evolved into object-relational DBMS’s, the vendors were careful to
maintain backwards compatibility. That is, newer versions of the system would
still run the old code and accept the same schemas, should the user not care
to adopt any of the object-oriented features. On the other hand, migration
to a pure object-oriented DBMS would require the installations to rewrite and
reorganize extensively. Thus, whatever competitive advantage could be argued
for object-oriented database systems was insufficient to motivate many to make
the switch.

10.3.5 Exercises for Section 10.3

Exercise 10.3.1: Using the notation developed for nested relations and re-
lations with references, give one or more relation schemas that represent the
following information. In each case, you may exercise some discretion regard-
ing what attributes of a relation are included, but try to keep close to the
attributes found in our running movie example. Also, indicate whether your
schemas exhibit redundancy, and if so, what could be done to avoid it.

a) Movies with their studio, their stars, and all the usual attributes of these.

b) Movies, with the usual attributes plus all their stars and the usual infor-
mation about the stars.

! ¢) Studios, all the movies made by that studio, and all the stars of each
movie, including all the usual attributes of studios, movies, and stars.

Exercise 10.3.2: Render the players, teams, and fans of Exercise 4.1.3 in the
object-relational model.

Exercise 10.3.3: Render the genealogy of Exercise 4.1.6 in the object-rela-
tional model.

Exercise 10.3.4: Represent the banking information of Exercise 4.1.1 in the
object-relational model developed in this section. Make sure that it is easy,
given the tuple for a customer, to find their account(s) and also easy, given the
tuple for an account to find the customer(s) that hold that account. Also, try
to avoid redundancy.

Exercise 10.3.5: If the data of Exercise 10.3.4 were modified so that an ac-
count could be held by only one customer [as in Exercise 4.1.2(a)], how could
your answer to Exercise 10.3.4 be simplified?

10.4. USER-DI

10.4 Use

We now turn to
tures that we say
model into the o
‘We find UDT’s -

1. AUDT eca
2. A UDT eca

10.4.1 Defi

The SQL-99 sta;
The simplest is

renames a prim
caused by accide
pared or interch
An example sho

Example 10.1:¢

_ of type INTEGER
_ presC# of Studi
 presCi#, and we

store it in a tup
make sense to c
executive, or to
cert# attribute

If we create t

CREATE TY
CREATE TY

then we can de
INTEGER in thei
to be of type Le
relational DBMX

~ the other, or to

A more powe
laration in ODL
with a user-defir
tion; that is, ma
different keys an
ships as propert;

OPERATIONS ON OBJECT-RELATIONAL DATA

4.7 Exercises for Section 10.4

cise 10.4.1: For our running movies example, choose type names for the
butes of each of the relations. Give attributes the same UDT if their values
reasonably be compared or exchanged, and give them different UDT’s if
should not have their values compared or exchanged.

cise 10.4.2: Write type declarations for the following types:

NameType, with components for first, middle, and last names and a title.

PersonType, with a name of the person and references to the persons that
are their mother and father. You must use the type from part (a) in your
declaration.

MarriageType, with the date of the marriage and references to the hus-

cise 10.4.3: Redesign our running battleships database schema of Exer-
4.3 to use type declarations and reference attributes where appropriate.

for many-one relationships and try to represent them using an attribute
reference type.

se 10.4.4: Redesign our running products database schema of Exer-
4.1 to use type declarations and reference attributes where appropriate.

cular, in the relations PC, Laptop, and Printer make the model at-
¢ be a reference to the Product tuple for that model.

se 10.4.5: In Exercise 10.4.4 we suggested that model numbers in the
PC, Laptop, and Printer could be references to tuples of the Product

s it also possible to make the model attribute in Product a reference to
ple in the relation for that type of product? Why or why not?

Operations on Object-Relational Data

propriate SQL operations from previous chapters apply to tables that are
~with a UDT or that have attributes whose type is a UDT. There are
e entirely new operations we can use, such as reference-following. How-
me familiar operations, especially those that access or modify columns
ype is a UDT, involve new syntax.

Following References

-« is a value of type REF(T'). Then z refers to some tuple ¢ of type T'.
obtain tuple ¢ itself, or components of ¢, by two means:

5. OPERATIONS ON OBJECT-RELATIONAL DATA

CREATE ORDERING FOR AddressType
ORDEREN& FULL BY RELATIVE WITH AddrLEG;

The function AddrLEG is shown in Fig. 10.23. Notice that if we reach line (7),

ust be that the two city components are the same, so we compare the
eet components. Likewise, if we reach line (9), the only remaining possi-
y is that the cities are the same and the first street precedes the second
abetically. O

1) CREATE FUNCTION AddrLEG(
2) x1 AddressType,

3) x2 AddressType

4)) RETURNS INTEGER

IF xl.city() < x2.city() THEN RETURN(-1)

ELSEIF x1.city() > x2.city() THEN RETURN(1)
ELSEIF x1.street() < x2.street() THEN RETURN(-1)
ELSEIF x1.street() = x2.street() THEN RETURN(0)
ELSE RETURN(1)

END IF;

Figure 10.23: A comparison function for address objects

practice, commercial DBMS’s each have their own way of allowing the
o define comparisons for a UDT. In addition to the two approaches men-
| above, some of the capabilities offered are:

Strict Object Equality. Two objects are equal if and only if they are the
same object.

Method-Defined Equality. A function is applied to two objects and returns
true or false, depending on whether or not the two objects should be
nsidered equal. ’

Method-Defined Mapping. A function is applied to one object and returns
real number. Objects are compared by comparing the real numbers
turned.

Exercises for Section 10.5

e 10.5.1: Use the StarsIn relation of Example 10.20 and the Movies
ieStar relations accessible through StarsIn to write the following quer-

ind the names of the stars of Bride and Prejudice.

464 CHAPTER 10. ADVANCED TOPICS IN RELATIONAL DATABASES

! Exercise 10.5.4: Write a procedure to take a star name as argument and

10.6. ON-LINE AI

as bank deposits or
database; the latter
Transaction Process
A recent trend
queries. For examp!
shall discuss the arc

b) Find all the movies (objects of type MovieType) that starred Priety Zinta.
! ¢) Find the movies (title and year) with at least six stars.

! d) Find the titles and years of all movies in which at least one star lives in
Hyderabad.

Exercise 10.5.2: Using your schema from Exercise 10.4.4, write the following
queries. Don’t forget to use references whenever appropriate.

10.6.1 OLAP

It is common for O
master database, cal
may be integrated i
is only updated over
day. The warehouse
limits the timeliness
_ in many decision-sug
, There are several
 OLAP applications.

a) Find the manufacturers of PC’s with a hard disk larger than 80 gigabytes.
b) Find the manufacturers of laser printers.

! ¢) Produce a table giving for each model of laptop, the model of the lap-
top having the largest amount of RAM of any laptop made by the same
manufacturer.

Exercise 10.5.3: Using your schema from Exercise 10.4.3, write the following
queries. Don’t forget to use references whenever appropriate and avoid joins
(i.e., subqueries or more than one tuple variable in the FROM clause).

a) Find the battles in which at least one ship was damaged. ' act that OLAP que
~ too much time to b

- throughput requirem
Section 6.6. Trying
 the database serializ
_operations more tha;
as they occur might
computing average sz

b) Find the ships with a displacement of more than 40,000 tons.
! ¢) Find the classes that had ships launched after 1926.

11 d) Find the battles in which at least one British ship was damaged.

delete from StarsIn and MovieStar all tuples involving that star.

10.6.2 OLAP .

A common OLAP apy
will accumulate terahb
at every store. Querie
groups can be of gres
opportunities.

Exercise 10.5.5: Assuming the function AddrLEG of Fig. 10.23 is available,
write a suitable function to compare objects of type StarType, and declare your
function to be the basis of the ordering of StarType objects.

10.6 On-Line Analytic Processing

Example 10.26: Su

An important application of databases is examination of data for patterns o
house to analyze sales

trends. This activity, called OLAP (standing for On-Line Analytic Processin
and pronounced “oh-lap”), generally involves highly complex queries that us

Sale i
one or more aggregations. These queries are often termed OLAP gueries o Autozgziiiig
decision-support queries. Some examples will be given in Section 10.6.2. |

: Dealers(name,

typical example is for a company to search for those of its products that hav
markedly increasing or decreasing overall sales.

Decision-support queries typically examine very large amounts of data, eve
if the query results are small. In contrast, common database operations, suc

A typical decision-sup
to see how the recent .
shown in Fig. 10.24.

472 CHAPTER 10. ADVANCED TOPICS IN RELATIONAL DATABASES

only some dealers have had low sales of red Gobis. Thus, we further focus the
query by looking at only red Gobis, and we partition along the dealer dimension
as well. This query is:

SELECT dealer, month, SUM(price)

FROM (Sales NATURAL JOIN Autos) JOIN Days ON date = day
WHERE model = ’Gobi’ AND color = ’red’

GROUP BY month, dealer;

At this point, we find that the sales per month for red Gobis are so small
that we cannot observe any trends easily. Thus, we decide that it was a mistake
to partition by month. A better idea would be to partition only by years, and
look at only the last two years (2006 and 2007, in this hypothetical example).
The final query is shown in Fig. 10.29. O

SELECT dealer, year, SUM(price)
FROM (Sales NATURAL JOIN Autos) JOIN Days ON date = day
WHERE model = ’Gobi’ AND
color ’red’ AND
(year = 2006 OR year = 2007)
GROUP BY year, dealer;

Figure 10.29: Final slicing-and-dicing query about red Gobi sales

10.6.6 Exercises for Section 10.6

Exercise 10.6.1: An on-line seller of computers wishes to maintain data about
orders. Customers can order their PC with any of several processors, a selected

amount of main memory, any of several disk units, and any of several CD or

DVD readers. The fact table for such a database might be:

Orders(cust, date, proc, memory, hd, od, quant, price)

We should understand attribute cust to be an ID that is the foreign key for
a dimension table about customers, and understand attributes proc, hd (hard

disk), and od (optical disk: CD or DVD, typically) analogously. For example
an hd ID might be elaborated in a dimension table giving the manufacturer o
the disk and several disk characteristics. The memory attribute is simply an
integer: the number of megabytes of memory ordered. The quant attribute is
the number of machines of this type ordered by this customer, and the prlce
attribute is the total cost of each machine ordered.

a) Which are dimension attributes, and which are dependent attributes?

10.7. DA

b) For
neec

! Exercise
to find tre

thought of

-model of tt
model, a d
on that dat
data cube :

lightly diff

0.7.1

Given a fac
an addition
meaning “a
1t appears.

1 each din

representing
two dimens
three dimer

473

) For some of the dimension attributes, a dimension table is likely to be
needed. Suggest appropriate schemas for these dimension tables.

ercise 10.6.2: Suppose that we want to examine the data of Exercise 10.6.1
nd trends and thus predict which components the company should order
e of. Describe a series of drill-down and roll-up queries that could lead to
conclusion that customers are beginning to prefer a DVD drive to a CD

7 Data Cubes

s section, we shall consider the “formal” data cube and special operations
fta presented in this form. Recall from Section 10.6.3 that the formal data
(just “data cube” in this section) precomputes all possible aggregates in
tematic way. Surprisingly, the amount of extra storage needed is often
ble, and as long as the warehoused data does not change, there is no
ty incurred trying to keep all the aggregates up-to-date.
he data cube, it is normal for there to be some aggregation of the raw
f the fact table before it is entered into the data-cube and its further
gates computed. For instance, in our cars example, the dimension we
ht of as a serial number in the star schema might be replaced by the
of the car. Then, each point of the data cube becomes a description of a
1, a dealer and a date, together with the sum of the sales for that model,
at date, by that dea.ler We shall continue to call the points of the (formal)
cube a “fact table,” even though the interpretation of the points may be
7 different from fact tables in a star schema built from a raw-data cube.

1 The Cube Operator

a fact table F', we can define an augmented table CUBE(F) that adds
ional value, denoted *, to each dimension. The * has the intuitive
g “any,” and it represents aggregation along the dimension in which
ars. Figure 10.30 suggests the process of adding a border to the cube
dimension, to represent the * value and the aggregated values that
s. In this figure we see three dimensions, with the lightest shading
nting aggregates in one dimension, darker shading for aggregates over
ensions, and the darkest cube in the corner for aggregation over all
mensions. Notice that if the number of values along each dimension
ably large, then the “border” represents only a small addition to the
f the cube (i.e., the number of tuples in the fact table). In that case,
of the stored data CUBE(F) is not much greater than the size of F

ple of the table CUBE(F) that has * in one or more dimensions will
ach dependent attribute the sum (or another aggregate function) of
es of that attribute in all the tuples that we can obtain by replacing

7. DATA CUBES

(’Gobi’, NULL, ’2001-05-21’, ’Friendly Fred’, 152000, 7)
(’Gobi’, NULL, ’2001-05-21’, NULL, 2348000, 100)

iese each have NULL in a dimension (color in both cases) but do not have
L in one or more of the following dimension attributes. O

7.3 Exercises for Section 10.7

reise 10.7.1: What is the ratio of the size of CUBE(F') to the size of F if
‘table F' has the following characteristics?

) F has twelve dimension attributes, each with eight different values.

) F has nine dimension attributes, each with two different values.

rcise 10.7.2: Use the materialized view SalesCube from Example 10.32
swer the following queries:

Find the total sales of Gobis for each dealer.
Find the total number of blue Gobis sold by dealer “Smilin’ Sally.”

Find the average number of green Gobis sold on each day of June, 2008
by each dealer.

cise 10.7.3: What help, if any, would the rollup SalesRollup of Exam-
0.33 be for each of the queries of Exercise 10.7.27

cise 10.7.4: In Exercise 10.6.1 we spoke of PC-order data organized as
table with dimension tables for attributes cust, proc, memory, hd, and
hat is, each tuple of the fact table Orders has an ID for each of these
utes, leading to information about the PC involved in the order. Write a
uery that will produce the data cube for this fact table.

ise 10.7.5: Answer the following queries using the data cube from Exer-
.4, If necessary, use dimension tables as well. You may invent suitable
and attributes for the dimension tables.

“ind the average price of computers with hard disks of size 100 gigabytes,
or each month from June, 2005.

ind, for each amount of memory, the total number of computers ordered
n each month of the year 2007.

st for each type of hard disk (e.g., SCSI or IDE) and each processor
pe the number of computers ordered.

ise 10.7.6: The cube tuples mentioned in Example 10.32 are not in
ollup of Example 10.33. Are there other rollups that would contain these

478 CHAPTER 10. ADVANCED TOPICS IN RELATIONAL DATABASES

! Exercise 10.7.7: If the fact table F to which we apply the CUBE operator is
sparse (i.e., there are many fewer tuples in F' than the product of the number
of possible values along each dimension), then the ratio of the sizes of CUBE(F)
and F' can be very large. How large can it be? :

10.8 Summary of Chapter 10

4+ Privileges: For security purposes, SQL systems allow many different kinds
of privileges to be managed for database elements. These privileges in-
clude the right to select (read), insert, delete, or update relations, the
right to reference relations (refer to them in a constraint), and the right
to create triggers.

4 Grant Diagrams: Privileges may be granted by owners to other users or
to the general user PUBLIC. If granted with the grant option, then these
privileges may be passed on to others. Privileges may also be revoked,
The grant diagram is a useful way to remember enough about the history
of grants and revocations to keep track of who has what privilege and
from whom they obtained those privileges.

+ SQL Recursive Queries: In SQL, one can define a relation recursively —
that is, in terms of itself. Or, several relations can be defined to be .

mutually recursive.

4 Monotonicity: Negations and aggregations involved in a SQL recursion
must be monotone — inserting tuples in one relation does not cause tuples
to be deleted from any relation, including itself. Intuitively, a relation may

not be defined, directly or indirectly, in terms of a negation or aggregation
of itself.

4 The Object-Relational Model: An alternative to pure object-oriented data-
base models like ODL is to extend the relational model to include the
major features of object-orientation. These extensions include nested re-
lations, i.e., complex types for attributes of a relation, including relations
as types. Other extensions include methods defined for these types, and
the ability of one tuple to refer to another through a reference type.

+ User-Defined Types in SQL: Object-relational capabilities of SQL are cen
tered around the UDT, or user-defined type. These types may be declared
by listing their attributes and other information, as in table declarations.
In addition, methods may be declared for UDT’s.

¢ Relations With a UDT as Type: Instead of declaring the attributes of
relation, we may declare that relation to have a UDT. If we do so, the

its tuples have one component, and this component is an object of the
UDT.

10.8. SUMMA

4 Reference
Such attri

4 Object Id
UDT, we
This comy
systems, t
rarely me:

4 Accessing
functions
turn and
of that Ul

4 Ordering
SQL oper.
for the in
two objec

4 OLAP: O
all or mu
called a d:
database
processin

4 ROLAP ¢
of the dat
respondin
support s
LAP, or re
(MOLAP.

4 Star Sche
is represe
helping t
product i

4 The Cube
fact table
needed by
OLAP qu

4 Data Cub
by appen
portion o

	p436
	p437
	p443
	p444
	p445
	p450
	p457
	p463
	p464
	p472
	p473
	p477
	p478

