Y COMPILER 16.1. PARSING AND PREPROCESSING

n title

} query; we use
e trees we have

n title, year

© studioName = 'Paramount’

Movies

Figure 16.9: Expressing the query in terms of base tables

T itle

c year= 1979 AND studioName = ’'Paramount’

s the expression
resents the view

Movies

Figure 16.10: Simplifying the query over base tables

16.1.5 Exercises for Section 16.1

Exercise 16.1.1: Add to or modify the rules for <Query> to include simple
versions of the following features of SQL select-from-where expressions:

a) A query with no where-clause.
b) The ability to produce a set with the DISTINCT keyword.
viesin Fig. 16.8. | ~¢) A GROUP BY clause and a HAVING clause.

. d) Sorted output with the ORDER BY clause.
ng, is not a very

 ways to improve Exercise 16.1.2: Add to the rules for <Condition> to allow the following

sh selections and . features of SQL conditionals:
. Figure 16.10 is

query-processing " ~ a) Comparisons other than =.

b) Parenthesized conditions.

768 CHAPTER 16. THE QUERY COMP.

c) EXISTS expressions.

d) Logical operators OR and NOT.

Exercise 16.1.3: Using the simple SQL grammar exhibited in this se
give parse trees for the following queries about relations R(a,b) and S(b,

a) SELECT a FROM R WHERE b IN
(SELECT a FROM R, S WHERE R.b = S.b);

b) SELECT a, ¢ FROM R, S WHERE R.b = S.b;

16.2 Algebraic Laws for Improving Query Pl

‘We resume our discussion of the query compiler in Section 16.3, where we
transform the parse tree into an expression of the extended relational alg
Also in Section 16.3, we shall see how to apply heuristics that we ho
improve the algebraic expression of the query, using some of the many alge
laws that hold for relational algebra. As a preliminary, this section cat
algebraic laws that turn one expression tree into an equivalent expressios
that may have a more efficient physical query plan. The result of app.
these algebraic transformations is the logical query plan that is the outp
the query-rewrite phase.

16.2.1 Commutative and Associative Laws

A commutative law about an operator says that it does not matter in 3
order you present the arguments of the operator; the result will be the sa
For instance, 4+ and x are commutative operators of arithmetic. More prec
z+y=y+zand z Xy =y x z for any numbers z and y. On the othe:
— is not a commutative arithmetic operator: x —y # y — z.

An associative low about an operator says that we may group two use
operator either from the left or the right. For instance, + and x are asso
arithmetic operators, meaning that (z +y)+2z =z + (y+2) and (z X y)
z X (y x z). On the other hand, — is not associative: (z —y) —2z # z — (
When an operator is both associative and commutative, then any numt
operands connected by this operator can be grouped and ordered as w
without changing the result. For example, ((w+z)+y) +2z = (y+z)+(

Several of the operators of relational algebra are both associative an
mutative. Particularly:

e RxS=SxR;(RxS)xT=Rx(SxT).
e RaS=SR; (R S)<xT =R (ST).
e RUS=SUR; (RUS)UT=RU(SUT).

780 CHAPTER 16. THE QUERY COM

16.2.8 Exercises for Section 16.2

Exercise 16.2.1: Give examples to show that:

a) Duplicate elimination (§) cannot be pushed below projection.
b) Duplicate elimination cannot be pushed below bag union or differ
¢) Projection cannot be pushed below set union.

d) Projection cannot be pushed below set or bag difference.

! Exercise 16.2.2: Prove that we can always push a projection belo
branches of a bag union.

! Exercise 16.2.3: Some laws that hold for sets hold for bags; others
For each of the laws below that are true for sets, tell whether or not i
for bags. Either give a proof the law for bags is true, or give a counterex:

a) R—R=1.

b) RU(SNT)=(RUS)N (RUT) (distribution of union over i
tion).

¢) RU R = R (the idempotent law for union).
d) RN R = R (the idempotent law for intersection).

! Exercise 16.2.4: We can define C for bags by: R C S if and only if f
element z, the number of times z appears in R is less than or equal
number of times it appears in S. Tell whether the following statements
are all true for sets) are true for bags; give either a proof or a countere

a) fRC Sand SCR, then R=S.
b) fRC S, then RUS = S.
c) fRCS, then RNS =R.

Exercise 16.2.5: Starting with an expression 7, (R(a,b,c) b S(b,c
push the projection down as far as it can go if L is:

a) a, b, a+d— 2.

b) b+c—z, c+d—y.

Exercise 16.2.6: When it is possible to push a selection to both ar
of a binary operator, we need to decide whether or not to do so. Ho
the existence of indexes on one of the arguments affect our choice?

for instance, an expression oo (R N §), where there is an index on S. ,

ifference.

below both

hers do not.
ot it 1s true
iterexample.

yver intersec-

ly if for every
equal to the
ments (which
interexample:

<1 S(ba c, d) 6)),

yoth arguments
so. How would
oice? Consider,
on S.

16.3. FROM PARSE TREES TO LOGICAL QUERY PLANS 781

! Exercise 16.2.7: The following are possible equalities involving operations on
a relation R(a,b). Tell whether or not they are true; give either a proof or a
counterexample.

a) YMIN(a)—y, z(’}’a, SUM (b)—z (R)) = Yy, SUM(b)—z ('}/MIN(a)—)y, b(R))-
b) YMIN(@) >y, « (Yo, MAX ()= (R)) = Vymax®)—e (YMIN(@)—y, 8(R))-

 Exercise 16.2.8: The join-like operators of Exercise 15.2.3 obey some of the
familiar laws, and others do not. Tell whether each of the following is or is not
true. Give either a proof that the law holds or a counterexample.

a) R><S =SD><R.
oc(RP<S) =0c(R) P<S.
oc(R= 8) = oo(R) = S.
oc(Rtap 8) = o¢(R) 5z S, where C involves only attributes of R.
oco(Rxr S) = Rz 0¢(S), where C involves only attributes of S.
7 (R < 8) = 71 (R) B< S.

g) (R 8)1 T =R (S T).

h) Rt S =S R.

i) Ry S=Swp R.

Exercise 16.2.9: While it is not precisely an algebraic law, because it involves
an indeterminate number of operands, it is generally true that

SUM(ay,az2,... ,0,) =61 +as+---+ap

SQL has both a SUM operator and addition for integers and reals. Considering
the possibility that one or more of the a;’s could be NULL, rather than an integer
~or real, does this “law” hold in SQL?

Exercise 16.2.10: We mentioned in Example 16.14 that none of the plans we
howed is necessarily the best plan. Can you think of a better plan?
16.3 From Parse Trees to Logical Query Plans

We now resume our discussion of the query compiler. Having constructed a
parse tree for a query in Section 16.1, we next need to turn the parse tree
into the preferred logical query plan. There are two steps, as was suggested in

he pair
~ient to
se laws

ay split
29,1960 -
nvolved,
Hlves at-
product
is shown

ators

thought of
 as join as
that when
ke less time
se tree. We

hgical query
h the same
these oper-

ual associa-
on. Natural
- certain cir-

juate the at-

16.3. FROM PARSE TREES TO LOGICAL QUERY PLANS 791

2. We must add a projection to eliminate duplicate copies of attributes in-
volved in a natural join that has become a theta-join.

3. The theta-join conditions must be associative. Recall there are cases, as
discussed in Section 16.2.1, where theta-joins are not associative.

In addition, products can be considered as a special case of natural join and
combined with joins if they are adjacent in the tree. Figure 16.25 illustrates
this transformation in a situation where the logical query plan has a cluster of
two union operators and a cluster of three natural join operators. Note that

the letters R through W stand for any expressions, not necessarily for stored
relations.

Figure 16.25: Final step in producing the logical query plan: group the asso-
ciative and commutative operators

16.3.5 Exercises for Section 16.3

Exercise 16.3.1: Convert to relational algebra your parse trees from Exer-
cise 16.1.3(a) and (b). For (a), show both the form with a two-argument selec-
tion and its eventual conversion to a one-argument (conventional o¢) selection.

Exercise 16.3.2: Replace the natural joins in the following expressions by

quivalent theta-joins and projections. Tell whether the resulting theta-joins
orm a commutative and associative group.

a) (R(a,b) 5 S(b,¢)) bx (T(c,d) > U(d, €)).
b) (R(a,b) 5 S(b,¢)) 4 (T(c, d) <t U(a, d)).
¢) (R(a,b)>8(b,¢0)) < Rpa<t.c T(c,d).

ixercise 16.3.3: Give a rule for converting each of the following forms of
<Condition> to relational algebra. All conditions may be assumed to be ap-
lied (by a two-argument selection) to a relation R. You may assume that the

CHAPTER 16. THE QUERY COM

subquery is not correlated with R. Be careful that you do not intro
eliminate duplicates in opposition to the formal definition of SQL.

a) A condition of the form a = ANY <Query>, where a is an attrib 1
b) A condition of the form a = ALL <Query>, where a is an attribu

¢) A condition of the form EXISTS(<Query>).

Exercise 16.3.4: Repeat Exercise 16.3.3, but allow the subquery to b
lated with R. For simplicity, you may assume that the subquery has th
form of select-from-where expression described in this section, with no
subqueries.

Exercise 16.3.5: From how many different expression trees could the g
tree on the right of Fig. 16.25 have come? Remember that the order
dren after grouping is not necessarily reflective of the ordering in the

expression tree. ‘

16.4 Estimating the Cost of Operations

Having parsed a query and transformed it into a logical query plan,
next turn the logical plan into a physical plan. We normally do so |
sidering many different physical plans that are derived from the logi
and evaluating or estimating the cost of each. After this evaluation, oft
cost-based enumeration, we pick the physical query plan with the least e
cost; that plan is the one passed to the query-execution engine. When
ating possible physical plans derivable from a given logical plan, we se
each physical plan:

1. An order and grouping for associative-and-commutative operat
joins, unions, and intersections.

2. An algorithm for each operator in the logical plan, for instance,'
whether a nested-loop join or a hash-join should be used.

3. Additional operators — scanning, sorting, and so on — that are
for the physical plan but that were not present explicitly in th
plan.

4. The way in which arguments are passed from one operator to the
instance, by storing the intermediate result on disk or by using i
and passing an argument one tuple or one main-memory buffer at

To make each of these choices, we need to understand what the
the various physical plans are. We cannot know these costs exactly
executing the plan. But almost always, the cost of executing a query

802 CHAPTER 16. THE QUERY COMPf

Duplicate Elimination

If R(a1,as,-- - ,as) is a relation, then V(R, [a1, a2, - .. ,an]) is the size of §
However, often we shall not have this statistic available, so it must be ap
mated. In the extremes, the size of 6(R) could be the same as the size of
duplicates) or as small as 1 (all tuples in R are the same).? Another uppe
on the number of tuples in §(R) is the maximum number of distinct tuple
could exist: the product of V(R,a;) for i =1,2,... ,n. That number co
smaller than other estimates of T'(§(R)). There are several rules that co
used to estimate T'(6(R)). One reasonable one is to take the smaller of T
and the product of all the V(R,a;)’s.

Grouping and Aggregation

Suppose we have an expression vz (R), the size of whose result we ne
estimate. If the statistic V(R, [g1,92,- - - »gk]), where the g;’s are the grot
attributes in L, is available, then that is our answer. However, that sta
may well not be obtainable, so we need another way to estimate the
vz(R). The number of tuples in 7y (R) is the same as the number of
There could be as few as one group in the result or as many groups as
are tuples in R. As with &, we can also upper-bound the number of
by a product of V(R, A)’s, but here attribute A ranges over only the gro
attributes of L. We again suggest an estimate that is the smaller of
and this product.

16.4.8 Exercises for Section 16.4

Exercise 16.4.1: Below are the vital statistics for four relations, W,
and Z:

W (a,b) X (b,c) Y(e,d) Z(d,e)
T(W) =400 T(X) =300 T(V)=200 7T(Z)=100
V(W.a)=50 V(X,b)=60 V(V,c)=50 V(Z,d) =10
V(IW.b) =40 V(X,c)=100 V(Y,d)=20 V(Ze) =50

Estimate the sizes of relations that are the results of the following expres

(8) WeXoaYaZ (b)) 0amro(W) (©) emso(Y)
(d) Te=20 (Y) <7 (e) WxY (f Ud>10(Z)
(8) 0a=1 anp p=2(W) (h) o=t am b>2(W) () X xecy

Exercise 16.4.2: Here are the statistics for four relations E, F, G, and

4Strictly speaking, if R is empty there are no tuples in either R or §(R), so t
bound is 0. However, we are rarely interested in this special case.

Y COMPILER

e size of 6(R).
1st be approxi-
e size of R (no
her upper limit
nct tuples that
mber could be
s that could be
aller of T(R)/2

ult we need to
re the grouping
r, that statistic
nate the size of
mber of groups.
groups as there
imber of groups
ly the grouping
aller of T'(R)/2

tions, W, X, Y,

d,e)
) =10
€)= 50

wing expressions:

00:20 (Y)
o4>10(Z)
X M xe<ye Y

), F, G, and H:

T E(R), so the lower 1

16.5. INTRODUCTION TO COST-BASED PLAN SELECTION

E(a,b,c) F(a,b,d) G(a,c,d) H(b,c,d)
T(E) = 1000 T(F) =2000 T(G) = 3000 T(H) = 4000
V(E,a) =500 V(F,a)=50 V(G,a)=2500 V(H,b)=400
V(E,b) =100 V(F,b)=200 V(G,c)=300 V(H,c)=200
V(E,0)=20 V(F,d) =100 V(G,d) =100 V(H,d) =800

How many tuples does the join of these tuples have, using the techniques for
estimation from this section?

Exercise 16.4.3: Suppose we compute R(a,b) > S(a,c), where R and S each
have 1000 tuples. The a attribute of each relation has 100 different values, and
they are the same 100 values. If the distribution of values was uniform; i.e.,
each a-value appeared in exactly 10 tuples of each relation, then there would be
10,000 tuples in the join. Suppose instead that the 100 a-values have the same
Zipfian distribution in each relation. Precisely, let the values be a4, as, ... ,a100-
Then the number of tuples of both R and S that have a-value a; is proportional
to 1/+/i. Under these circumstances, how many tuples does the join have? You
should ignore the fact that the number of tuples with a given a-value may not
be an integer.

Exercise 16.4.4: How would you estimate the size of a semijoin?

- 16.5 Introduction to Cost-Based Plan Selection

. Whether selecting a logical query plan or constructing a physical query plan

from a logical plan, the query optimizer needs to estimate the cost of evaluating
certain expressions. We study the issues involved in cost-based plan selection
here, and in Section 16.6 we consider in detail one of the most important and
difficult problems in cost-based plan selection: the selection of a join order for
several relations.

As before, we shall assume that the “cost” of evaluating an expression is
approximated well by the number of disk I/O’s performed. The number of disk
1/O’s, in turn, is influenced by:

1. The particular logical operators chosen to implement the query, a matter
decided when we choose the logical query plan.

. The sizes of intermediate results, whose estimation we discussed in Sec-
tion 16.4.

The physical operators used to implement logical operators, e.g., the
choice of a one-pass or two-pass join, or the choice to sort or not sort
a given relation; this matter is discussed in Section 16.7.

. The ordering of similar operations, especially joins as discussed in Sec-
tion 16.6.

"COMPILER

that is better
“the complete
better plan in

se when to cut
if the cost C
he time spent
ue the search.
; a faster plan

ace of physical
| plan. We can
] for executing
ciative and/or
When we find
, we make that

ach subexpres-
nsider possible
. subexpression
6.6.

yach by keeping
ain other plans
order that may
teresting orders

ot.

T

he intermediate
rgument sorted.

e cost, then the

n use one of the
he first pass for

16.5. INTRODUCTION TO COST-BASED PLAN SELECTION

16.5.5 FExercises for Section 16.5

Exercise 16.5.1: Estimate the size of the join R(a,b) > S(b,c) using his-
tograms for R.b and S.b. Assume V(R,b) = V(S,b) = 20, and the histograms

for both attributes give the frequency of the four most common values, as tab-
ulated below:

0 3 4 others
5 5 36

7 50

Rb
Sb 10

1 2
41
8

How does this estimate compare with the simpler estimate, assuming that all
20 values are equally likely to occur, with T(R) = 60 and T'(S) = 80?

Exercise 16.5.2: Estimate the size of the join R(a,b) 1 S(b, c) if we have the
following histogram information:

|b<0 | b=
R | 400
S| 400

800

Exercise 16.5.3: In Example 16.29 we suggested that reducing the number
of values that either attribute named b had could make plan (a) better than
plan (b) of Fig. 16.29. For what values of:

a) V(S,b)
b) V(R,b)

will plan (a) have a lower estimated cost than plan (b)?

Exercise 16.5.4: Consider four relations R, S, T, and V. Respectively, they

have 100, 200, 300, and 400 tuples, chosen randomly and independently from

he same pool of 1000 tuples (e.g., the probabilities of a given tuple being in R

115 1/10,in S is 1/5, and in both is 1/50).

a) What is the expected size of RNSNTNV?

b) What order of intersections gives the least cost (estimated sum of the sizes
of the intermediate relations)?

~ ¢) What is the expected size of RUSUT UV?

d) What order of unions gives the least cost (estimated sum of the sizes of
the intermediate relations)?

xercise 16.5.5: Repeat Exercise 16.5.4 if all four relations have 250 of the
000 tuples, at random.

814 CHAPTER 16. THE QUERY CO

!! Exercise 16.5.6: Suppose we wish to compute the expression
7 (R(a,b) > (b, c) < T(d,a))

That is, we join the three relations and produce the result sorted on
b. Let us make the simplifying assumptions:

.. We shall not “join” R and T first, because that is a product.

5. Any other join can be performed with a two-pass sort-join or has
but in no other way.

4. Any relation, or the result of any expression, can be sorted by atw
multiway merge-sort, but in no other way.

. The result of the first join will be passed as an argument to the |
one block at a time and not stored temporarily on disk.

- Each relation occupies 1000 blocks, and the result of either join
relations occupies 5000 blocks.

Answer the following based on these assumptions:

a) What are all the subexpressions and orders that a Selinger-style op
‘tion would consider?

b) Which query plan uses the fewest disk 1/0%s77

! Exercise 16.5.7: Give an example of a logical query plan of the form
for some expressions F and F (which you may choose), where using t
plans to evaluate E and F does not allow any choice of algorithm for
join that minimizes the total cost of evaluating the entire expressio
whatever assumptions you wish about the number of available main-
buffers and the sizes of relations mentioned in E and F.

16.6 Choosing an Order for Joins

s Ty specific assumptions about the join
to be used, we can estimate disk 1/0’s, instead of relying on the simpler, but les
counts of tuples as our cost measure.

v COMPILER

of R, the cost
e best available

' Rl and R2a we
ple 16.33.

is based on the
, for each set of
ut several costs.
least cost of pro-
ing that relation
eresting sorts in-
or that could be
order desired by
f sort-join, either
e without consid-
ast as good as the

Join Order

1 of dynamic pro-
itial in the number
othod like dynamic
oin orders of five or
yond that, or if we
search, then we can

hm, where we make
“ktrack or reconsider
n that only selects &
we want to keep the
the tree.

join size i8 smallest.

cluded in the current

yields the relation of
current tree as its left

the relations of Exam-
that have the smallgst
o the join T > U, with

next. Thus we compare -
16.34 tells us that the

16.6. CHOOSING AN ORDER FOR JOINS

Join Selectivity

A useful way to view heuristics such as the greedy algorithm for selecting
a left-deep join tree is that each relation R, when joined with the current
tree, has a selectivity, which is the ratio of the size of the join result to size
of the current tree’s result. Since we usually do not have the exact sizes
of either relation, we estimate these sizes as we have done previously. A
greedy approach to join ordering is to pick that relation with the smallest
selectivity.

For example, if a join attribute is a key for R, then the selectivity
is at most 1, which is usually a favorable situation. Notice that, judging
from the statistics of Fig. 16.31, attribute d is a key for U, and there are

no keys for other relations, which suggests why joining 7' with U is the
best way to start the join.

latter, with a size of 2000 is better than the former, with a size of 10,000. Thus,
we pick as the new current tree (T < U) < S.

Now there is no choice; we must join R at the last step, leaving us with

a total cost of 3000, the sum of the sizes of the two intermediate relations.

Note that the tree resulting from the greedy algorithm is the same as that
selected by the dynamic-programming algorithm in Example 16.33. However,

 there are examples where the greedy algorithm fails to find the best solution,

while the dynamic-programming algorithm guarantees to find the best; see Ex-

_ercise 16.6.4. O

16.6.7 Exercises for Section 16.6

Exercise 16.6.1: For the relations of Exercise 16.4.1, give the dynamic-pro-
gramming table entries that evaluates all possible join orders allowing: a) Left-
deep trees only. b) All trees What is the best choice in each case?

Exercise 16.6.2: Repeat Exercise 16.6.1 with the following modifications:
i. The schema for Z is changed to Z(d, a).
i, V(Z,a) = 50.
Exercise 16.6.3: Repeat Exercise 16.6.1 with the relations of Exercise 16.4.2.

Exercise 16.6.4: Consider the join of relations R(a,b), S(b,c), T(c,d), and
U(a,d), where R and U each have 1000 tuples, while S and T each have 200

tuples. Further, there are 200 values of all attributes of all relations, except for
attribute ¢, where V(S,¢) = V(T,c) = 20.

~a) What is the order selected by the greedy algorithm? What is its cost?

826 CHAPTER 16. THE QUERY CO

b) What is the optimum join ordering and its cost?

! Exercise 16.6.5: Suppose we wish to join the relations R, S, T, an
one of the tree structures of Fig. 16.30, and we want to keep all int
ate relations in memory until they are no longer needed. Following o
assumption, the result of the join of all four will be consumed by som
process as it is generated, so no memory is needed for that relation.
of the number of blocks required for the stored relations and the interm
relations [e.g., B(R) or B(R < S)], give a lower bound on M, the nu
blocks of memory needed, for each of the trees in Fig. 16.30? What assu
let us conclude that one tree is certain to use less memory than anothe

! Exercise 16.6.6: If we use dynamic programming to select an order
join of £ relations, how many entries of the table do we have to fill?

Exercise 16.6.7: How many trees are there for the join of (a) eight (
relations? How many of these are neither left-deep nor right-deep?
16.7 Completing the Physical-Query-Plan
We have parsed the query, converted it to an initial logical query pl

improved that logical query plan with transformations described in Sectici
Part of the process of selecting the physical query plan is enumeration an

of several relations. By extension, we can use similar techniques to orde
of unions, intersections, or any associative /commutative operation.

There are still several steps needed to turn the logical plan into a co
physical query plan. The principal issues that we must yet cover are:

1. Selection of algorithms to implement the operations of the que
when algorithm-selection was not done as part of some earlier step
as selection of a join order by dynamic programming.

2. Decisions regarding when intermediate results will be materializec
ated whole and stored on disk), and when they will be pipelined (

only in main memory, and not necessarily kept in their entirety
one time).

3. Notation for physical-query-plan operators, which must include
regarding access methods for stored relations and algorithms for
mentation of relational-algebra operators.

We shall not discuss the subject of selection of algorithms for ope
in its entirety. Rather, we sample the issues by discussing two of thi
important operators: selection in Section 16.7.1 and joins in Section

838 CHAPTER 16. THE QUERY COMPIL

3. Execute all nodes of each subtree using a network of iterators. Th
the nodes in one subtree are executed simultaneously,

with GetNext
among their operators determining the exact order of

events.

Following this strategy, the query optimizer can now generate executable
perhaps a sequence of function calls, for the query.

16.7.8 Exercises for Section 16.7

Exercise 16.7.1: Consider a relation R(
on a and nonclustering indexes on each o
parameters are: B(R) = 500, T(R) = 5000, V(R, a) = 50, V(R,b) =
V(R,c) = 5000, and V(R,d) = 500. Give the best query plan (inde

or table-scan followed by a filter step) and the disk-I/O cost for each of
following selections:

a,b,c,d) that has a clustering
f the other attributes. The rele

a) Ga=1 AND p=2 AND e>3(R).
b) Ga=1 aw b<2 amp c>3(R).
€) Oa=1 AND b=2 awD 4=3(R).

Exercise 16.7.2: How would the conclusions about when to pipeline i

ample 16.36 change if the size of relation R were not 5000 blocks, but: (a)
blocks ! (b) 100 blocks ! (c) 10,000 blocks?

! Exercise 16.7.3: In terms of B(R), T(R), V(R,z), and V (R, y), expres
following conditions about the cost of implementing a selection on R:

a) It is better to use index-scan with a nonclustering index on z and a.

tant than a clustering index on y and a term
equates y to a constant.

b) It is better to use index-scan with a nonclustering index on z and a :
that equates z to a constant than a clustering index on y and a ter
the form y > C for some constant C.

¢) It is better to use index-scan with a nonclustering index on z and

that equates = to a constant than a nonclustering index on y and a
that equates y to a constant.

! Exercise 16.7.4: Suppose we want to compute (R(a,b) > S(a,) =T

in the order indicated. We have M = 101 main-memory buffers, and B(F
B(S) = 2000. Because the join attribute a is the same for both Jjoins, we d
to implement the first join R 01 S by a two-pass sort-join, and we sha

e estimate

COMPILER

yrs. Thus, all
tetNext calls
S.

cutable code,

1stering index

The relevant
R,b) = 1000,
n (index-scan
or each of the

pipeline in Ex-
5, but: (a) 1000

1), express the
on R:

yn £ and a term
and a term that

on z and a term
y and a term of

on x and a term

on y and a term.

(a, c)) > T'(a,d)

ers, and B(R) =

) joins, we decide
and we shall use

ding T into some

ted and pipelined

should we choose

16.8. SUMMARY OF CHAPTER 16 839

a) A one-pass join; i.e., we read T" into memory, and compare its tuples with

the tuples of R S as they are generated.

b) A two-pass join; i.e., we create sorted sublists for T and keep one buffer

in memory for each sorted sublist, while we generate tuples of R« S.

16.8 Summary of Chapter 16

+ Compilation of Queries: Compilation turns a query into a physical query

plan, which is a sequence of operations that can be implemented by the
query-execution engine. The principal steps of query compilation are
parsing, semantic checking, selection of the preferred logical query plan
(algebraic expression), and generation from that of the best physical plan.

The Parser: The first step in processing a SQL query is to parse it, as
one would for code in any programming language. The result of parsing
is a parse tree with nodes corresponding to SQL constructs.

View Ezpansion: Queries that refer to virtual views must have these
references in the parse tree replaced by the tree for the expression that
defines the view. This expansion often introduces several opportunities
to optimize the complete query.

Semantic Checking: A preprocessor examines the parse tree, checks that
the attributes, relation names, and types make sense, and resolves at-
tribute references.

Conversion to a Logical Query Plan: The query processor must convert
the semantically checked parse tree to an algebraic expression. Much
of the conversion to relational algebra is straightforward, but subqueries
present a problem. One approach is to introduce a two-argument selection
that puts the subquery in the condition of the selection, and then apply
appropriate transformations for the common special cases.

Algebraic Transformations: There are many ways that a logical query plan
can be transformed to a better plan by using algebraic transformations.
Section 16.2 enumerates the principal ones.

Choosing o Logical Query Plan: The query processor must select that
query plan that is most likely to lead to an efficient physical plan. In
addition to applying algebraic transformations, it is useful to group asso-
ciative and commutative operators, especially joins, so the physical query
plan can choose the best order and grouping for these operations.

Estimating Sizes of Relations: When selecting the best logical plan, or
when ordering joins or other associative-commutative operations, we use
the estimated size of intermediate relations as a surrogate for the true

	p767
	p768
	p780
	p781
	p791
	p792
	p802
	p803
	p813
	p814
	p825
	p826
	p838
	p839

