1. SEMISTRUCTURED DATA

:

Interface

Other Other
applications applications

Legacy Legacy
Database Database

ure 11.2: Integrating two legacy databases through an interface that sup-
s semistructured data

ample 11.3: We can see in Fig. 11.1 a possible effect of information about

s being gathered from several sources. Notice that the address information

Carrie Fisher has an address concept, and the address is then broken into
t and city. That situation corresponds roughly to data that had a nested-

tion schema like Stars (name, address(street, city)).

On the other hand, the address information for Mark Hamill has no address
pt at all, just street and city. This information may have come from
ema such as Stars(name, street, city) that can represent only one
gs for a star. Some of the other variations in schema that are not reflected

tiny example of Fig. 11.1, but that could be present if movie information
obtained from several sources, include: optional film-type information, a
tor, a producer or producers, the owning studio, revenue, and information
re the movie is currently playing. O

4 Exercises for Section 11.1

ise 11.1.1: Since there is no schema to design in the semistructured-

'odel we cannot ask you to design schemas to describe different situations.
in the following exercises we shall ask you to suggest how particular
ght be organized to reflect certain facts.

dd to Fig. 11.1 the facts that Star Wars was directed by George Lucas
d produced by Gary Kurtz.

dd to Fig. 11.1 information about Empire Strikes Back and Return of
e Jedi, including the facts that Carrie Fisher and Mark Hamill appeared
_these movies.

dd to (b) information about the studio (Fox) for these movies and the
dress of the studio (Hollywood).




488 CHAPTER 11. THE SEMISTRUCTURED-DATA MODEL

Exercise 11.1.2: Suggest how typical data about a genealogy, as was de-
scribed in Exercise 4.1.6, could be represented in the semistructured model.

Exercise 11.1.3: Suggest how typical data about banks and customers, as in
FExercise 4.1.1, could be represented in the semistructured model.

Exercise 11.1.4: Suggest how typical data about players, teams, and fans,
as was described in Exercise 4.1.3, could be represented in the semistructured
model.

Exercise 11.1.5: UML and the semistructured-data model are both “graphi-
cal” in nature, in the sense that they use nodes, labels, and connections among
nodes as the medium of expression. Yet there is an essential difference between
the two models. What is it?

11.2 XML

XML (Eztensible Markup Language) is a tag-based notation designed originally '
for “marking” documents, much like the familiar HTML. Nowadays, data with
XML “markup” can be represented in many ways. However, in this section
we shall refer to XML data as represented in one or more documents. While
HTML'’s tags talk about the presentation of the information contained in doc-
uments — for instance, which portion is to be displayed in italics or what the
entries of a list are — XML tags are intended to talk about the meanings of
pieces of the document.

In this section we shall introduce the rudiments of XML. We shall see that it
captures, in a linear form, the same structure as do the graphs of semistructured
data introduced in Section 11.1. In particular, tags can play the same role as
the labels on the arcs of a semistructured-data graph.

11.2.1 Semantic Tags

Tags in XML are text surrounded by triangular brackets, i.e., <...>, as in
HTMIL. Also as in HTML, tags generally come in matching pairs, with an
opening tag like <Foo> and a matched closing tag that is the same word with a
slash, like </Foo>. Between a matching pair <Foo> and </Foo>, there can be
text, including text with nested HTML tags, and any number of other nested
matching pairs of XML tags. A pair of matching tags and everything that
comes between them is called an element.

A single tag, with no matched closing tag, is also permitted in XML. In this
form, the tag has a slash before the right bracket, for example, <Foo/>. Sucha
tag cannot have any other elements or text nested within it. It can, however,
have attributes (see Section 11.2.4).




1.3. DOCUMENT TYPE DEFINITIONS 495

There is a small matter that values of attributes and elements can have
erent types, e.g., integers or strings, while relational attributes each have a

nique type. We could treat the two attributes named value as always being
ings, and interpret those strings that were integers or another type properly
we processed the data. Or we could split each of the last two relations into
many relations as there are different types of data.

2.8 Exercises for Section 11.2

ercise 11.2.1: Repeat Exercise 11.1.1 using XML.

ercise 11.2.2: How would you represent an empty element (one that had
her text nor subelements) in the database schema of Section 11.2.77

rcise 11.2.3: In Section 11.2.7 we gave a database schema for representing
uments that do not have mized content — elements that contain a mixture

ext (#PCDATA) and subelements. Show how to modify the schema when
ents can have mixed content.

rcise 11.2.4: Show that any relation can be represented by an XML doc-

nt.. Hint: Create an element for each tuple with a subelement for each
onent of that tuple.

3 Document Type Definitions

computer to process XML documents automatically, it is helpful for there
something like a schema for the documents. It is useful to know what
of elements can appear in a collection of documents and how elements
o nested. The description of the schema is given by a grammar-like set of
alled a document type definition, or DTD. It is intended that companies
nmunities wishing to share data will each create a DTD that describes the
 of the data they share, thus establishing a shared view of the semantics
r elements. For instance, there could be a DTD for describing protein
ures, a DTD for describing the purchase and sale of auto parts, and so

1 The Form of a DTD

<!DOCTYPE root-tag [

<1ELEMENT element-name (components)>
more elements

1>




502 CHAPTER 11. THE SEMISTRUCTURED-DATA MODEL

are the ID’s that will appear on lists that are the values of starredIn elements.

Symmetrically, the attribute stars0f of Movie is an IDREFS, a list of ID’s for

stars. 0O

11.3.5 Exercises for Section 11.3
Exercise 11.3.1: Add to the document of Fig. 11.10 the following facts:
a) Matt Damon starred in The Departed (2006).

b) Carrie Fisher and Mark Hamill also starred in The Empire Strikes Bac
(1980) and Return of the Jedi (1983).

¢) Harrison Ford also starred in Star Wars, in the two movies mentioned in
(a), and the movie Aéir Force One (1997).

d) Carrie Fisher also starred in Charlies Angels: Full Throttle (2003).

Exercise 11.3.2: Suggest how typical data about a genealogy, as was de-
scribed in Exercise 4.1.6, could be represented as a DTD.

Exercise 11.3.3: Suggest how typical data about banks and customers, as
was described in Exercise 4.1.1, could be represented as a DTD.

Exercise 11.3.4: Suggest how typical data about players, teams, and fans, as
was described in Exercise 4.1.3, could be represented as a DTD.

Exercise 11.3.5: Using your representation from Exercise 11.2.4, devise an

algorithm that will take any relation schema (a relation name and a list of
attribute names) and produce a DTD describing a document that represents
that relation.

11.4 XML Schema

XML Schema is an alternative way to provide a schema for XML document
It is more powerful than DTD’s, giving the schema designer extra capabilitie
For instance, XML Schema allows arbitrary restrictions on the number of o
currences of subelements. It allows us to declare types, such as integer or floa
for simple elements, and it gives us the ability to declare keys and foreign key

11.4.1 The Form of an XML Schema

An XML Schema description of a schema is itself an XML document. It use
the namespace at the URL:

http://www.w3.o0rg/2001/XMLSchema

ent thus has 1

<7 xml ve
<xs:schem

</xs:sche

.4.2 Elen

 important cc
ment definitior
the fact that,
emas are ther
schema itself
ments being de
ML Schema, is:

<xs:ele
CONS1
</xs:el

e element nan

d xs:boolean.

<xs:elemer
<xs:elemer

To further assist
e tags of the schernr



512 CHAPTER 11. THE SEMISTRUCTURED-DATA MODEL

capability is similar to what we get with ID’s and IDREF’s in a DTD (see
Section 11.3.4). However, the latter are untyped references, while references in
XML Schema are to particular types of elements. The form of a foreign-key
definition in XML Schema is:

<xs:keyref name = foreign-key name refer = key name >
<xs:selector xpath = path description >
<xs:field xpath = path description >

</xs:keyref>

The schema element is xs:keyref. The foreign-key itself has a name, and it
refers to the name of some key or unique value. The selector and field(s) are a
for keys.

Example 11.20: Figure 11.20 shows the definition of an element <Stars>
We have used the style of XML Schema where each complex type is defined
within the element that uses it. Thus, we see at lines (4) through (6) that
<Stars> element consists of one or more <Star> subelements.

At lines (7) through (11), we see that each <Star> element has three kind
of subelements. There is exactly one <Name> and one <Address> subelement
and any number of <StarredIn> subelements. In lines (12) through (15), w
find that a <StarredIn> element has no subelements, but it does have two.
attributes, title and year.

Lines (22) through (26) define a foreign key. In line (22) we see that the
name of this foreign-key constraint is movieRef and that it refers to the ke '
movieKey that was defined in Fig. 11.19. Notice that this foreign key is define
within the <Stars> definition. The selector is Star/StarredIn. That is, it say:
we should look at every <StarredIn> subelement of every <Star> subelemen
of a <Stars> element. From that <StarredIn> element, we extract the two
fields title and year. The @ indicates that these are attributes rather than
subelements. The assertion made by this foreign-key constraint is that am
title-year pair we find in this way will appear in some <Movie> element as th
pair of values for its subelements <Title> and <Year>. O

11.4.8 Exercises for Section 11.4

Exercise 11.4.1: Write the XML Schema definitions of Fig. 11.19 and 11.20.
as a DTD.

Exercise 11.4.2: Give an example of a document that conforms to the XM
Schema definition of Fig. 11.12 and an example of one that has all the elements
mentioned, but does not conform to the definition.

Exercise 11.4.3: Rewrite Fig. 11.12 so that there is a named complex type
for Movies, but no named type for Movie. '




- <% xml version = "1.0" encoding = "utf-8" ?>
<Xs:schema xmlns:xs = "http://www.w3.org/2001/XMLSchema">

<xs:element name = "Stars">

<xs:complexType>
<xs:sequence>
<xs:element name = "Star" minOccurs = "1"
maxOccurs = "unbounded">
<xs:complexType>
<xs:sequence>
<xs:element name = "Name"
type = "xs;string" />
<xs:element name = "Address"
type = "xs:string" />
<xs:element name = "StarredIn"
minOccurs = "0"
max0Occurs = "unbounded">
<xs:complexType>
<Xs:attribute name = "title"
type = "xs:string" />
<xs:attribute name = "year"
type = "xs:integer" />
</xs:complexType>
</xs:element>
</xs:sequence>
</xs:complexType>
</xs:element>
</xs:sequence>
element : </xs:complexType>

<xs:keyref name = "movieRef" refers = "movieKey">
<xs:selector xpath = "Star/StarredIn" />
<xs:field xpath = "@title" />
<xs:field xpath = "Qyear" />

</xs:keyref>

</xs:element>

Figure 11.20: Stars with a foreign key




	p487
	p488
	p495
	p502
	p512
	p513



