3.1. THE MEMORY HIERARCHY

Moore’s Law

Gordon Moore observed many years ago that integrated circuits were im-
proving in many ways, following an exponential curve that doubles about
every 18 months. Some of these parameters that follow “Moore’s law” are-

1. The number of instructions per second that can be executed for unit
cost. Until about 2005, the improvement was achieved by making
processor chips faster, while keeping the cost fixed. After that year,
the improvement has been maintained by putting progressively more
processors on a single, fixed-cost chip.

. The number of memory bits that can be bought for unit cost and
the number of bits that can be put on one chip.

. The number of bytes per unit cost on a disk and the capacity of the
largest disks.

On the other hand, there are some other important parameters that
do not follow Moore’s law; they grow slowly if at all. Among these slowly
growing parameters are the speed of accessing data in main memory and
the speed at which disks rotate. Because they grow slowly, “latency”
becomes progressively larger. That is, the time to move data between
levels of the memory hierarchy appears enormous today, and will only get

, worse.
e volatt

> pOWEL

locks (pages). Virtual memory is an artifact of the operating system and its
se of the machine’s hardware, and it is not a level of the memory hierarchy.
The path in Fig. 13.1 involving virtual memory represents the treatment
f conventional programs and applications. It does not represent the typical
y data in a database is managed, since a DBMS manages the data itself.
wever, there is increasing interest in main-memory database systems, which
indeed manage their data through virtual memory, relying on the operating
eir data , tem to bring needed data into main memory through the paging mechanism.
3 comes in-memory database systems, like most applications, are most useful when
1 final un 1 e data is small enough to remain in main memory without being swapped
by the operating system.

.1.5 Exercises for Section 13.1

ercise 13.1.1: Suppose that in 2008 the typical computer has a processor
with two processors (“cores”) that each run at 3 gigahertz, has a disk of
gigabytes, and a main memory of 1 gigabyte. Assume that Moore’s law
ese factors double every 18 months) holds into the indefinite future.

562 CHAPTER 13. SECONDARY STORAGE MANAGEMENT.

a) When will terabyte main memories be common?

b) When will terahertz processor chips be common (i.e., the total number of

cycles per second of all the cores on a chip will be approximately 10*2?
¢) When will petabyte disks be common?

d) What will be a typical configuration (processor, disk, memory) in the yea
20127

! Exercise 13.1.2: Commander Data, the android from the 24th century on
Star Trek: The Next Generation once proudly announced that his processor
runs at “100 teraops.” While an operation and a cycle may not be the same,
let us suppose they are, and that Moore’s law continues to hold for the next

300 years. If so, what would Data’s true processor speed be?

13.2 Disks

The use of secondary storage is one of the important characteristics of a DBMS

and secondary storage is almost exclusively based on magnetic disks. Thus, to
motivate many of the ideas used in DBMS implementation, we must examin ,f

the operation of disks in detail.

13.2.1 Mechanics of Disks

The two principal moving pieces of a disk drive are shown in Fig. 13.2; they

are a disk assembly and a head assembly. The disk assembly consists of on
or more circular platters that rotate around a central spindle. The upper an

lower surfaces of the platters are covered with a thin layer of magnetic material,
on which bits are stored. 0’s and 1’s are represented by different patterns in the
magnetic material. A common diameter for disk platters is 3.5 inches, although

disks with diameters from an inch to several feet have been built.

The disk is organized into tracks, which are concentric circles on a singl
platter. The tracks that are at a fixed radius from the center, among all th
surfaces, form one cylinder. Tracks occupy most of a surface, except for th

region closest to the spindle, as can be seen in the top view of Fig. 13.3. The

density of data is much greater along a track than radially. In 2008, a typic
disk has about 100,000 tracks per inch but stores about a million bits per inc
along the tracks.

Tracks are organized into sectors, which are segments of the circle separate

by gaps that are not magnetized to represent either 0’s or 1’s.> The sector is an

indivisible unit, as far as reading and writing the disk is concerned. It is als
indivisible as far as errors are concerned. Should a portion of the magnetic laye

1We show each track with the same number of sectors in Fig. 13.3. However, the numbe
of sectors per track normally varies, with the outer tracks having more sectors than inne
tracks.

orrupted

13.2. DISKS

13.2.4 Exercises for Section 13.2

Exercise 13.2.1: The Megatron 777 disk has the following characteristics:
1. There are eight surfaces, with 100,000 tracks each.

. Tracks hold an average of 2000 sectors of 1024 bytes each.

. The disk rotates at 6,000 rpm.

2
3. 10% of each track is used for gaps.
4
5

. The time it takes the head to move n tracks is 1 + 0.0003n milliseconds.

Answer the following questions about the Megatron 777.

;ethzz a) What is the capacity of the disk?
gre

- 5.48 ’ What is the maximum seek time?
That

¢, and - What is the maximum rotational latency?
? i

b If a block is 65,546 bytes (i.e., 64 sectors), what is the transfer time of a
In the block? 655267
> block -

1e first ’ What is the average seek time?
1e time '

¢ 17.38 What is the average rotational latency?

. If tracks are located on the outer inch of a 3.5-inch-diameter surface, what
b (;3’11]31' ‘ is the average density of bits in the sectors of a track?
e head.

to wait
1e block
amount
. Thus,

ks of the
|IldS, and

o another random track. Suppose, however, that the number of sectors per

round, OX rack is proportional to the length (or radius) of the track, so the bit density
the time s the same for all tracks. Suppose also that we need to move the head from a
typically, random sector to another random sector. Since the sectors tend to congregate
1 have to at the outside of the disk, we might expect that the average head move would
We leave: less than 1/3 of the way across the tracks. Assuming that tracks occupy
f the way dii from 0.75 inches to 1.75 inches, calculate the average number of tracks the

head travels when moving between two random sectors.

s the disk

ge latency ’ xercise 13.2.4: Suppose the Megatron 747 disk head is at cylinder 4096,

ot average e., 1/16th of the way across the cylinders. Suppose that the next request is

s r a block on a random cylinder. Calculate the average time to read this block.

CHAPTER 13. SECONDARY STORAGE MANAGEMEN]

! Exercise 13.2.5: To modify a block on disk, we must read it into main mem
ory, perform the modification, and write it back. Assume that the modificatior
in main memory takes less time than it does for the disk to rotate, and that th
disk controller postpones other requests for disk access until the block is read
to be written back to the disk. For the Megatron 747 disk, what is the time t
modify a block?

13.3 Accelerating Access to Secondary Storage

Just because a disk takes an average of, say, 10 milliseconds to access a block,
it does not follow that an application such as a database system will get th
data it requests 10 milliseconds after the request is sent to the disk controller
If there is only one disk, the disk may be busy with another access for the sam
process or another process. In the worst case, a request for a disk access arrive;
more than once every 10 milliseconds, and these requests back up indeﬁnitely
In that case, the scheduling latency becomes infinite. '

There are several things we can do to decrease the average time a disk acces
takes, and thus improve the throughput (number of disk accesses per second tha
the system can accomodate). We begin this section by arguing that the “I/
model” is the right one for measuring the time database operations take. Then
we consider a number of techniques for speeding up typical database accesse
to disk:

. Place blocks that are accessed together on the same cylinder, so we can
often avoid seek time, and possibly rotational latency as well.

. Divide the data among several smaller disks rather than one large one
Having more head assemblies that can go after blocks independently can
increase the number of block accesses per unit time.

“Mirror” a disk: making two or more copies of the data on different disks
In addition to saving the data in case one of the disks fails, this strate
like dividing the data among several disks, lets us access several blocks
once.

. Use a disk-scheduling algorithm, either in the operating system, in th
DBMS, or in the disk controller, to select the order in which severz
requested blocks will be read or written.

. Prefetch blocks to main memory in anticipation of their later use.

13.3.1 The I/O Model of Computation

Let us imagine a simple computer running a DBMS and trying to serve .
number of users who are performing queries and database modifications. Fo
the moment, assume our computer has one processor, one disk controller, an

ACCELE

us be assume

Dominai
cess is
that d
(Disk
algori

ample 13.:
tuple of R
index on R

uctions, e
to perfor:

orithm

ore naive

satisfied
- requests
r 16,000,

13.3. ACCELERATING ACCESS TO SECONDARY STORAGE 573

because that was the fourth request to arrive. The seek time is 11 for this
request, since we travel from cylinder 56,000 to 16,000, more than half way
across the disk. The fifth request, at cylinder 64,000, requires a seek time of 13,
and the last, at 40,000, uses seek time 7. Figure 13.8 summarizes the activity
caused by first-come-first-served scheduling. The difference between the two
algorithms — 14 milliseconds — may not appear significant, but recall that
the number of requests in this simple example is small and the algorithms were
assumed not to deviate until the fourth of the six requests. O

Cylinder Time
of request | completed

8000 4.3
24000 13.6
56000 26.9
16000 42.2
64000 59.5
40000 70.8

Figure 13.8: Finishing times for block accesses using the first-come-first-served

13.3.6 Prefetching and Large-Scale Buffering

Our final suggestion for speeding up some secondary-memory algorithms is
alled prefetching or sometimes double buffering. In some applications we can
redict the order in which blocks will be requested from disk. If so, then we can
oad them into main memory buffers before they are needed. One advantage to

doing so is that we are thus better able to schedule the disk, such as by using
he elevator algorithm, to reduce the average time needed to access a block. In
he extreme case, where there are many access requests waiting at all times, we
an make the seek time per request be very close to the minimum seek time,
ather than the average seek time.

13.3.7 Exercises for Section 13.3

Exercise 13.3.1: Suppose we are scheduling I/0 requests for a Megatron 747
isk, and the requests in Fig. 13.9 are made, with the head initially at track
6,000. At what time is each request serviced fully if:

a) We use the elevator algorithm (it is permissible to start moving in either
direction at first).

b) We use first-come-first-served scheduling.

CHAPTER 13. SECONDARY STORAGE MANAGEMEN?

Cylinder | First time The number of

of Request | available

8000 0 The average ti
48000 1 '

4000 10 The average ti
40000 20

reise 13.3.4: 1

verage how far
Figure 13.9: Arrival times for four block-access requests

cise 13.3.5: 1
g four disks cc
our data is divi

! Exercise 13.3.2: Suppose we use two Megatron 747 disks as mirrors of o
another. However, instead of allowing reads of any block from either disk, we
keep the head of the first disk in the inner half of the cylinders, and the he
of the second disk in the outer half of the cylinders. Assuming read reques
are on random tracks, and we never have to write:

a) What is the average rate at which this system can read blocks? ughput for suct

b) How does this rate compare with the average rate for mirrored Megatro
747 disks with no restriction?

¢) What disadvantages do you foresee for this system?

! Exercise 13.3.3: Let us explore the relationship between the arrival rate
requests, the throughput of the elevator algorithm, and the average delay

requests. To simplify the problem, we shall make the following assumptions: ‘The most cc

attempt tor

1. A pass of the elevator algorithm always proceeds from the innermost t we are able t

outermost track, or vice-versa, even if there are no requests at the extrem

cylinders. A more serio

orrupted, a

2. When a pass starts, only those requests that are already pending will b how many t

honored, not requests that come in while the pass is in progress, even
the head passes their cylinder.?

3. There will never be two requests for blocks on the same cylinder waitin,
on one pass. ‘

cesses. Assume that the system is in steady state, that is, it has been acceptin

and answering requests for a long time. For a Megatron 747 disk, compute
a function of A:

2The purpose of this assumption is to avoid having to deal with the fact that a typical p
of the elevator algorithm goes fast at first, as there will be few waiting requests where
head has recently been, and slows down as it moves into an area of the disk where it has no

recently been. The analysis of the way request density varies during a pass is an interesting
exercise in its own right.

ss “stable st
ed writes d
tively know

13.4. DISK FAILURES

a) The number of requests serviced on one pass.
b) The average time taken to perform one pass.

¢) The average time a request waits for service.

Exercise 13.3.4: If we read k¥ randomly chosen blocks from one cylinder, on
he average how far around the cylinder must we go before we pass all of the
locks?

xercise 13.3.5: In Example 13.5, we saw how dividing the data to be sorted
mong four disks could allow more than one block to be read at a time. Sup-
ose our data is divided randomly among n disks, and requests for data are also
andom. Requests must be executed in the order in which they are received
ecause there are dependencies among them that must be respected (see Chap-
er 18, for example, for motivation for this constraint). What is the average
hroughput for such a system?

13.4 Disk Failures

In this section we shall consider the ways in which disks can fail and what can
oe done to mitigate these failures.

1. The most common form of failure is an intermittent failure, where an
attempt to read or write a sector is unsuccessful, but with repeated tries
we are able to read or write successfully.

. A more serious form of failure is one in which a bit or bits are permanently
corrupted, and it becomes impossible to read a sector correctly no matter
how many times we try. This form of error is called media decay.

. A related type of error is a write failure, where we attempt to write
a sector, but we can neither write successfully nor can we retrieve the
previously written sector. A possible cause is that there was a power
outage during the writing of the sector.

. The most serious form of disk failure is a disk crash, where the entire disk
becomes unreadable, suddenly and permanently.

e shall discuss parity checks as a way to detect intermittent failures. We also

scuss “stable storage,” a technique for organizing a disk so that media decays

failed writes do not result in permanent loss. Finally, we examine techniques
collectively known as “RAID” for coping with disk crashes.

13.4. DISK FAILURES 587

Example 13.14: Suppose that disks 2 and 5 fail at about the same time.
Consulting the matrix of Fig. 13.10, we find that the columns for these two
disks differ in row 2, where disk 2 has 1 but disk 5 has 0. We may thus
econstruct disk 2 by taking the modulo-2 sum of corresponding bits of disks
1, 4, and 6, the other three disks with 1 in row 2. Notice that none of these
hree disks has failed. For instance, following from the situation regarding the
first blocks in Fig. 13.12, we would initially have the data of Fig. 13.13 available
after disks 2 and 5 failed.
If we take the modulo-2 sum of the contents of the blocks of disks 1, 4, and
6, we find that the block for disk 2 is 00001111. This block is correct as can be
erified from Fig. 13.12. The situation is now as in Fig. 13.14.

Disk | Contents

1) [11110000
2) | 00001111
3) | 00111000
4) | 01000001
5) P?92?99°?
6) | 10111110
7) | 10001001

Figure 13.14: After recovering disk 2

Now, we see that disk 5’s column in Fig. 13.10 has a 1 in the first row. We
an therefore recompute disk 5 by taking the modulo-2 sum of corresponding
its from disks 1, 2, and 3, the other three disks that have 1 in the first row.

For block 1, this sum is 11000111. Again, the correctness of this calculation
an be confirmed by Fig. 13.12. O

13.4.10 Exercises for Section 13.4

Exercise 13.4.1: Compute the parity bit for the following bit sequences:
~a) 00111010.
~b) 00000001.

¢) 10101100.

Exercise 13.4.2: We can have two parity bits associated with a string if we

llow the string by one bit that is a parity bit for the odd positions and a
econd that is the parity bit for the even positions. For each of the strings in
ixercise 13.4.1, find the two bits that serve in this way.

CHAPTER 13. SECONDARY STORAGE MANAGEME

Additional Observations About RAID Level 6

. We can combine the ideas of RAID levels 5 and 6, by varying the
choice of redundant disks according to the block or cylinder number.
Doing so will avoid bottlenecks when writing; the scheme described
in Section 13.4.9 will cause bottlenecks at the redundant disks.

. The scheme described in Section 13.4.9 is not restricted to four data
disks. The number of disks can be one less than any power of 2, say |
2F — 1. Of these disks, k are redundant, and the remaining 2% —k—1
are data disks, so the redundancy grows roughly as the logarithm o
the number of data disks. For any k, we can construct the matrix
corresponding to Fig. 13.10 by writing all possible columns of & 0’s
and 1’s, except the all-0’s column. The columns with a single
correspond to the redundant disks, and the columns with more than
one 1 are the data disks.

its on n di
very simj

Exercise 13.4.3: Suppose we use mirrored disks as in Example 13.8, th
failure rate is 5% per year, and it takes 10 hours to replace a disk. What is t
mean time to a disk failure involving loss of data?

!! Exercise 13.4.4: Suppose we use three disks as a mirrored group; i.e.,
three hold identical data. If the yearly probability of failure for one disk is
and it takes H hours to restore a disk, what is the mean time to data loss?

Exercise 13.4.5: Suppose we are using a RAID level 4 scheme with four d
disks and one redundant disk. As in Example 13.9 assume blocks are a singl
byte. Give the block of the redundant disk if the corresponding blocks of t
data disks are:

a) 01010110, 11000000, 00101011, and 10111011.

b) 11110000, 11111000, 00111100, and 01000001.

! Exercise 13.4.6: Suppose that a disk has probability F of failing in a gisyre“
year, and it takes H hours to replace a disk.

a) If we use mirrored disks, what is the mean time to data loss, as a functi
of F and H?

b) If we use a RAID level 4 or 5 scheme, with N disks, what is the me
time to data loss?

13.4. DISK FAILURES

Error-Correcting Codes and RAID Level 6

There is a theory that guides our selection of a suitable matrix, like that
of Fig. 13.10, to determine the content of redundant disks. A code of
length n is a set of bit-vectors (called code words) of length n. The Ham-
ming distance between two code words is the number of positions in which
they differ, and the minimum distance of a code is the smallest Hamming
distance of any two different code words.

If C is any code of length n, we can require that the corresponding
bits on n disks have one of the sequences that are members of the code. As
a very simple example, if we are using a disk and its mirror, then n = 2,
and we can use the code C' = {00,11}. That is, the corresponding bits
of the two disks must be the same. For another example, the matrix of
Fig. 13.10 defines the code consisting of the 16 bit-vectors of length 7 that
have arbitrary values for the first four bits and have the remaining three
bits determined by the rules for the three redundant disks.

If the minimum distance of a code is d, then disks whose corresponding
bits are required to be a vector in the code will be able to tolerate d — 1
simultaneous disk crashes. The reason is that, should we obscure d — 1
positions of a code word, and there were two different ways these positions
could be filled in to make a code word, then the two code words would have
to differ in at most the d — 1 positions. Thus, the code could not have
minimum distance d. As an example, the matrix of Fig. 13.10 actually
defines the well-known Hamming code, which has minimum distance 3.

e disk is ’ - Thus, it can handle two disk crashes.

ata loss?

th four d Exercise 13.4.7: Using the same RAID level 4 scheme as in Exercise 13.4.5,

ks of uppose that data disk 1 has failed. Recover the block of that disk under the

locks o ollowing circumstances:

~a) The contents of disks 2 through 4 are 01110110, 11000000, and 00101011,
while the redundant disk holds 11110011.

b) The contents of disks 2 through 4 are 11110000, 11111000, and 00110011,
while the redundant disk holds 10000001.

ixercise 13.4.8: Suppose the block on the first disk in Exercise 13.4.5 is
hanged to 01010101. What changes to the corresponding blocks on the other
isks must be made?

xercise 13.4.9: Suppose we have the RAID level 6 scheme of Example 13.13,
nd the blocks of the four data disks are 00110100, 11100111, 01010101, and
0000100, respectively.

590 CHAPTER 13. SECONDARY STORAGE MANAGEMENT

a) What are the corresponding blocks of the redundant disks?

b) If the third disk’s block is rewritten to be 01111111, what steps must b
taken to change other disks?

Exercise 13.4.10: Describe the steps taken to recover from the following fai
ures using the RAID level 6 scheme with seven disks: (a) disks 1 and 4, (b) disk
land 7, (c) disks 2 and 5.

13.5 Arranging Data on Disk

t
We now turn to the matter of how disks are used'store databases. A dat
element such as a tuple or object is represented by a record, which consists
consecutive bytes in some disk block. Collections such as relations are usuall
represented by placing the records that represent their data elements in one o
more blocks. It is normal for a disk block to hold only elements of one relation
although there are organizations where blocks hold tuples of several relations
In this section, we shall cover the basic layout techniques for both records an
blocks.

13.5.1 Fixed-Length Records

The simplest sort of record consists of fixed-length fields, one for each attribut
of the represented tuple. Many machines allow more efficient reading and wr
ing of main memory when data begins at an address that is a multiple of 4 or 8
some even require us to do so. Thus, it is common to begin all fields at a mul
tiple of 4 or 8, as appropriate. Space not used by the previous field is wast
Note that, even though records are kept in secondary, not main, memory, thi
are manipulated in main memory. Thus it is necessary to lay out the record
it can be moved to main memory and accessed efficiently there.

Often, the record begins with a header, a fixed-length region where infor.
mation about the record itself is kept. For example, we may want to keep i
the record:

1. A pointer to the schema for the data stored in the record. For examp
a tuple’s record could point to the schema for the relation to which t
tuple belongs. This information helps us find the fields of the record.

. The length of the record. This information helps us skip over recor
without consulting the schema.

. Timestamps indicating the time the record was last modified, or last rea
This information may be useful for implementing database transactio
as will be discussed in Chapter 18.

5. ARRA

4.

Pointer
schema,
variable

CREATE

Attrib
We all

Attrib
shall 3
_aligne

eveloped

hat we us
der, leavin
en 316-byt

13.6. REPRESENTING BLOCK AND RECORD ADDRESSES

13.5.3 Exercises for Section 13.5
 Exercise 13.5.1: Suppose a record has the following fields in this order: A

character string of length 23, an integer of 2 bytes, a SQL date, and a SQL time
(no decimal point). How many bytes does the record take if:

a) Fields can start at any byte.
b) Fields must start at a byte that is a multiple of 8.

c) Fields must start at a byte that is a multiple of 4.

Exercise 13.5.2: Assume fields are as in Exercise 13.5.1, but records also have

~ a record header consisting of two 4-byte pointers and a character. Calculate

the record length for the three situations regarding field alignment (a) through
{c) in Exercise 13.5.1.

Exercise 13.5.3: Repeat Exercise 13.5.1 for the list of fields: a real of 8 bytes,
a character string of length 25, a single byte, and a SQL date.

Exercise 13.5.4: Repeat Exercise 13.5.3 if the records also include a header
consisting of an 8-byte pointer, and ten 2-byte integers.

13.6 Representing Block and Record Addresses

When in main memory, the address of a block is the virtual-memory address
of its first byte, and the address of a record within that block is the virtual-
memory address of the first byte of that record. However, in secondary storage,
the block is not part of the application’s virtual-memory address space. Rather,
a sequence of bytes describes the location of the block within the overall system
of data accessible to the DBMS: the device ID for the disk, the cylinder number,
and so on. A record can be identified by giving its block address and the offset
of the first byte of the record within the block.

In this section, we shall begin with a discussion of address spaces, especially
as they pertain to the common “client-server” architecture for DBMS’s (see
Section 9.2.4). We then discuss the options for representing addresses, and
finally look at “pointer swizzling,” the ways in which we can convert addresses
n the data server’s world to the world of the client application programs.

13.6.1 Addresses in Client-Server Systems

Commonly, a database system consists of a server process that provides data
from secondary storage to one or more client processes that are applications
using the data. The server and client processes may be on one machine, or the
server and the various clients can be distributed over many machines.

The client application uses a conventional “virtual” address space, typically
32 bits, or about 4 billion different addresses. The operating system or DBMS

.-

602 CHAPTER 13. SECONDARY STORAGE MANAGEMENT : 7. VARIAB

rcise 13.6.
perform the
arately. If th
. once is p, 1

13.6.6 Exercises for Section 13.6

Exercise 13.6.1: If we represent physical addresses for the Megatron 747 disk
by allocating a separate byte or bytes to each of the cylinder, track within
a cylinder, and block within a track, how many bytes do we need? Make a
reasonable assumption about the maximum number of blocks on each track;
recall that the Megatron 747 has a variable number of sectors/track.

Exercise 13.6.2: Repeat Exercise 13.6.1 for the Megatron 777 disk described
in Exercise 13.2.1 On-demar
Exercise 13.6.3: If we wish to represent record addresses as well as block Automati
addresses, we need additional bytes. Assuming we want addresses for a single
Megatron 747 disk as in Exercise 13.6.1, how many bytes would we need f

record addresses if we: '

Following

a) Included the number of the byte within a block as part of the physic pose that i

address.

b) Used structured addresses for records. Assume that the stored record , ge perforn
have a 4-byte integer as a key.

Exercise 13.6.4: Suppose we wish to represent the addresses of blocks on
Megatron 747 disk logically, i.e., using identifiers of &k bytes for some k. We als
need to store on the disk itself a map table, as in Fig. 13.18, consisting of pair
of logical and physical addresses. The blocks used for the map table itself ar
not part of the database, and therefore do not have their own logical address
in the map table. Assuming that physical addresses use the minimum possib
number of bytes for physical addresses (as calculated in Exercise 13.6.1), an
logical addresses likewise use the minimum possible number of bytes for logic _
addresses, how many blocks of 4096 bytes does the map table for the dis 7 Vai
occupy? ‘

Exercise 13.6.5: Today, IP addresses have four bytes. Suppose that bloc
addresses for a world-wide address system consist of an IP address for the hos
a device number between 1 and 10,000, and a block address on an individu:
device (assumed to be a Megatron 747 disk). How many bytes would bloe
addresses require? '

Exercise 13.6.6: In IP version 6, IP addresses are 16 bytes long. In additio
we may want to address not only blocks, but records, which may start at
byte of a block. However, devices will have their own IP address, so there
be no need to represent a device within a host, as we suggested was necess
in Exercise 13.6.5. How many bytes would be needed to represent addresse
these circumstances, again assuming devices were Megatron 747 disks?

NAGEMENT

tron 747 disk

track within
ced? Make a
n each track;
ek

lisk described

well as block
s for a single
1 we need for

f the physical

tored records

f blocks on a

me k. We also
isting of pairs
able itself are
ical addresses

mum possible
e 13.6.1), and
tes for logica
> for the disk

se that block
s for the host
an individual
s would block

5. In addition
y start at an
3, so there
was necessa
it addresses
disks?

13.7. VARIABLE-LENGTH DATA AND RECORDS

Exercise 13.6.7: Suppose that if we swizzle all pointers automatically, we
can perform the swizzling in half the time it would take to swizzle each one

_ separately. If the probability that a pointer in main memory will be followed at
least once is p, for what values of p is it more efficient to swizzle automatically

than on demand?

Exercise 13.6.8: Generalize Exercise 13.6.7 to include the possibility that we
never swizzle pointers. Suppose that the important actions take the following
times, in some arbitrary time units:

i. On-demand swizzling of a pointer: 50.

1. Automatic swizzling of pointers: 15 per pointer.
iit. Following a swizzled pointer: 1.
1v. Following an unswizzled pointer: 10.

Suppose that in-memory pointers are either not followed (probability 1 — p)
or are followed k times (probability p). For what values of ¥ and p do no-
swizzling, automatic-swizzling, and on-demand-swizzling each offer the best
average performance?

Exercise 13.6.9: Suppose that we have 4096-byte blocks in which we store
records of 200 bytes. The block header consists of an offset table, as in Fig.
13.19, using 2-byte pointers to records within the block. On an average day, two

_ records per block are inserted, and one record is deleted. A deleted record must

have its pointer replaced by a “tombstone,” because there may be dangling
pointers to it. For specificity, assume the deletion on any day always occurs
before the insertions. If the block is initially empty, after how many days will
there be no room to insert any more records?

13.7 Variable-Length Data and Records

Until now, we have made the simplifying assumptions that records have a fixed
schema, and that the schema is a list of fixed-length fields. However, in practice,
we also may wish to represent:

1. Data items whose size varies. For instance, in Fig. 13.15 we considered a
MovieStar relation that had an address field of up to 255 bytes. While
there might be some addresses that long, the vast majority of them will
probably be 50 bytes or less. We could save more than half the space used
for storing MovieStar tuples if we used only as much space as the actual
address needed.

. Repeating fields. If we try to represent a many-many relationship in a
record representing an object, we shall have to store references to as many
objects as are related to the given object.

610 CHAPTER 13. SECONDARY STORAGE MANAGEMEN

values in each column in the same order, then we can reconstruct the relati
from the column records. Alternatively, we can keep tuple ID’s or integers wi
each value, to tell which tuple the value belongs to.

Example 13.22: Consider the relation
X|Y

b
d
f

The column for X can be represented by the record (a, c,e) and the column fi
Y can be represented by the record (b,d, f). If we want to indicate the tup
to which each value belongs, then we can represent the two columns by t
records ((1,a), (2,¢), (3,€)) and ((1,b), (2,d), (3, f)), respectively. No matt
how many tuples the relation above had, the columns would be represented |

variable-length records of values or repeating groups of tuple ID’s and valug
O

If we store relations by columns, it is often possible to compress data, t
the values all have a known type. For example, an attribute gender in a relati
might have type CHAR(1), but we would use four bytes in a tuple-based recor
because it is more convenient to have all components of a tuple begin at wo
boundaries. However, if all we are storing is a sequence of gender values, t
it would make sense to store the column by a sequence of bits. If we did so, -
would compress the data by a factor of 32. Vk

However, in order for column-based storage to make sense, it must be t!
case that most queries call for examination of all, or a large fraction of the va
in each of several columns. Recall our discussion in Section 10.6 of “analyt
queries, which are the common kind of queries with the desired characteri
These “OLAP” queries may benefit from organizing the data by columns.

13.7.7 Exercises for Section 13.7

Exercise 13.7.1: A patient record consists of the following fixed-length fie
the patient’s date of birth, social-security number, and patient ID, each 9 b
long. It also has the following variable-length fields: name, address, and pat
history. If pointers within a record require 8 bytes, and the record length
2-byte integer, how many bytes, exclusive of the space needed for the varia
length fields, are needed for the record? You may assume that no alignmen
fields is required.

Exercise 13.7.2: Suppose records are as in Exercise 13.7.1, and the varia
length fields name, address, and history each have a length that is unifor:
distributed. For the name, the range is 2060 bytes; for address it is 40
bytes, and for history it is 0-2000 bytes. What is the average length
patient record?

One might 1
mpressing
read and

hen the d:
~ In orde

JEMENT

e relation
egers with

column for
e the tuple
nns by the
No matter
resented by
and values.

ss data, the
in a relation

rd length is.
- the variabl
) alignment ¢

] the variabl
t is uniform

13.7. VARIABLE-LENGTH DATA AND RECORDS

The Merits of Data Compression

One might think that with storage so cheap, there is little advantage to
compressing data. However, storing data in fewer disk blocks enables us
to read and write the data faster, since we use fewer disk I/O’s. When
we need to read entire columns, then storage by compressed columns can
result in significant speedups. However, if we want to read or write only
a single tuple, then column-based storage can lose. The reason is that in
order to decompress and find the value for the one tuple we want, we need
to read the entire column. In contrast, tuple-based storage allows us to
read only the block containing the tuple. An even more extreme case is
when the data is not only compressed, but encrypted.

In order to make access of single values efficient, we must both com-
press and encrypt on a block-by-block basis. The most efficient compres-
sion methods generally perform better when they are allowed to compress
large amounts of data as a group, and they do not lend themselves to
block-based decompression. However, in special cases such as the com-
pression of a gender column discussed in Section 13.7.6, we can in fact do
block-by-block compression that is as good as possible.

Exercise 13.7.3: Suppose that the patient records of Exercise 13.7.1 are aug-
mented by an additional repeating field that represents cholesterol tests. Each
cholesterol test requires 24 bytes for a date and an integer result of the test.

 Show the layout of patient records if:

a) The repeating tests are kept with the record itself.

b) The tests are stored on a separate block, with pointers to them in the
record.

Exercise 13.7.4: Starting with the patient records of Exercise 13.7.1, suppose
_we add fields for tests and their results. Each test consists of a test name, a
date, and a test result. Assume that each such test requires 100 bytes. Also,
suppose that for each patient and each test a result is stored with probability

a) Assuming pointers and integers each require 8 bytes, what is the average
number of bytes devoted to test results in a patient record, assuming that
all test results are kept within the record itself, as a variable-length field?

b) Repeat (a), if test results are represented by pointers within the record
to test-result fields kept elsewhere.

! ¢) Suppose we use a hybrid scheme, where room for k test results are kept
within the record, and additional test results are found by following a

CHAPTER 13. SECONDARY STORAGE MANAGEMEN

pointer to another block (or chain of blocks) where those results are kep
As a function of p, what value of k minimizes the amount of storage use
for test results?

The amount of space used by the repeating test-result fields is not th
only issue. Let us suppose that the figure of merit we wish to minimize

!! Exercise 13.7.6: Suppose blocks have 1000 bytes available for the storage 0
records, and we wish to store on them fixed-length records of length r, whe
500 < r < 1000. The value of r includes the record header, but a reco
fragment requires an additional 32 bytes for the fragment header. For wh
values of r can we improve space utilization by spanning records?

13.8 Record Modifications

Insertions, deletions, and updates of records often create special problem
These problems are most severe when the records change their length, b
they come up even when records and fields are all of fixed length.

13.8.1 Insertion » Create a
a place {
theoretic
point to
structur
althougt

First, let us consider insertion of new records into a relation. If the records
a relation are kept in no particular order, we can just find a block with som
empty space, or get a new block if there is none, and put the record there.

There is more of a problem when the tuples must be kept in some fixe
order, such as sorted by their primary key (e.g., see Section 14.1.1). If we nee
to insert a new record, we first locate the appropriate block for that recor
Suppose first that there is space in the block to put the new record. Sinc
records must be kept in order, we may have to slide records around in the blo
to make space available at the proper point. If we need to slide records, th
the block organization that we showed in Fig. 13.19, which we reproduce her
as Fig. 13.28, is useful. Recall from our discussion in Section 13.6.2 that
may create an “offset table” in the header of each block, with pointers to
location of each record in the block. A pointer to a record from outside
block is a “structured address,” that is, the block address and the location
the entry for the record in the offset table.

GEMENT .

we use an
<, then we
gion in the

 list in the
ble regions
ock header

ufficient to
themselves

h we must
ks. There
se pointers
lace of the
n 13.6.2,is
manent; it

f Fig. 13.28
ffset table
ble entries

is bit must
e reused for

ns; record 2

13.9. SUMMARY OF CHAPTER 13

13.8.3 Update

When a fixed-length record is updated, there is no effect on the storage system,
because we know it can occupy exactly the same space it did before the update.
However, when a variable-length record is updated, we have all the problems
associated with both insertion and deletion, except that it is never necessary to
create a tombstone for the old version of the record.

If the updated record is longer than the old version, then we may need
to create more space on its block. This process may involve sliding records
or even the creation of an overflow block. If variable-length portions of the
record are stored on another block, as in Fig. 13.25, then we may need to move
elements around that block or create a new block for storing variable-length
fields. Conversely, if the record shrinks because of the update, we have the
same opportunities as with a deletion to recover or consolidate space.

13.8.4 Exercises for Section 13.8

Exercise 13.8.1: Relational database systems have always preferred to use
fixed-length tuples if possible. Give two reasons for this preference.

13.9 Summary of Chapter 13

4 Memory Hierarchy: A computer system uses storage components ranging
over many orders of magnitude in speed, capacity, and cost per bit. From
the smallest/most expensive to largest/cheapest, they are: cache, main
memory, secondary memory (disk), and tertiary memory.

Disks/Secondary Storage: Secondary storage devices are principally mag-
netic disks with multigigabyte capacities. Disk units have several circular
platters of magnetic material, with concentric tracks to store bits. Plat-
ters rotate around a central spindle. The tracks at a given radius from
the center of a platter form a cylinder.

Blocks and Sectors: Tracks are divided into sectors, which are separated
by unmagnetized gaps. Sectors are the unit of reading and writing from
the disk. Blocks are logical units of storage used by an application such
as a DBMS. Blocks typically consist of several sectors.

Disk Controller: The disk controller is a processor that controls one or
more disk units. It is responsible for moving the disk heads to the proper
cylinder to read or write a requested track. It also may schedule competing
requests for disk access and buffers the blocks to be read or written.

Disk Access Time: The latency of a disk is the time between a request to
read or write a block, and the time the access is completed. Latency is
caused principally by three factors: the seek time to move the heads to

