526 CHAPTER 12. PROGRAMMING LANGUAGES FOR XML : 12.1.

Example 12.8: The XPath query:

/Movies/Movie/Version[Star]

applied to the document of Fig. 12.3 returns three Version elements. The
condition [Star] is interpreted as “has at least one Star subelement.” That
condition is true for the Version elements of lines (4) through (6), (7) through

(10), and (14) through (18); it is false for the element of line (11). O

<Products>
<Maker name = "A">

<PC model = "1001" price = "2114">
<Speed>2.66</Speed>
<RAM>1024</RAM>
<HardDisk>250</HardDisk>

</PC>

<PC model = "1002" price = "995">
<Speed>2.10</Speed>
<RAM>512</RAM>
<HardDisk>250</HardDisk>

</PC>

<Laptop model = "2004" price = "1150">
<Speed>2.00</Speed>
<RAM>512</RAM>
<HardDisk>60</HardDisk>
<Screen>13.3</Screen>

</Laptop>

<Laptop model = "2005" price = "2500">
<Speed>2.16</Speed>
<RAM>1024</RAM>
<HardDisk>120</HardDisk>
<Screen>17.0</Screen>

</Laptop>

</Maker>

Figure 12.4: XML document with product data — beginning

12.1.10 Exercises for Section 12.1

Exercise 12.1.1: Figures 12.4 and 12.5 are the beginning and end, respec
tively, of an XML document that contains some of the data from our running

XPATH




<Maker name = "E">
<PC model = "1011" price = "959">
<Speed>1.86</Speed>
<RAM>2048</RAM>
<HardDisk>160</HardDisk>
</PC>
<PC model = "1012" price = "649">
<Speed>2.80</Speed>
<RAM>1024</RAM>
<HardDisk>160</HardDisk>
</PC>
<Laptop model = "2001" price = "3673">
<Speed>2.00</Speed>
<RAM>2048</RAM>
<HardDisk>240</HardDisk>
<Screen>20.1</Screen>
</Laptop>
<Printer model = "3002" price = "239">
<Color>false</Color>
<Type>laser</Type>
</Printer>
<Maker name = "H">
<Printer model = "3006" price = "100">
<Color>true</Color>
<Type>ink-jet</Type>
</Printer>
<Printer model = "3007" price "200">
<Color>true</Color>
<Type>laser</Type>
</Printer>
</Maker>
</Products>

Figure 12.5: XML document with product data — end




528 CHAPTER 12. PROGRAMMING LANGUAGES FOR XM

a) Find the model numbers of PC’s with a hard disk of at least 300 gigabyte
b) Find the amount of hard disk on each PC.
c) Find the price of each product of any kind.
d) Find all the laptop elements.
! e) Find the makers of color printers.
! f) Find the makers of PC’s and/or laptops.

! g) Find the makers of at least two printers.

Exercise 12.1.2: The document of Fig. 12.6 contains data similar to th
used in our running battleships exercise. In this document, data about ships :
nested within their class element, and information about battles appears insid
each ship element. Write the following queries in XPath. What is the result
each?

a) Find the names of all ships.
b) Find the names of the ships that were damaged.

¢) Find all the Class elements for classes with a displacement larger th
40000.

Find all the Ship elements for ships that were launched before 1927.
Find the names of all ships that were in battles.

Find the years in which ships having the same name as their class w
launched.

Find the Ship elements for all ships that fought in three or more batt

12.2 XQuery

XQuery is an extension of XPath that has become a standard for high—lé
querying of databases containing data in XML form. This section will introds
some of the important capabilities of XQuery.

XQUERY




.2. XQUERY

break ties alphabetically by title.

After sorting the bindings, each binding is passed to the return-clause, in
e order chosen. By substituting for the variables in the return-clause, we
oduce from each binding a single Movie element. O

2.2.11 Exercises for Section 12.2

xercise 12.2.1: Using the product data from Figs. 12.4 and 12.5, write the

Find the Laptop elements with a price less than 800.

Find the Laptop elements with a price less than 800, and produce the
sequence of these elements surrounded by a tag <CheapLaptops>.

Find the makers such that every laptop they produce has a price no more
than 1000.

Find the names of the makers of both PC’s and laptops.

Find the names of the makers that produce at least two PC’s with a speed
of 2.80 or more.

Produce a sequence of elements of the form
<PC><Model>z</Model><Maker>y</Maker></PC>

where z is the model number and y is the name of the maker of the PC.

ercise 12.2.2: Using the battleships data of Fig. 12.6, write the following
(Query.

) Find the names of the ships that had at least 12 guns.
_ Find the names of the ships that were damaged.
Find the names of the classes with at least 4 ships.
Find the names of the classes with a displacement at least 40,000.

Find the names of the classes such that no ship of that class was in a
battle.

Find the names of the classes that had at least two ships launched in the
‘same year.

Produce a sequence of items of the form

<Battle name = z><Ship name = y />---</Battle>




CHAPTER 12. PROGRAMMING LANGUAGES FOR XM.

where z is the name of a battle and y the name of a ship in the battle
There may be more than one Ship element in the sequence.

Exercise 12.2.3: Do there exist expressions F and F' such that the expres
sion every $x in FE satisfies F'is true, but some $x in F satisfies
is false? Either give an example or explain why it is impossible.

Exercise 12.2.4: Solve the problem of Section 12.2.5; write a query that find
the star(s) living at a given address, even if they have several addresses, withou
finding stars that do not live at that address. '

12.3 Extensible Stylesheet Language

XSLT (Extensible Stylesheet Language for Transformations) is a standard o
the World-Wide-Web Consortium. Its original purpose was to allow XML do¢
uments to be transformed into HTML or similar forms that allowed the doc
ument to be viewed or printed. However, in practice, XSLT is another quer
language for XML. Like XPath or XQuery, we can use XSLT to extract dat
from documents or turn one document form into another form.

12.3.1 XSLT Basics

Like XML Schema, XSLT specifications are XML documents; these specifica
tions are usually called stylesheets. The tags used in XSLT are found in
namespace, which is http://wuw.w3.0rg/1999/XSL/Transform. Thus, at th
highest level, a stylesheet looks like Fig. 12.20. '

<? xml version = "1.0" encoding = "utf-8" 7>
<xsl:stylesheet xmlns:xsl =
"http://wuw.w3.org/1999/XSL/Transform">

</xsl:stylesheet>

Figure 12.20: The form of an XSLT stylesheet

12.3.2 Templates

A stylesheet will have one or more templates. To apply a stylesheet to an XM
document, we go down the list of templates until we find one that matche
the root. As processing proceeds, we often need to find matching template
for elements nested within the document. If so, we again search the list ¢
templates for a match according to matching rules that we shall learn in th
section. The simplest form of a template tag is:




5

u I | 3. EXTENSIBLE STYLESHEET LANGUAGE

3.6 Conditionals in XSLT

can introduce branching into our templates by using an if tag. The form
his tag is:

<xsl:if test = "boolean expression">

tever appears between this tag and its matched closing tag is executed if
 only if the boolean expression is true. There is no else-clause, but we can

ow this expression by another if that has the opposite test condition should
ish.

<7 xml version = "1.0" encoding = "utf-8" 7>
<xsl:stylesheet xmlns:xsl =
"http://www.w3.org/1999/XSL/Transform">
<xsl:template match = "/">
<TABLE border = "5"><TR><TH>Stars</th></tr>
<xsl:for-each select = "Stars/Star" />
<xsl:if test = "Address/City = ’Hollywood’">
<TR><TD>
<xsl:value-of select = "Name" />
</td></tr>
</xsl:if>
</xsl:for-each>
</table>
</xsl:template>
</xsl:stylesheet>

Figure 12.28: Finding the names of the stars who live in Hollywood

nple 12.24: Figure 12.28 is a stylesheet that prints a one-column table,
header “Stars.” There is one template, which matches the root. The first
g this template does is print the header row at line (5). The for-each loop
es (6) through (12) iterates over each star. The conditional of line (7)
hether the star has at least one home in Hollywood. Remember that
qual-sign represents a comparison is true if any item on the left equals any
on the right. That is what we want, since we asked whether any of the
s a star has is in Hollywood. Lines (8) through (10) print a row of the

7 Exercises for Section 12.3

cise 12.3.1: Suppose our input XML document has the form of the prod-
ata of Figs. 12.4 and 12.5. Write XSLT stylesheets to produce each of the
1g documents.




552 CHAPTER 12. PROGRAMMING LANGUAGES FOR XML

a) An HTML file consisting of a table with headers “Model” and “Price,
with a row for each laptop. That row should have the proper model an
price for the laptop.

Repeat part (a), but make the output file a Latex file.

An HTML file consisting of a header “Manufacturers” followed by an
enumerated list of the names of all the makers of products listed in th
input.

An HTML file consisting of a table whose headers are “Model,” “Price,
“Speed,” and “Ram” for all PC’s, followed by another table with the same
headers for laptops.

An XML file with root tag <PCs> and subelements having tag <PC>. Thi
tag has attributes model, price, speed, and ram. In the output, ther
should be one <PC> element for each <PC> element of the input file, an
the values of the attributes should be taken from the corresponding inp
element.

An XML file with root tag <Products> whose subelements are <Produc
elements. Each <Product> element has attributes type, maker, mode
and price, where the type is one of "PC", "Laptop", or "Printer". Th
should be one <Product> element in the output for every PC, lapto
and printer in the input file, and the output values should be chos
appropriately from the input data.

Exercise 12.3.2: Suppose our input XML document has the form of the pro
uct data of Fig. 12.6. Write XSLT stylesheets to produce each of the following
documents. '

a) An XML file identical to the input, except that <Battle> elements shoul
be empty, with the outcome and name of the battle as two attributes

b) An HTML file with a header for each class. Under each header is a tab
with column-headers “Name” and “Launched” with the appropriate entx
for each ship of the class.

¢) An HTML file with root tag <Losers> and subelements <Ship>, each
whose values is the name of one of the ships that were sunk. '

!'d) An XML file with root tag <Ships> and subelements <Ship> for eac
ship. These elements each should have attributes name, class, countr
and displacement with the appropriate values taken from the input f

!'e) Repeat (d), but only list those ships that were in at least one battle.




	p526
	p527
	p528
	p543
	p544
	p551
	p552



