INDEX-STRUCTURE BASICS

Type Position

title

header

anchor

text

Figure 14.10: Storing more information in the inverted index

Insertion and Deletion From Buckets

We show buckets in figures such as Fig. 14.9 as compacted arrays of appro-
priate size. In practice, they are records with a single field (the pointer)
and are stored in blocks like any other collection of records. Thus, when
we insert or delete pointers, we may use any of the techniques seen so far,
we may ' : such as leaving extra space in blocks for expansion of the file, overflow
out each blocks, and possibly moving records within or among blocks. In the latter
rds with case, we must be careful to change the pointer from the inverted index to

f a word the bucket file, as we move the records it points to.
e growth

- another

h words. _ ' . . .
ables. or b) Mention cats in an anchor — presumably a link to a document about
‘ K

cats.

, We can answer this query by intersecting pointers. That is, we follow the
 used to pointer associated with “cat” to find the occurrences of this word. We select
indicates from the bucket file the pointers to documents associated with occurrences of

columns “cat” where the type is “anchor.” We then find the bucket entries for “dog”
 the doc- and select from them the document pointers associated with the type “title.”
ocument : If we intersect these two sets of pointers, we have the documents that meet the
yeuments conditions: they mention “dog” in the title and “cat” in an anchor. 0O

ppose we

Vithout a . .

his query 14.1.9 Exercises for Section 14.1

ents that ‘

Exercise 14.1.1: Suppose blocks hold either five records, or 20 key-pointer
pairs. As a function of n, the number of records, how many blocks do we need
to hold a data file and: (a) A dense index (b) A sparse index?

CHAPTER 14. INDEX STRUCTURE

More About Information Retrieval

There are a number of techniques for improving the effectiveness of re-
trieval of documents given keywords. While a complete treatment is be-
yond the scope of this book, here are two useful techniques:

1. Stemming. We remove suffixes to find the “stem” of each word, be-
fore entering its occurrence into the index. For example, plural nouns
can be treated as their singular versions. Thus, in Example 14.8, the
inverted index evidently uses stemming, since the search for word
“dog” got us not only documents with “dog,” but also a document
with the word “dogs.”

- Stop words. The most common words, such as “the” or “and,” are
called stop words and often are excluded from the inverted index.
The reason is that the several hundred most common words appear in
too many documents to make them useful as a way to find documents
about specific subjects. Eliminating stop words also reduces the size
of the inverted index significantly.

Exercise 14.1.2: Repeat Exercise 14.1.1 if blocks can hold up to 50 reco k
or 500 key-pointer pairs, but neither data- nor index-blocks are allowed to
more than 80% full.

! Exercise 14.1.3: Repeat Exercise 14.1.1 if we use as many levels of index

is appropriate, until the final level of index has only one block.

between 1 and m. As a function of m, what is the average number of disk I/
needed to retrieve a studio and all its movies? What would the number b
movies were randomly distributed over a large number of blocks?

Exercise 14.1.5: Suppose that blocks can hold either five records, twenty k
pointer pairs, or 100 pointers. Using the indirect-buckets scheme of Fig. 14.

a) If the average search-key value appears in 10 records, how many blot
do we need to hold 5000 records and its secondary index structure? H
many blocks would be needed if we did not use buckets?

!'b) If there are no constraints on the number of records that can have a gi

search-key value, what are the minimum and maximum number of blo¢
needed?

JCTURES

ss of re-
nt is be-

jord, be-
-al nouns
14.8, the
for word
locument

and,” are
ed index.
appear in
ocuments
s the size

y 50 records

lowed to be

s of index as

g. 14.6, and
n one block.
r distributed
of disk I/O’s
number be i

5, twenty key-
of Fig. 14.7:
many blocks

-ucture? How

1 have a given
nber of blocks

14.2. B-TREES 633

1 Exercise 14.1.6: On the assumptions of Exercise 14.1.5(a), what is the aver-

age number of disk I/O’s to find and retrieve the twelve records with a given
search-key value, both with and without the bucket structure? Assume nothing
is in memory to begin, but it is possible to locate index or bucket blocks without
incurring additional I/O’s beyond what is needed to retrieve these blocks into
memory. ’

Exercise 14.1.7: If we use an augmented inverted index, such as in Fig. 14.10,
we can perform a number of other kinds of searches. Suggest how this index
could be used to find:

a) Documents in which “cat” and “dog” appeared within five positions of
each other in the same type of element (e.g., title, text, or anchor).

b) Documents in which “dog” followed “cat” separated by exactly one posi-
tion.

¢) Documents in which “dog” and “cat” both appear in the title.

Exercise 14.1.8: Suppose we have a repository of 2000 documents, and we
wish to build an inverted index with 10,000 words. A block can hold ten
word-pointer pairs or 50 pointers to either a document or a position within
a document. The distribution of words is Zipfian (see the box on “The Zipfian
Distribution” in Section 16.4.3); the number of occurrences of the ith most
frequent word is 100000/+/, for i = 1,2, ... ,10000.

a) Suppose our inverted index only records for each word all the documents
that have that word. What is the maximum number of blocks we could
need to hold the inverted index?

Repeat (a) if the 400 most common words (“stop” words) are not included
in the index.

Suppose our inverted index holds pointers to each occurrence of each word.
How many blocks do we need to hold the inverted index?

Repeat (c) if the 400 most common words are not included in the index.

What is the averge number of words per document?

14.2 B-Trees

While one or two levels of index are often very helpful in speeding up queries,
there is a more general structure that is commonly used in commercial systems.
This family of data structures is called B-trees, and the particular variant that
is most often used is known as a B+ tree. In essence:

CHAPTER 14. INDEX STRUCTURES § B-TREES

3| | S
re are B-trs
has too fe

13]] 31] 43]
\l 1

2 [3 s 13]17]19] [23]20] | [31]37]a1] [a3] 7]

L] TN NNRE NN
f reroorr bbb

Figure 14.19: Completing the deletion of key 11

that the average block has an occupancy midway between the minimum
maximum, i.e., a typical block has 255 pointers. With a root, 255 childr
and 255% = 65025 leaves, we shall have among those leaves 2552, or about 1
million pointers to records. That is, files with up to 16.6 million records can
accommodated by a 3-level B-tree. O

However, we can use even fewer than three disk I/O’s per search through ¢
B-tree. The root block of a B-tree is an excellent choice to keep permanen
buffered in main memory. If so, then every search through a 3-level B-tr
requires only two disk reads. In fact, under some circumstances it may ma
sense to keep second-level nodes of the B-tree buffered in main memory as we
reducing the B-tree search to a single disk I/0, plus whatever is necessar
manipulate the blocks of the data file itself.

14.2.8 Exercises for Section 14.2

Exercise 14.2.1: Suppose that blocks can hold either ten records or 99 ke
and 100 pointers. Also assume that the average B-tree node is 70% full; i.e :
will have 69 keys and 70 pointers. We can use B-trees as part of several diffe ‘ interic
structures. For each structure described below, determine (¢) the total num
of blocks needed for a 100,000-record file, and (ii) the average number o

I/O’s to retrieve a record given its search key. You may assume nothing i
memory initially, and the search key is the primary key for the records.

- 115 1.e

a) The data file is a sequential file, sorted on the search key, with 20 re
per block. The B-tree is a dense index.

b) The same as (a), but the data file consists of records in no par
order, packed 20 to a block.

648 CHAPTER 14. INDEX STRUCTU.

¢) Lookup all records with keys less than 30.

d) Lookup all records with keys greater than 30.
e) Lookup all records in the range 20 to 30.

f) Insert a record with key 1.

g) Delete the record with key 23.

h) Insert records with keys 14 through 16.

i) Delete all the records with keys 23 and higher.

! Exercise 14.2.6: In Example 14.17 we suggested that it would be pos
to borrow keys from a nonsibling to the right (or left) if we used a more co
plicated algorithm for maintaining keys at interior nodes. Describe a suit,
algorithm that rebalances by borrowing from adjacent nodes at a level, rega;
less of whether they are siblings of the node that has too many or too
key-pointer pairs.

Exercise 14.2.7: If we use the 3-key, 4-pointer nodes of our examples in
section, how many different B-trees are there when the data file has the follo
numbers of records: (a) 6 (b) 10 !! (c) 15.

! Exercise 14.2.8: Suppose we have B-tree nodes with room for three keys
four pointers, as in the examples of this section. Suppose also that when
split a leaf, we divide the pointers 2 and 2, while when we split an interior n
the first 3 pointers go with the first (left) node, and the last 2 pointers go
the second (right) node. We start with a leaf containing pointers to rec
with keys 1, 2, and 3. We then add in order, records with keys 4, 5, 6, an
on. At the insertion of what key will the B-tree first reach four levels?

Exercise 14.2.9: When duplicate keys are allowed in a B-tree, there are
necessary modifications to the algorithms for lookup, insertion, and dele
that we described in this section. Give the changes for: (a) lookup (b) insert
(c) deletion.

14.3 Hash Tables

-

There are a number of data structures involving a hash table that are use

indexes. We assume the reader has seen the hash table used as main-me;

data structure. In such a structure there is a hash function h that takes a St

key (the hash key) as an argument, and computes from it an integer in the r
0to B —1, where B is the number of buckets. A bucket array, which is an ¢
indexed from 0 to B — 1, holds the headers of B linked lists, one for each b

of the array. If a record has search key K, then we store the record by lin
it to the bucket list for the bucket numbered h(K).

TCTURES 14.2. B-TREES

Should We Delete From B-Trees?

There are B-tree implementations that don’t fix up deletions at all. If a
leaf has too few keys and pointers, it is allowed to remain as it is. The
rationale is that most files grow on balance, and while there might be an
occasional deletion that makes a leaf become subminimum, the leaf will
probably soon grow again and attain the minimum number of key-pointer
pairs once again.

Further, if records have pointers from outside the B-tree index, then
we need to replace the record by a “tombstone,” and we don’t want to
delete its pointer from the B-tree anyway. In certain circumstances, when
it can be guaranteed that all accesses to the deleted record will go through
the B-tree, we can even leave the tombstone in place of the pointer to the
record at a leaf of the B-tree. Then, space for the record can be reused.

inimum and c) The same as (a), but the B-tree is a sparse index.
255 children,))))
r about 16.6 ‘ d) The data file is a sequential file, and the B-tree is a sparse index, but each
cords can be primary block of the data file has one overflow block. On average, the
' primary block is full, and the overflow block is half full. However, records
are in no particular order within a primary block and its overflow block.
h through the
- permanently
3-level B-tree
it may make
~mory as well,
s necessary to

!'e) Instead of the B-tree leaves having pointers to data records, the B-tree
leaves hold the records themselves. A block can hold ten records, but

on average, a leaf block is 70% full; i.e., there are seven records per leaf
block.

Exercise 14.2.2: Repeat Exercise 14.2.1 in the case that the query is a range
query that is matched by 200 records.

Exercise 14.2.3: Suppose pointers are 4 bytes long, and keys are 20 bytes

long. How many keys and pointers will a block of 16,384 bytes have?
rds or 99 keys

0% full; i.e., it - Exercise 14.2.4: What are the minimum numbers of keys and pointers in
everal different , B-tree (i) interior nodes and (i7) leaves, when:

ber
felui(sfl?érncl)lfrr:iisk . a) n = 11; i.e., a block holds 11 keys and 12 pointers.

e nothing is in b) n =12; i.e., a block holds 12 keys and 13 pointers.
records.

Exercise 14.2.5: Execute the following operations on Fig. 14.13. Describe
with 20 records the changes for operations that modify the tree.

a) Lookup the record with key 40.
n no particular

b) Lookup the record with key 41.

'TURES

y hashes
\ashes to
shown in

to 0001.
ly exists.
The three
e to keep
ant. Since
is ratio is
ig. 14.28.

es to 0111.
re redirect
1e first bit.

ded 1.7, so
1cket is the
et 01, with

cket. Since
.. The hash

shall exceed

14.3. HASH TABLES

Figure 14.29: Adding a fourth bucket

the 1.7 ratio of records to buckets. Then, we shall raise n to 5 and 7 becomes
3. O

Lookup in a linear hash table follows the procedure we described for selecting
the bucket in which an inserted record belongs. If the record we wish to look
up is not in that bucket, it cannot be anywhere.

14.3.9 Exercises for Section 14.3

Exercise 14.3.1: We did not discuss how deletions can be carried out in a
linear or extensible hash table. The mechanics of locating the record(s) to
be deleted should be obvious. What method would you suggest for executing
the deletion? In particular, what are the advantages and disadvantages of
restructuring the table if its smaller size after deletion allows for compression
of certain blocks?

Exercise 14.3.2: The material of this section assumes that search keys are
unique. However, only small modifications are needed to allow the techniques
to work for search keys with duplicates. Describe the necessary changes to
insertion, deletion, and lookup algorithms, and suggest the major problems
that arise when there are duplicates in each of the following kinds of hash
tables: (a) simple (b) linear (c) extensible.

Exercise 14.3.3: Show what happens to the buckets in Fig. 14.20 if the fol-
lowing insertions and deletions occur:

i. Records g through j are inserted into buckets 0 through 3, respectively.
12. Records a and b are deleted.
195. Records k through n are inserted into buckets 0 through 3, respectively.

iv. Records ¢ and d are deleted.

CHAPTER 14. INDEX STRUCTURE

Exercise 14.3.4: In an extensible hash table with n records per block, wha
is the probability that an overflowing block will have to be handled recursivel
i.e., all members of the block will go into the same one of the two blocks create
in the split? '

Exercise 14.3.5: Suppose keys are hashed to four-bit sequences, as in o
examples of extensible and linear hashing in this section. However, also suppos
that blocks can hold three records, rather than the two-record blocks of o i
examples. If we start with a hash table with two empty blocks (correspondin
to 0 and 1), show the organization after we insert records with hashed keys

, are the
a) 1111,1110,...,0000, and the method of hashing is extensible hashing : this ha

b) 1111,1110,...,0000, and the method of hashing is linear hashing with :
capacity threshold of 75%.

c¢) 0000,0001,...,1111, and the method of hashing is extensible hashing.

d) 0000, 0001, ...,1111, and the method of hashing is linear hashing with
capacity threshold of 100%.

Exercise 14.3.6: Suppose we use a linear or extensible hashing scheme, b
there are pointers to records from outside. These pointers prevent us from mo
ing records between blocks, as is sometimes required by these hashing metho

Suggest several ways that we could modify the structure to allow pointers fro
outside.

Exercise 14.3.7: Some hash functions do not work as well as theoretical
possible. Suppose that we use the hash function on integer keys i defined
h(i) = i* mod B, where B is the number of buckets.

a) What is wrong with this hash function if B = 10?
b) How good is this hash function if B = 16?

c) Are there values of B for which this hash function is useful?

Exercise 14.3.8: A linear-hashing scheme with blocks that hold % recor
uses a threshold constant ¢, such that the current number of buckets n an
the current number of records r are related by r = ckn. For instance
Example 14.24 we used k¥ = 2 and ¢ = 0.85, so there were 1.7 records D
bucket; ie., r = 1.7n.

a) Suppose for convenience that each key occurs exactly its expected num
of times.” As a function of ¢, k, and n, how many blocks, includin
overflow blocks, are needed for the structure?

"This assumption does not mean all buckets have the same number of records, bec
some buckets represent twice as many keys as others.

shing.

s with a

me, but
OHm Mov-
nethods.
ers from

yretically
ofined by

k records
ets n and
stance, in
cords per

od number
including

rds, because

14.4. MULTIDIMENSIONAL INDEXES 661

b) Keys will not generally distribute equally, but rather the number of rec-
ords with a given key (or suffix of a key) will be Poisson distributed. That
is, if A is the expected number of records with a given key suffix, then
the actual number of such records will be i with probability e=*\¢/il.
Under this assumption, calculate the expected number of blocks used, as
a function of ¢, k, and n.

! Exercise 14.3.9: Suppose we have a file 0f*1,000,000 records that we want to
hash into a table with 2000 buckets. 100 records will fit in a block, and we wish
to keep blocks as full as possible, but not allow two buckets to share a block.
What are the minimum and maximum number of blocks that we could need to
store this hash table?

14.4 Multidimensional Indexes

All the index structures discussed so far are one dimensional; that is, they
assume a single search key, and they retrieve records that match a given search-
key value. Although the search key may involve several attributes, the one-
dimensional nature of indexes such as B-trees comes from the fact that values
must be provided for all attributes of the search key, or the index is useless. So
far in this chapter, we took advantage of a one-dimensional search-key space in
several ways:

e Indexes on sequential files and B-trees both take advantage of having a
single linear order for the keys.

e Hash tables require that the search key be completely known for any
lookup. If a key consists of several fields, and even one is unknown, we
cannot apply the hash function, but must instead search all the buckets.

In the balance of this chapter, we shall look at index structures that are suitable
for multidimensional data. In these structures, any nonempty subset of the
fields that form the dimensions can be given values, and some speedup will
result.

14.4.1 Applications of Multidimensional Indexes

There are a number of applications that require us to view data as existing in a
2-dimensional space, or sometimes in higher dimensions. Some of these appli-
cations can be supported by conventional DBMS’s, but there are also some spe-
cialized systems designed for multidimensional applications. One way in which
these specialized systems distinguish themselves is by using data structures that
support certain kinds of queries that are not common in SQL applications.
One important application of multidimensional indexes involves geographic
data. A geographic information system stores objects in a (typically) two-
dimensional space. The objects may be points or shapes. Often, these databases

[URES

yerhaps
101 and
enation

ge from
> to the
and we
value A
the ---
uple, we
number

le 14.27,
.e., three
that can
emaining

. that is, a
of the form
the buckets
e the salary
\ainder of 1

r is 201 for '

14.5. HASH STRUCTURES FOR MULTIDIMENSIONAL DATA 673

In Fig. 14.35 we see the data from Example 14.27 placed in this hash table.
Notice that, because we have used mostly ages and salaries divisible by 10, the
hash function does not distribute the points too well. Two of the eight buckets
have four records each and need overflow blocks, while three other buckets are
empty. U

14.5.6 Comparison of Grid Files and Partitioned Hashing

The performance of the two data structures discussed in this section are quite
different. Here are the major points of comparison.

e Partitioned hash tables are actually quite useless for nearest-neighbor
queries or range queries. The problem is that physical distance between
points is not reflected by the closeness of bucket numbers. Of course we
could design the hash function on some attribute a so the smallest values
were assigned the first bit string (all 0’s), the next values were assigned the
next bit string (00---01), and so on. If we do so, then we have reinvented
the grid file.

A well chosen hash function will randomize the buckets into which points
fall, and thus buckets will tend to be equally occupied. However, grid
files, especially when the number of dimensions is large, will tend to leave
many buckets empty or nearly so. The intuitive reason is that when there
are many attributes, there is likely to be some correlation among at least
some of them, so large regions of the space are left empty. For instance,
we mentioned in Section 14.5.4 that a correlation between age and salary
would cause most points of Fig. 14.32 to lie near the diagonal, with most of
the rectangle empty. As a consequence, we can use fewer buckets, and/or
have fewer overflow blocks in a partitioned hash table than in a grid file.

Thus, if we are required to support only partial match queries, where we
specify some attributes’ values and leave the other attributes completely un-
specified, then the partitioned hash function is likely to outperform the grid
file. Conversely, if we need to do nearest-neighbor queries or range queries
frequently, then we would prefer to use a grid file.

14.5.7 Exercises for Section 14.5

Exercise 14.5.1: In Fig. 14.36 are specifications for twelve of the thirteen
PC’s introduced in Fig. 2.21. Suppose we wish to design an index on speed and
hard-disk size only.

a) Choose five grid lines (total for the two dimensions), so that there are no
more than two points in any bucket.

! b) Can you separate the points with at most two per bucket if you use only
four grid lines? Either show how or argue that it is not possible.

CHAPTER 14. INDEX STRUCTUR

model | speed | ram | hd

1001 | 2.66 | 1024 | 250
1002 | 2.10 512 | 250
1003 | 1.42 512 80
1004 | 2.80 | 1024 | 250
1005 | 3.20 512 | 250
1006 . 1024 | 320
1007 . 1024 | 200
1008 2048 | 250
1009 . 1024 | 250
1010 . 2048 | 300
1011 . 2048 | 160
1012 1024 | 160

Figure 14.36: Some PC’s and their characteristics

! ¢) Suggest a partitioned hash function that will partition these pomts
four buckets with at most four points per bucket.

Exercise 14.5.2: Choose a partitioned hash function with one bit for eac
the three attributes speed, ram, and hard-disk that divides the data of Fig. 1
well.

Exercise 14.5.3: Suppose we place the data of Fig. 14.36 in a grid file
dimensions for speed and ram only. The partitions are at speeds of 2.00, 2
and 2.80, and at ram of 1024 and 2048. Suppose also that only two points
fit in one bucket. Suggest good splits if we insert a point with speed 2.5
ram 1536.

Exercise 14.5.4: Suppose we wish to place the data of Fig. 14.36 in a th
dimensional grid file, based on the speed, ram, and hard-disk attributes.
gest a partition in each dimension that will divide the data well.

Exercise 14.5.5: Suppose we store a relation R(z,y) in a grid file. B
attributes have a range of values from 0 to 1000. The partitions of this grid
happen to be uniformly spaced; for z there are partitions every 20 units, at
40, 60, and so on, while for y the partitions are every 50 units, at 50, 100
and so on.

a) How many buckets do we have to examine to answer the range query

SELECT * FROM R
WHERE 330 < x AND x < 400 AND 620 < y AND y < 860;

XUCTURES

se points into

bit for each of
oo of Fig. 14.36

, grid file with

s of 2.00, 2.20,

two points can
“speed 2.5 and

4.36 in a three-
ttributes. Sug-
1.

grid file. Both
s of this grid file

90 units, at 20,
at 50, 100, 150,

 range query

y < 860;

14.6. TREE STRUCTURES FOR MULTIDIMENSIONAL DATA 675

! b) We wish to perform a nearest-neighbor query for the point (110,245).
We begin by searching the bucket with lower-left corner at (100,200) and
upper-right corner at (120, 250), and we find that the closest point in this
bucket is (115,230). What other buckets must be searched to verify that
this point is the closest?

! Exercise 14.5.6: Suppose we have a hash table whose buckets are numbered
0 to 2™ —1; i.e., bucket addresses are n bits long. We wish to store in the table
a relation with two attributes z and y. A query will specify either a value for
z or y, but never both. With probability p, it is z whose value is specified.

a) Suppose we partition the hash function so that m bits are devoted to =
and the remaining n — m bits to y. As a function of m, n, and p, what
is the expected number of buckets that must be examined to answer a
random query?

b) For what value of m (as a function of n and p) is the expected number of
buckets minimized? Do not worry that this m is unlikely to be an integer.

14.6 Tree Structures for Multidimensional Data

We shall now consider four more structures that are useful for range queries or
nearest-neighbor queries on multidimensional data. In order, we shall consider:

1. Multiple-key indexes.
2. kd-trees.

3. Quad trees.

4. R-trees.

The first three are intended for sets of points. The R-tree is commonly used to
represent sets of regions; it is also useful for points.

14.6.1 Multiple-Key Indexes

Suppose we have several attributes representing dimensions of our data points,
and we want to support range queries or nearest-neighbor queries on these
points. A simple tree scheme for accessing these points is an index of indexes,
or more generally a tree in which the nodes at each level are indexes for one
attribute.

The idea is suggested in Fig. 14.37 for the case of two attributes. The
“root of the tree” is an index for the first of the two attributes. This index
could be any type of conventional index, such as a B-tree or a hash table. The
index associates with each of its search-key values — i.e., values for the first
attribute — a pointer to another index. If V' is a value of the first attribute,

CHAPTER 14. INDEX STRUCTUR.

100
[_I ——— 7
: | : |
i
| i| school X !
| | X !
I : I
:) S T T rTTTTTTT i : !
Iy roadl ! 0
N | house2| | g

]]

i : 1 L
:l housel o) pipeline | X
v il el af~~----- o =
¥ d . ;
N house3}| | :
| : |
0 W o o - T T .- - - _—--—-—-—-———C |
0 100

Figure 14.48: Extending a region to accommodate new data

not wholly contained within either of the leaves’ regions, we must choose w
region to expand. If we expand the lower subregion, corresponding to the
leaf in Fig. 14.47, then we add 1000 square units to the region, since we ex
it 20 units to the right. If we extend the other subregion by lowering its b
by 15 units, then we add 1200 square units. We prefer the first, and the
regions are changed in Fig. 14.48. We also must change the description

region in the top node of Fig. 14.47 from ((0,0), (60,50)) to ((0,0), (8
(|

14.6.9 Exercises for Section 14.6

Exercise 14.6.1: Show a multiple-key index for the data of Fig. 14.36
indexes are on:

a) Ram then hard-disk.
b) Speed, then ram.

¢) Speed, then hard-disk, then ram.

Exercise 14.6.2: Place the data of Fig. 14.36 in a kd-tree. Assume two
can fit in one block. At each level, pick a separating value that divides th
as evenly as possible. For an order of the splitting attributes choose:

a) Speed, then ram, alternating.

b) Speed, then ram, then hard-disk, alternating.

UCTURES

ata

choose which
g to the first
ce we extend
1g its bottom
and the new
ription of the
0), (80,50)).

;. 14.36 if the

ne two records
vides the data
HOSe:

14.6. TREE STRUCTURES FOR MULTIDIMENSIONAL DATA

c) Whatever attribute produces the most even split at each node.

Exercise 14.6.3: Suppose we have a relation R(z,y,z), where the pair of
attributes z and y together form the key. Attribute z ranges from 1 to 100, and
y ranges from 1 to 1000. For each z there are records with 50 different values
of y, and for each y there are records with 5 different values of z. Note that

~ there are thus 5000 records in R. We wish to use a multiple-key index that will
help us to answer queries of the form

SELECT z
FROM R
WHERE x = C AND y = D;

where C and D are constants. Assume that blocks can hold ten key-pointer

- pairs, and we wish to create dense indexes at each level, perhaps with sparse

higher-level indexes above them, so that each index starts from a single block.

- Also assume that initially all index and data blocks are on disk.

a) How many disk I/ O’s are necessary to answer a query of the above form
if the first index is on y?

b) How many disk I/O’s are necessary to answer a query of the above form
if the first index is on z?

! ¢) Suppose you were allowed to buffer 6 blocks in memory at all times. Which
blocks would you choose, and would you make or y the first index, if
you wanted to minimize the number of additional disk I/0’s needed?

~ Exercise 14.6.4: For the structure of Exercise 14.6.3(a), how many disk I/O’s

are required to answer the range query in which 20 < z < 35 and 200 < y < 350.

Assume data is distributed uniformly; i.e., the expected number of points will

be found within any given range.

 Exercise 14.6.5: In the tree of Fig. 14.39, what new points would be directed

to:
a) The block with points (45,60) and (50, 75)?
b) The block with points (25,400) and (45, 350)?

Exercise 14.6.6: Show a possible evolution of the tree of Fig. 14.41 if we
insert the points (40,200) and then (20,175).

| Exercise 14.6.7: We mentioned that if a kd-tree were perfectly balanced, and
. we execute a partial-match query in which one of two attributes has a value
~ specified, then we wind up looking at about /7 out of the n leaves.

a) Explain why.

CHAPTER 14. INDEX STRUCTU.

b) If the tree split alternately in d dimensions, and we specified values fo
of those dimensions, what fraction of the leaves would we expect to
to search?

¢) How does the performance of (b) compare with a partitioned hash ta

! Exercise 14.6.8: If we are allowed to put the central point in a quadran
quad tree wherever we want, can we always divide a quadrant into sub quad
with an equal number of points (or as equal as possible, if the number of po
in the quadrant is not divisible by 4)? Justify your answer.

Exercise 14.6.9: Suppose we have a database of 1,000,000 regions, which
overlap. Nodes (blocks) of an R-tree can hold 100 regions and pointers.
region represented by any node has 100 subregions, and the overlap a
these regions is such that the total area of the 100 subregions is 150% o
area of the region. If we perform a “where-am-I” query for a given point
many blocks do we expect to retrieve?

Exercise 14.6.10: Place the data of Fig. 14.36 in a quad tree with dimen
speed and ram. Assume the range for speed is 1.00 to 5.00, and for ram
500 to 3500. No leaf of the quad tree should have more than two points.

Exercise 14.6.11: Repeat Exercise 14.6.10 with the addition of a thir
mension, hard-disk, that ranges from 0 to 500.

14.7 Bitmap Indexes

Let us now turn to a type of index that is rather different from those se
far. We begin by imagining that records of a file have permanent num
1,2,...,n. Moreover, there is some data structure for the file that lets us
the ith record easily for any i. A bitmap indez for a field F is a collecti
bit-vectors of length 7, one for each possible value that may appear in the
F'. The vector for value v has 1 in position 7 if the ith record has v in fie
and it has 0 there if not.

Example 14.39: Suppose a file cons1sts of records with two fields, F an
type integer and string, respectively. The current file has six records, num
1 through 6, with the following values in order: (30,f00), (30, bar), (40
(50,f00), (40,bar), (30, baz).

A bitmap index for the first field, F', would have three bit-vectors, e
length 6. The first, for value 30, is 110001, because the first, second, and
records have ' = 30. The other two, for 40 and 50, respectively, are 0
and 000100. ,

A bitmap index for G would also have three bit-vectors, because the
three different strings appearing there. The three bit-vectors are:

JCTURES

how do we

ponding to
“record”).
1es to their

nk of them
records are

1at we need
> have seen
h-key value
> may then
number of

~ations in a

s well.

it is easiest
he data, file.
‘had a1lin
appropriate

xt available
tmap index,
ng field and
Technically,
we are using
\ange to the

ndexed field
it-vector for
 be inserted

14.8. SUMMARY OF CHAPTER 14 695

into the secondary-index structure that is used to find a bit-vector given its
corresponding value.

Lastly, consider a modification to a record i of the data file that changes
the value of a field that has a bitmap index, say from value v to value w. We
must find the bit-vector for v and change the 1 in position i to 0. If there is a
bit-vector for value w, then we change its 0 in position i to 1. If there is not
yet a bit-vector for w, then we create it as discussed in the paragraph above for
the case when an insertion introduces a new value.

14.7.5 Exercises for Section 14.7

Exercise 14.7.1: For the data of Fig. 14.36, show the bitmap indexes for
the attributes: (a) speed (b) ram (c) hd, both in (i) uncompressed form, and
(i4) compressed form using the scheme of Section 14.7.2.

Exercise 14.7.2: Using the bitmaps of Example 14.41, find the jewelry buyers
with an age in the range 40-60 and a salary in the range 100-200.

Exercise 14.7.3: Consider a file of 100,000 records, with a field F' that has m
different values.

a) As a function of m, how many bytes does the bitmap index for F have?

!'b) Suppose that the records numbered from 1 to 100,000 are given values
for the field F' in a round-robin fashion, so each value appears every m
records. How many bytes would be consumed by a compressed index?

Exercise 14.7.4: Encode, using the scheme of Section 14.7.2, the following
bitmaps:

a) 01100000010000000100.

b) 100000001000001001010001.
¢) 0001000000000001000010000.

Exercise 14.7.5: We suggested in Section 14.7.2 that it was possible to reduce
the number of bits taken to encode number % from the 2log, i that we used in
that section until it is close to log, i. Show how to approach that limit as closely
as you like, as long as i is large. Hint: We used a unary encoding of the length

of the binary encoding that we used for i. Can you encode the length of the
code in binary?

14.8 Summary of Chapter 14

¢+ Sequential Files: Several simple file organizations begin by sorting the
data file according to some sort key and placing an index on this file.

	p631
	p632
	p633
	p646
	p648
	p649
	p659
	p660
	p661
	p673
	p674
	p675
	p686
	p687
	p688
	p695

