o

718

CHAPTER 15. QUERY EXECUTIO NESTED-L(

15.2.4 Exercises for Section 15.2

Exercise 15.2.1: For each of the operations below, write an iterator that use
the algorithm described in this section: (a) distinct (6) (b) grouping (vr,) (c) se
union (d) set intersection (e) set difference (f) bag intersection (g) bag differenc j loop join, wi
(h) product (i) natural join. (j) projection ‘

Exercise 15.2.2: For each of the operators in Exercise 15.2.1, tell whether th
operator is blocking, by which we mean that the first output cannot be produce
until all the input has been read. Put another way, a blocking operator is on
whose only possible iterators have all the important work done by Open.

FOR eac
IF

Exercise 15.2.3: Give one-pass algorithms for each of the following join-lik
operators:

a) R =1y S, assuming R fits in memory (see Section 5.2.7 for definiti

. . .. find the tu
involving outerjoins). :

‘ e entire rel:

b) Rexy S, assuming S fits in memory. -‘ Improvemer
o ded among

¢) Roag S, assuming R fits in memory. mber of disk
d) Rtip S, assuming S fits in memory. . ck-based ve

e) R S, assuming R fits in memory.

f) R><S, assuming R fits in memory (see Exercise 2.4.8 for a definition i .
the semijoin). ' “

g) RD><S, assuming S fits in memory.

h) R D< S, assuming R fits in memory (see Exercise 2.4.9 for a definiti

on, as in Sq
of the antisemijoin).

00p join is
i) R D< S, assuming S fits in memory.

Exercise 15.2.4: Figure 15.9 summarizes the memory and disk-I/0 requir
ments of the algorithms of this section and the next. However, it assumes

arguments are clustered. How would the entries change if one or both argumen
were not clustered?

15.3 Nested-Loop Joins

Before proceeding to the more complex algorithms'in the next sections, we s
turn our attention to a family of algorithms for the join operator called “neste
loop” joins. These algorithms are, in a sense, “one-and-a-half” passes, sinc
each variation one of the two arguments has its tuples read only once, w
the other argument will be read repeatedly. Nested-loop joins can be used
relations of any size; it is not necessary that one relation fit in main memo

relation S, th

(1) makes su
we use as few
uple of R the
of S as will {

722 CHAPTER 15. QUERY EXECUTIO! WO-PASS.

cost is proportional to the product of the sizes of the two relations, divided
the amount of available main memory. We can do much better than a nested
loop join when both relations are large. But for reasonably small example
such as Example 15.4, the cost of the nested-loop join is not much greater th
the cost of a one-pass join, which is 1500 disk I/O’s for this example. In fa - , .
if B(S) < M — 1, the nested-loop join becomes identical to the one-pass j ould require
algorithm of Section 15.2.3.

Although nested-loop join is generally not the most efficient join algorit
possible, we should note that in some early relational DBMS’s, it was the o
method available. Even today, it is needed as a subroutine in more efficie
join algorithms in certain situations, such as when large numbers of tuples fro
each relation share a common value for the join attribute(s). For an exam
where nested-loop join is essential, see Section 15.4.6.

ow can you

only one o
op join? Cc
he smaller i

15.3.5 Summary of Algorithms so Far

The main-memory and disk I/O requirements for the algorithms we have di
cussed in Sections 15.2 and 15.3 are shown in Fig. 15.9. The memory requir
ments for v and § are actually more complex than shown, and M = B is onl

a loose approximation. For y, M depends on the number of groups, and fo
M depends on the number of distinct tuples.

Approximate
Operators M required Disk I/0 Section
o, 1 B 1521
v, & B B 15.2.2
U, N, =, x, o< | min(B(R),B(S)) | B(R)+B(S) | 15.2.3
- any M > 2 B(R)B(S)/M | 15.3.3

Figure 15.9: Main memory and disk I/0O requirements for one-pass and nest
loop algorithms

15.3.6 Exercises for Section 15.3

Exercise 15.3.1: Suppose B(R) = B(S) = 10,000, and M = 1000. Calcul
the disk I/O cost of a nested-loop join.

Exercise 15.3.2: For the relations of Exercise 15.3.1, what value of M W 7
we need to compute R i S using the nested-loop algorithm with no more
(a) 200,000 ! (b) 25,000 ! (c) 15,000 disk I/0’s?

Exercise 15.3.3: Give the three iterator methods for the block-based ver
of nested-loop join.

(ECUTION

, divided by
n a nested-
1l examples
sreater than
ple. In fact,
ne-pass join

in algorithm
was the only
ore efficient
f tuples from

an example

we have dis-
nory require-
"= B is only
bs, and for 4,

tion
2.1
.2.2
.2.3
.3.3

s and nested-

)00. Calculate

ie of M would
‘no more than

-based version

15.4. TWO-PASS ALGORITHMS BASED ON SORTING 723

Exercise 15.3.4: The iterator of Fig. 15.7 will not work properly if either R
or S is empty. Rewrite the methods so they will work, even if one or both
relations are empty.

Exercise 15.3.5: If R and S are both unclustered, it seems that nested-loop
join would require about T'(R)T'(S)/M disk I/O’s.

a) How can you do significantly better than this cost?

b) If only one of R and S is unclustered, how would you perform a nested-
loop join? Consider both the cases that the larger is unclustered and that
the smaller is unclustered.

15.4 Two-Pass Algorithms Based on Sorting

We shall now begin the study of multipass algorithms for performing relational-
algebra operations on relations that are larger than what the one-pass algo-
rithms of Section 15.2 can handle. We concentrate on two-pass algorithms,
where data from the operand relations is read into main memory, processed in
some way, written out to disk again, and then reread from disk to complete the
operation. We can naturally extend this idea to any number of passes, where
the data is read many times into main memory. However, we concentrate on
two-pass algorithms because:

a) Two passes are usually enough, even for very large relations.

b) Generalizing to more than two passes is not hard; we discuss these exten-
sions in Section 15.4.1 and more generally in Section 15.8.

We begin with an implementation of the sorting operator 7 that illustrates the
general approach: divide a relation R for which B(R) > M into chucks of size
M, sort them, and then process the sorted sublists in some fashion that requires
only one block of each sorted sublist in main memory at any one time.

15.4.1 Two-Phase, Multiway Merge-Sort

It is possible to sort very large relations in two passes using an algorithm
called Two-Phase, Multiway Merge-Sort (TPMMS), Suppose we have M main-
memory buffers to use for the sort. TPMMS sorts a relation R as follows:

e Phase 1: Repeatedly fill the M buffers with new tuples from R and sort
them, using any main-memory sorting algorithm. Write out each sorted
sublist to secondary storage.

e Phase 2: Merge the sorted sublists. For this phase to work, there can be
at most M — 1 sorted sublists, which limits the size of R. We allocate
one input block to each sorted sublist and one block to the output. The

CHAPTER 15. QUERY EXECUTI

2. Bring the first block of each sublist into a buffer; we assume there are
more than M sublists in all.

- Repeatedly find the least Y-value y among the first available tuples
the sublists. Identify all the tuples of both relations that have V-
Yy, perhaps using some of the M available buffers to hold them, if ¢
are fewer than M sublists. Output the join of all tuples from R wit
tuples from S that share this common Y-value. If the buffer for o
the sublists is exhausted, then replenish it from disk.

Example 15.7: Let us again consider the problem of Example 15.4: join
relations R and S of sizes 1000 and 500 blocks, respectively, using 101 butfe
We divide R into 10 sublists and S into 5 sublists, each of length 100, and
them.? We then use 15 buffers to hold the current blocks of each of the sub
If we face a situation in which many tuples have a fixed Y-value, we can
the remaining 86 buffers to store these tuples. f

We perform three disk I/O’s per block of data. Two of those are to
ate the sorted sublists. Then, every block of every sorted sublist is read
main memory one more time in the multiway merging process. Thus, the 't
number of disk I/O’s is 4500. 0O

This sort-join algorithm is more efficient than the algorithm of Section 1
when it can be used. As we observed in Example 15.7, the number of disk I
is 3(B(R) + B(S)). We can perform the algorithm on data that is almos
large as that of the previous algorithm. The sizes of the sorted sublists
M blocks, and there can be at most M of them among the two lists.
B(R) + B(S) < M? is sufficient.

15.4.9 Summary of Sort-Based Algorithms

In Fig. 15.11 is a table of the analysis of the algorithms we have discusse
Section 15.4. As discussed in Sections 15.4.6 and 15.4.8, the join algoritl
have limitiations on how many tuples can share a common value of th
attribute(s). If this limit is violated, we may have to use a nest-loop
instead.

15.4.10 Exercises for Section 15.4

Exercise 15.4.1: For each of the following operations, write an iterator
uses the algorithm described in this section: (a) grouping (7vz) (b) set in
tion (c) bag difference (d) natural join. (e) distinct (6)

3Technica11y, we could have arranged for the sublists to have length 101 blocks
the last sublist of R having 91 blocks and the last sublist of S having 96 blocks, b
would turn out exactly the same. '

EXECUTION

1e there are no

le tuples of all
. have Y-value
them, if there
rom R with all
iffer for one of

e 15.4: joining
ng 101 buffers.
h 100, and sort
“of the sublists.
ue, we can use

jose are to cre-
ist is read into
Thus, the total

f Section 15.4.6
er of disk I/O’s
1at is almost as
ted sublists are
wo lists. Thus,

ave discussed in
join algorithms
alue of the join
1, nest-loop join

an iterator that
(b) set intersec-

1 blocks each, with
locks, but the costs

15.4. TWO-PASS ALGORITHMS BASED ON SORTING

Approximate
Operators M required Disk I/O Section

Y0 vB 3B 15.4.1, 15.4.2,
15.4.3

B(R) + B(S) 3(B(R)+ B(S)) | 15.4.4,15.4.5

\/max(B(R),é(S)) 5(B(R) + B(S)) | 15.4.6

B(R) + B(S) 3(B(R)+ B(S)) | 15.4.8

Figure 15.11: Main memory and disk I/O requirements for sort-based algo-
rithms

Exercise 15.4.2: How much memory do we need to use a two-pass, sort-based
algorithm for relations of 20,000 blocks each, if the operation is: (a) § (b) «
(c) a binary operation such as join or union.

Exercise 15.4.3: Describe a two-pass, sort-based algorithm for each of the
join-like operators of Exercise 15.2.3.

Exercise 15.4.4: If B(R) = B(S) = 10,000 and M = 500, what are the
disk I/O requirements of: (a) simple sort-join (b) the more efficient sort-join of
Section 15.4.8. (c) set union

Exercise 15.4.5: Suppose that the second pass of an algorithm described
in this section does not need all M buffers, because there are fewer than M
sublists. How might we save disk I/O’s by using the extra buffers?

Exercise 15.4.6: In Example 15.6 we discussed the join of two relations R
and S, with 1000 and 500 blocks, respectively, and M = 101. However, we
need additional additional disk I/O’s if there are so many tuples with a given
value that neither relation’s tuples could fit in main memory. Calculate the
total number of disk I/O’s needed if:

a) There are only two Y-values, each appearing in half the tuples of R and
half the tuples of S (recall Y is the join attribute or attributes).

b) There are five Y-values, each equally likely in each relation.

¢) There are 10 Y-values, each equally likely in each relation.

Exercise 15.4.7: Repeat Exercise 15.4.6 for the more efficient sort-join of
Section 15.4.8.

732 CHAPTER 15. QUERY EXECUT.

Exercise 15.4.8: Sometimes, it is possible to save some disk I/O’s if we

the last sublist in memory. It may even make sense to use sublists of fewer
M blocks to take advantage of this effect. How many disk I/O’s can be s
this way?

Exercise 15.4.9: Suppose records could be larger than blocks, ie., wec
have spanned records. How would the memory requirements of two-pass,
based algorithms change?

15.5 Two-Pass Algorithms Based on Hashin

There is a family of hash-based algorithms that attack the same problem:
in Section 15.4. The essential idea behind all these algorithms is as fol
If the data is too big to store in main-memory buffers, hash all the tupl
the argument or arguments using an appropriate hash key. For all the co
operations, there is a way to select the hash key so all the tuples that need t
considered together when we perform the operation fall into the same buc
We then perform the operation by working on one bucket at a time (o
a pair of buckets with the same hash value, in the case of a binary operat
In effect, we have reduced the size of the operand(s) by a factor equal to
number of buckets, which is roughly M. Notice that the sort-based algori
of Section 15.4 also gain a factor of M by preprocessing, although the so
and hashing approaches achieve their similar gains by rather different mes

15.5.1 Partitioning Relations by Hashing

To begin, let us review the way we would take a relation R and, using M bu
partition R into M — 1 buckets of roughly equal size. We shall assume
h is the hash function, and that h takes complete tuples of R as its argum
(i-e., all attributes of R are part of the hash key). We associate one buffer
each bucket. The last buffer holds blocks of R, one at a time. Each tuple
the block is hashed to bucket h(t) and copied to the appropriate buffer. I
buffer is full, we write it out to disk, and initialize another block for the s
bucket. At the end, we write out the last block of each bucket if it is not em
The algorithm is given in more detail in Fig. 15.12.

15.5.2 A Hash-Based Algorithm for Duplicate
Elimination

We shall now consider the details of hash-based algorithms for the var
operations of relational algebra that might need two-pass algorithms. E
consider duplicate elimination, that is, the operation §(R). We hash

M — 1 buckets, as in Fig. 15.12. Note that two copies of the same tuple ¢
hash to the same bucket. Thus, we can examine one bucket at a time, perfor
6 on that bucket in isolation, and take as the answer the union of §(R;), w

=

CHAPTER 15. QUERY EXECUTIO:;

2. Sort-based algorithms sometimes allow us to produce a result in sor
order and take advantage of that sort later. The result might be use
another sort-based algorithm for a subsequent operator, or it could be
answer to a query that is required to be produced in sorted order.

3. Hash-based algorithms depend on the buckets being of equal size. Si
there is generally at least a small variation in size, it is not possible
use buckets that, on average, occupy M blocks; we must limit them t
slightly smaller figure. This effect is especially prominent if the num
of different hash keys is small, e.g., performing a group-by on a relat
with few groups or a join with very few values for the join attributes.

4. In sort-based algorithms, the sorted sublists may be written to consecut
blocks of the disk if we organize the disk properly. Thus, one of the thr
disk I/0’s per block may require little rotational latency or seek ti

and therefore may be much faster than the I/0’s needed for hash-bas
algorithms.

6. On the other hand, if we can choose the number of buckets to be less th
M in a hash-based algorithm, then we can write out several blocks o
bucket at once. We thus obtain the same benefit on the write step
hashing that the sort-based algorithms have for the second read, a
observed in (5). Similarly, we may be able to organize the disk so tha
bucket eventually winds up on consecutive blocks of tracks. If so, buc
can be read with little latency or seek time, just as sorted sublists we
observed in (4) to be writable efficiently.

15.5.8 Exercises for Section 15.5

Exercise 15.5.1: If B(S) = B(R) = 10,000 and M = 500, what is the num
of disk I/O’s required for a hybrid hash join?

Exercise 15.5.2: Write iterators that implement the two-pass, hash-b
algorithms for (a) N (b) —s (c) (d) ¢ (e) .

Exercise 15.5.3: The hybrid-hash-join idea, storing one bucket in main m
ory, can also be applied to other operations. Show how to save the cost of s
ing and reading one bucket from each relation when implementing a two-pas
hash-based algorithm for: (a) N (b) —s. ()d (d) v

Exercise 15.5.4: Suppose we are performing a two-pass, hash-based group.
operation on a relation R of the appropriate size; i.e., B(R) < M?. Howe
there are so few groups, that some groups are larger than M; i.e., they will

XECUTION

sult in sorted
ht be used in
- could be the
order.

al size. Since
ot possible to
nit them to a
f the number
on a relation
attributes.

to consecutive
e of the three

or seek time
or hash-based

sublists, then
sorted sublist,

to be less than
ral blocks of a
write step for
1d read, as we
disk so that a
. If so, buckets
] sublists were

. is the number

ss, hash-based

t in main mem-
he cost of stor-
ing a two-pass,

based grouping
M?. However,
2., they will not

15.6. INDEX-BASED ALGORITHMS 739

fit in main memory at once. What modifications, if any, need to be made to
the algorithm given here?

Exercise 15.5.5: Suppose that we are using a disk where the time to move
the head to a block is 100 milliseconds, and it takes 1/2 millisecond to read
one block. Therefore, it takes k/2 milliseconds to read k consecutive blocks,
once the head is positioned. Suppose we want to compute a two-pass hash-join
R < S, where B(R) = 1000, B(S) = 500, and M = 101. To speed up the join,
we want to use as few buckets as possible (assuming tuples distribute evenly
among buckets), and read and write as many blocks as we can to consecutive
positions on disk. Counting 100.5 milliseconds for a random disk I/O and

100 + k/2 milliseconds for reading or writing k consecutive blocks from or to
disk:

a) How much time does the disk I/O take?

b) How much time does the disk I/O take if we use a hybrid hash-join as
described in Example 15.97

¢) How much time does a sort-based join take under the same conditions,
assuming we write sorted sublists to consecutive blocks of disk?

15.6 Index-Based Algorithms

The existence of an index on one or more attributes of a relation makes available
some algorithms that would not be feasible without the index. Index-based
algorithms are especially useful for the selection operator, but algorithms for
join and other binary operators also use indexes to very good advantage. In
this section, we shall introduce these algorithms. We also continue with the
discussion of the index-scan operator for accessing a stored table with an index
that we began in Section 15.1.1. To appreciate many of the issues, we first need
to digress and consider “clustering” indexes.

15.6.1 Clustering and Nonclustering Indexes

Recall from Section 15.1.3 that a relation is “clustered” if its tuples are packed
into roughly as few blocks as can possibly hold those tuples. All the analyses
we have done so far assume that relations are clustered.

We may also speak of clustering indexes, which are indexes on an attribute
or attributes such that all the tuples with a fixed value for the search key of this
index appear on roughly as few blocks as can hold them. Note that a relation
that isn’t clustered cannot have a clustering index,® but even a clustered relation

5Technically, if the index is on a key for the relation, so only one tuple with a given value
in the index key exists, then the index is always “clustering,” even if the relation is not
clustered. However, if there is only one tuple per index-key value, then there is no advantage
from clustering, and the performance measure for such an index is the same as if it were
considered nonclustering.

Y EXECUTION

s of the relation

ey 6 of S. Since
6, sO we retrieve
yusted, we know
oin. O

1e two B-trees in
re built into the
then retrieval of
O’s proportional
me cases, where
e available main
1 Section 15.4.6.
ommon Y -value
read them.

> how joins using
'm on this data.
s to retrieve the
1e both relations
e is no index on

e them to create
- of disk I/0’s is
iemory — 10 for
ia, the index. We
the index, but if
this second pass,
’s, plus the small
hus estimate the

15.6. INDEX-BASED ALGORITHMS 745

total number of disk I/0’s at 3500, which is less than that for other methods
considered so far. :

Now, assume that both R and S have indexes on Y. Then there is no need
to sort either relation. We use just 1500 disk I/0’s to read the blocks of R
and S through their indexes. In fact, if we determine from the indexes alone
that a large fraction of R or S cannot match tuples of the other relation, then
the total cost could be considerably less than 1500 disk 1/0’s. However, in any

event we should add the small number of disk I/0’s needed to read the indexes
themselves. O

15.6.5 Exercises for Section 15.6

Exercise 15.6.1: Suppose B(R) = 10,000 and T(R) = 500,000. Let there
be an index on R.q, and let V(R, a) = k for some number k. Give the cost
of go=0(R), as a function of k, under the following circumstances. You may
neglect disk 1/0’s needed to access the index itself.

a) The index is not clustering.
b) The index is clustering.

¢) R is clustered, and the index is not used.

Exercise 15.6.2: Repeat Exercise 15.6.1 if the operation is the range query

0C<a AND a<D(R). You may assume that C' and D are constants such that &/10
of the values are in the range.

Exercise 15.6.3: Suppose there is an index on attribute R.a. Describe how
this index could be used to improve the execution of the following operations.
Under what circumstances would the index-based algorithm be more efficient
than sort- or hash-based algorithms?

a) 3(R).

b) R Us S (assume that R and S have no duplicates, although they may
have tuples in common).

¢) RNg S (again, with R and S sets).

! Exercise 15.6.4: If Ris clustered, but the index on R.a is not clustering, then
~ depending on k we may prefer to implement a query by performing a table-scan
~ of R or using the index. For what values of k would we prefer to use the index

if the relation and query are as in (a) Exercise 15.6.1 (b) Exercise 15.6.2.

~ Exercise 15.6.5: Consider the SQL query:

SELECT birthdate FROM StarsIn, MovieStar
WHERE movieTitle = ’King Kong’ AND starName = name;

=

746 CHAPTER 15. QUERY EXECUTIO

This query uses the “movie” relations:

StarsIn(movieTitle, movieYear, starName)
MovieStar (name, address, gender, birthdate)

If we translate it to relational algebra, the heart is an equijoin between

OmovieTitle="King Kong’ (StarsIn)

and MovieStar, which can be implemented much as a natural join R >
Since there were only three movies named “King Kong,” T'(R) is very smal
Suppose that S, the relation MovieStar, has an index on name. Compare t
cost of an index-join for this R < S with the cost of a sort- or hash-based jo

Exercise 15.6.6: In Example 15.14 we discussed the disk-I/O cost of a j
R < S in which one or both of R and S had sorting indexes on the j
attribute(s). However, the methods described in that example can fail if th
are too many tuples with the same value in the join attribute(s). What '
the limits (in number of blocks occupied by tuples with the same value) un
which the methods described will not need to do additional disk I/O’s?

15.7 Buffer Management

We have assumed that operators on relations have available some number
of main-memory buffers that they can use to store needed data. In pract
these buffers are rarely allocated in advance to the operator, and the v
of M may vary depending on system conditions. The central task of m
main-memory buffers available to processes, such as queries, that act on tl
database is given to the buffer manager. It is the responsibility of the b
manager to allow processes to get the memory they need, while minimizing {l
delay and unsatisfiable requests. The role of the buffer manager is illustrate
in Fig. 15.16.

15.7.1 Buffer Management Architecture

There are two broad architectures for a buffer manager:

1. The buffer manager controls main memory directly, as in many relati
DBMS’s, or

9. The buffer manager allocates buffers in virtual memory, allowing the 0
erating system to decide which buffers are actually in main memory
any time and which are in the “swap space” on disk that the operati
system manages. Many “main-memory” DBMS’s and “object-oriente

DBMS’s operate this way. ‘

'Y EXECUTION

thm

limited to the
s 0 and 1. For
- higher than 1
nd” passes that
locks by giving
ving the system
to 0.

Jperator

yperators that will
nay assume that a
of these operators.
willing or able to
is executed. There
rators:

M, the number of

me blocks that are
y disk by the buffer
ised by the buffer
st be performed?

ler the block-based
t really depend on
“hus, it is sufficient

ations of the outer
on of the relation S
buffers available at
- the relation of the
ter loop depends on
However, as long as
f Section 15.3.4 will
nd that at the first
ich case nested-loop

with buffering, sup-
there are k buffers

15.7. BUFFER MANAGEMENT 751

available to hold blocks of R. As we read each block of R, in order, the blocks
that remain in buffers at the end of this iteration of the outer loop will be the
last & blocks of R. We next reload the M — 1 buffers for S with new blocks
of S and start reading the blocks of R again, in the next iteration of the outer
loop. However, if we start from the beginning of R again, then the k buffers for
R will need to be replaced, and we do not save disk I/0’s just because k > 1.

A better implementation of nested-loop join, when an LRU buffer-replace-
ment strategy is used, visits the blocks of R in an order that alternates: first-
to-last and then last-to-first (called rocking). In that way, if there are k buffers
available to R, we save k disk I/O’s on each iteration of the outer loop except
the first. That is, the second and subsequent iterations require only B(R) — k
disk I/O’s for R. Notice that even if k = 1 (i.e., no extra buffers are available
to R), we save one disk I/O per iteration. O

Other algorithms also are impacted by the fact that M can vary and by the

buffer-replacement strategy used by the buffer manager. Here are some useful
observations.

e If we use a sort-based algorithm for some operator, then it is possible to
adapt to changes in M. If M shrinks, we can change the size of a sublist,
since the sort-based algorithms we discussed do not depend on the sublists
being the same size. The major limitation is that as M shrinks, we could
be forced to create so many sublists that we cannot then allocate a buffer
for each sublist in the merging process.

e If the algorithm is hash-based, we can reduce the number of buckets if M
shrinks, as long as the buckets do not then become so large that they do
not fit in allotted main memory. However, unlike sort-based algorithms,
we cannot respond to changes in M while the algorithm runs. Rather,
once the number of buckets is chosen, it remains fixed throughout the first
pass, and if buffers become unavailable, the blocks belonging to some of
the buckets will have to be swapped out.

15.7.4 Exercises for Section 15.7

Exercise 15.7.1: Suppose that we wish to execute a join R < S, and the
available memory will vary between M and M/2. In terms of M, B(R), and

B(S), give the conditions under which we can guarantee that the following
algorithms can be executed:

a) A two-pass, hash-based join.
b) A two-pass, sort-based join.

¢) A one-pass join.

752 CHAPTER 15. QUERY EXECUI

! Exercise 15.7.2: How would the number of disk I/O’s taken by a neste
join improve if extra buffers became available and the buffer-replacement po
were:

a) The clock algorithm.
b) First-in-first-out.

11 Exercise 15.7.3: In Example 15.15, we suggested that it was possible t
advantage of extra buffers becoming available during the join by keeping
than one block of R buffered and visiting the blocks of R in reverse or
even-numbered iterations of the outer loop. However, we could also mair
only one buffer for R and increase the number of buffers used for S.
strategy yields the fewest disk I/0’s?

15.8 Algorithms Using More Than Two Pas

While two passes are enough for operations on all but the largest relations
should observe that the principal techniques discussed in Sections 15.4 an
generalize to algorithms that, by using as many passes as necessary, can pro
relations of arbitrary size. In this section we shall consider the generali
of both sort- and hash-based approaches.

15.8.1 Multipass Sort-Based Algorithms

In Section 15.4.1 we alluded to how 2PMMS could be extended to a thre
algorithm. In fact, there is a simple recursive approach to sorting th
allow us to sort a relation, however large, completely, or if we prefer, to
n sorted sublists for any desired n.

Suppose we have M main-memory buffers available to sort a relati
which we shall assume is stored clustered. Then do the following: .

BASIS: If R fits in M blocks (i.e., B(R) < M), then read R into main mem
sort it using any main-memory sorting algorithm, and write the sorted re
to disk.

INDUCTION: If R does not fit into main memory, partition the blocks h
R into M groups, which we shall call R;, R, ..., Rpr. Recursively sort
each i =1,2,..., M. Then, merge the M sorted sublists, as in Section 1

If we are not merely sortihg R, but performing a unary operation suc
or § on R, then we modify the above so that at the final merge we perfor
operation on the tuples at the front of the sorted sublists. That is,

e For a 4, output one copy of each distinct tuple, and skip over co]
the tuple.

EXECUTION

can also state

buffers.

ss algorithms,
cost of writing
Thus, we use
r B(R)+ B(S)
1t is a total of

- operations on
kets, where M
eration to each
ation is binary,
ing buckets, as
recursively as:

s, read it into
“either relation
tion into main
, into the Mth

ch relation into
m the operation
late the output

Algorithms

hash a relation,
ractice, this as-
n hash function,
»f tuples among

using M buffers.
5, k-pass hashing

rs; i.e., B(R) <

m Rinto M —1
ws. The buckets
handled in k — 1

15.8. ALGORITHMS USING MORE THAN TWO PASSES 755

passes; that is, the buckets are of size u(M, k—1). Since R is divided into M —1
buckets, we must have u(M, k) = (M — D)u(M, k — 1).

If we expand the recurrence above, we find that w(M,k) = M (M — 1)k-1,
or approximately, assuming M is large, u(M, k) = M*. Equivalently, we can
perform one of the unary relational operations on relation R in k passes with
M buffers, provided M > (B(R))l/ k

We may perform a similar analysis for binary operations. As in Section
15.8.2, let us consider the join. Let j(M, k) be an upper bound on the size of
the smaller of the two relations R and S involved in R(X,Y) s S(Y, Z). Here,

as before, M is the number of available buffers and % is the number of passes
we can use.

BASIS: j(M,1) = M —1; that is, if we use the one-pass algorithm to join, then
either R or S must fit in M — 1 blocks, as we discussed in Section 15.2.3.

INDUCTION: j(M, k) = (M — 1)j(M,k — 1); that is, on the first of k passes,
we can divide each relation into M — 1 buckets, and we may expect each bucket
to be 1/(M — 1) of its entire relation, but we must then be able to join each
pair of corresponding buckets in M — 1 passes.

By expanding the recurrence for j(M, k), we conclude that j(M, k) = (M —1)*.
Again assuming M is large, we can say approximately j(M,k) = M*. That
is, we can join R(X,Y) > S(Y,Z) using k passes and M buffers provided
min(B(R), B(S)) < M*.

15.8.5 [Exercises for Section 15.8

Exercise 15.8.1: Suppose B(R) = 10,000, B(S) = 40,000, and M = 101.
Describe the behavior of the following algorithms to compute R >t S:

a) A three-pass, hash-based algorithm.

b) A three-pass, sort-based algorithm.

! Exercise 15.8.2: There are several “tricks” we have discussed for improving
the performance of two-pass algorithms. For the following, tell whether the
trick could be used in a multipass algorithm, and if so, how?

a) Improving a sort-based algorithm by storing blocks consecutively on disk
(Section 15.5.7).

b) Improving a hash-based algorithm by storing blocks consecutively on disk
(Section 15.5.7).

¢) The hybrid-hash-join trick of Section 15.5.6.

	p718
	p722
	p723
	p730
	p731
	p732
	p738
	p739
	p745
	p746
	p751
	p752
	p755

