s without
state must
1eW, equal

arithmetic
"B to their

ITE(B,t);

UT steps tO
steps of T
We assume
ies of A and
,re indicated

B

8
8
8
8
8
8
8

16

v and disk

ommand for the
Jue of A is also
ress space. Lhe
or on disk. The
) disk. The next
and B to disk.

y of the database

cuted, then there
), and consistency
UT () but before

nts, -8 the number
\e by more than 10%,
the bank.

17.2. UNDO LOGGING 851

QUTPUT (B), then the database is left in an inconsistent state. We cannot prevent
this situation from ever occurring, but we can arrange that when it does occur,

_ the problem can be repaired — either both A and B will be reset to 8, or both
will be advanced to 16. O

17.1.5 Exercises for Section 17.1

Exercise 17.1.1: Suppose that the consistency constraint on the database is

0 < A < B. Tell whether each of the following transactions preserves consis-
tency.

a) B := A+B; A := A+B;
b) A := B+1; B := A+1;

c) A := A+B; B := A+B;

Exercise 17.1.2: For each of the transactions of Exercise 17.1.1, add the

ead- and write-actions to the computation and show the effect of the steps on
ain memory and disk. Assume that initially A = 50 and B = 25. Also, tell
hether it is possible, with the appropriate order of OUTPUT actions, to assure
hat consistency is preserved even if there is a crash while the transaction is

7.2 Undo Logging

log is a file of log records, each telling something about what some transaction
s done. If log records appear in nonvolatile storage, we can use them to
store the database to a consistent state after a system crash. Our first style
logging — undo logging — makes repairs to the database state by undoing
e effects of transactions that may not have completed before the crash.
Additionally, in this section we introduce the basic idea of log records, in-
1ding the commit (successful completion of a transaction) action and its effect
the database state and log. We shall also consider how the log itself is cre-
d in main memory and copied to disk by a “flush-log” operation. Finally,
examine the undo log specifically, and learn how to use it in recovery from
rash. In order to avoid having to examine the entire log during recovery, we
yduce the idea of “checkpointing,” which allows old portions of the log to

.1 Log Records

agine the log as a file opened for appending only. As transactions execute,

og manager has the job of recording in the log each important event. One
k of the log at a time is filled with log records, each representing one of
e events. Log blocks are initially created in main memory and are allocated

862

CHAPTER 17. COPING WITH SYSTEM FAII

10 aswego. O

17.2.6 Exercises for Section 17.2

Exercise 17.2.1: For each of the sequences of log records representis
actions of one transaction 7', tell all the sequences of events that a
according to the rules of undo logging, where the events of interest a
writing to disk of the blocks containing database elements, and the b
the log containing the update and commit records. You may assume t
records are written to disk in the order shown; i.e., it is not possible t
one log record to disk while a previous record is not written to disk.

a) <START T'>; <T, A,10>; <T, B,20>; <COMMIT T">;
b) <START T'>; <T, A,10>; <T,B,20>; <T,C, 30><COMMIT T>;

! Exercise 17.2.2: The pattern introduced in Exercise 17.2.1 can be e
to a transaction that writes new values for n database elements. How

legal sequences of events are there for such a transaction, if the und
rules are obeyed?

Exercise 17.2.3: The following is a sequence of undo-log records writ
two transactions 7' and U: <START U>; <U, 4,10>; <START T>; <T,.
<U,C,30>; <T,D,40>; <COMMIT T>; <U, E,50>; <COMMIT U>. D
the action of the recovery manager, including changes to both disk and t
if there is a crash and the last log record to appear on disk is:

(a) <START T> (b) <COMMIT T> (c) <U,E,50> (d) <COMMIT

Exercise 17.2.4: For each of the situations described in Exercise 17.2.3

values written by T and U must appear on disk? Which values might :
on disk?

! Exercise 17.2.5: Suppose that the transaction U in Exercise 17.2.3 is
so that the record <U, D, 40> becomes <U, A,40>. What is the effec
disk value of 4 if there is a crash at some point during the sequence of

What does this example say about the ability of logging by itself to pr
atomicity of transactions?

Exercise 17.2.6: Show the undo-log records for each of the transaction
each T') of Exercise 17.1.1, assuming that initially 4 = 50 and B =25.

Exercise 17.2.7: Consider the following sequence of log records: <STA
<S, A,60>; <COMMIT S>; <START T>; <T, A,10>; <START U>; <U,B
<T,C,30>; <START V'>; <U, D,40>; <V, F,70>; <COMMIT U>; <T,
<COMMIT T>; <V, B,80>; <COMMIT V>. Suppose that we begin a no
cent checkpoint immediately after one of the following log records h
written (in memory):

' FAILURES 17.3. REDO LOGGING

(a) <S,A4,60> (b) <T,A4,10> (c) <U,B,20>
(d) <U,D,40> (e) <T,E,50>

For each, tell:

resenting the
hat are legal
erest are the 1. For each possible point at which a crash could occur, how far back in the
the blocks of , log we must look to find all possible incomplete transactions.

sume that log

ssible to write

ok | 17.3 Redo Logging

i. When the <END CKPT> record is written, and

Undo logging has a potential problem that we cannot commit a transaction

_without first writing all its changed data to disk. Sometimes, we can save disk

_ /O’s if we let changes to the database reside only in main memory for a while.

1 be extended ' ‘ As long as there is a log to fix things up in the event of a crash, it is safe to do

ts. How many ' 9.

e undo-logging The requirement for immediate backup of database elements to disk can
e avoided if we use a logging mechanism called redo logging. The principal
ifferences between redo and undo logging are:

r 1>

syrds written by ‘ ,
>: <T,B,20>; 1. While undo logging cancels the effect of incomplete transactions and ig-

U>. Describe
isk and the log;

COMMIT U>.

nores committed ones during recovery, redo logging ignores incomplete
transactions and repeats the changes made by committed transactions.

. While undo logging requires us to write changed database elements to

disk before the COMMIT log record reaches disk, redo logging requires that

the COMMIT record appear on disk before any changed values reach disk.
cise 17.2.3, what

es might appear : 3. While the old values of changed database elements are exactly what we
’ need to recover when the undo rules U; and U, are followed, to recover

i using redo logging, we need the new values instead.
17.2.3 is changed

h _ .
;fjnigi(}t;z;s? , 7.3.1 The Redo-Logging Rule

itself to preserv | redo logging the meaning of a log record <7, X, v> is “transaction T' wrote

’ w value v for database element X.” There is no indication of the old value

. g X in this record. Every time a transaction 7' modifies a database element

transactions (¢ a record of the form <T', X, v> must be written to the log.

d B = 25. For redo logging, the order in which data and log entries reach disk can be

rds: <START S>; ' ribed by a single “redo rule,” called the write-ahead logging rule.

U>; <U, B,20>; o S

U <T. E,50>; R1: Before modifying any 'da,tabase' elemer‘lt X on disk, 1’F is necessary that
’ all log records pertaining to this modification of X, including both the

update record <T, X,v> and the <COMMIT T> record, must appear on

disk.

begin a nonquies-
records has been

868 CHAPTER 17. COPING WITH SYSTEM F.

<START CKPT (T7,...

b

previous <END CKPT> record, find its matching <START CKPT (S1;- k
record,* and redo all those committed transactions that either started
START CKPT or are among the S;’s.

Example 17.9: Consider again the log of Fig. 17.8. If a crash occur
end, we search backwards, finding the <END CKPT> record. We thus kn.
it is sufficient to consider as candidates to redo all those transactions th:
started after the <START CKPT (7)> record was written or that are
(i.e., Tb). Thus, our candidate set is {T2,T5}. We find the records <COM
and <COMMIT T3>, so we know that each must be redone. We searc
far back as the <START 75> record, and find the update records <7
<T3,C,15>, and <T3, D,20> for the committed transactions. Since
know whether these changes reached disk, we rewrite the values 10,1
for B, C, and D, respectively. ‘

Now, suppose the crash occurred between the records <COMMIT
<COMMIT T3>. The recovery is similar to the above, except that T} is
a committed transaction. Thus, its change <T35,D,20> must not b
and no change is made to D during recovery, even though that log re
the range of records that is examined. Also, we write an <ABORT T
to the log after recovery.

Finally, suppose that the crash occurs just prior to the <END CKPT
In principal, we must search back to the next-to-last START CKPT re
get its list of active transactions. However, in this case there is n ,
checkpoint, and we must go all the way to the beginning of the log.
identify 77 as the only committed transaction, redo its action <Tj,
write records <ABORT 75> and <ABORT T3> to the log after recover ;

Since transactions may be active during several checkpoints, it is c
to include in the <START CKPT (77, ... ,T;)> records not only the na
active transactions, but pointers to the place on the log where they sta
doing so, we know when it is safe to delete early portions of the log.
write an <END CKPT>, we know that we shall never need to look bac
than the earliest of the <START 7> records for the active transactions

anything prior to that START record may be deleted.

17.3.5 Exercises for Section 17.3

Exercise 17.3.1: Show the redo-log records for each of the transac
each T') of Exercise 17.1.1, assuming that initially A = 50 and B =2

4There is a small technicality that there could be a START CKPT record that,
previous crash, has no matching <END CKPT> record. Therefore, we must look
the previous START CKPT, but first for an <END CKPT> and then the previous §

EM FAILURES 7.4.. UNDO/REDO LOGGING

xercise 17.3.2: Using the data of Exercise 17.2.7, answer for each of the
positions (a) through (e) of that exercise:

wrt of this check-
rch back to the
T (S1,--->Sm)>
started after that

4. At what points could the <END CKPT> record be written, and

11. For each possible point at which a crash could occur, how far back in the
log we must look to find all possible incomplete transactions. Consider
both the case that the <END CKPT> record was or was not written prior

wsh occurs at the to the crash.

e thus know that
ctions that either
hat are on its list
rds <COMMIT T5>>
, search the log as
ords <75, B,10>,
s. Since we don’t
1es 10, 15, and 20

Exercise 17.3.3: Repeat Exercise 17.2.1 for redo logging.
ercise 17.3.4: Repeat Exercise 17.2.3 for redo logging.

xercise 17.3.5: Repeat Exercise 17.2.4 for redo logging.

.4 Undo/Redo Logging

~COMMIT T»> and
hat T is no longer
15t not be redone
at log record is in
ABORT 75> record

e have seen two different approaches to logging, differentiated by whether the
g holds old values or new values when a database element is updated. Each
as certain drawbacks:

o Undo logging requires that data be written to disk immediately after a
transaction finishes, perhaps increasing the number of disk I/0’s that
need to be performed.

END CKPT> record.
T CKPT record and
Jere is no previous
" the log. Thus, we
on <T17 A7 5>7 a‘nd
r recovery. B

On the other hand, redo logging requires us to keep all modified blocks
in buffers until the transaction commits and the log records have been
flushed, perhaps increasing the average number of buffers required by
transactions.

nts, it is convenient
ly the names of the
re they started. By
f the log. When we
0 look back further
wnsactions T;. Thus

Both undo and redo logs may put contradictory requirements on how
buffers are handled during a checkpoint, unless the database elements are
complete blocks or sets of blocks. For instance, if a buffer contains one
database element A that was changed by a committed transaction and
another database element B that was changed in the same buffer by a
transaction that has not yet had its COMMIT record written to disk, then
we are required to copy the buffer to disk because of A but also forbidden
to do so, because rule R; applies to B.

he transactions (ca!
and B = 25.
ecord that, because of a

e must look not just for
previous START CKPT.

shall now see a kind of logging called undo/redo logging, that provides
reased flexibility to order actions, at the expense of maintaining more infor-

874 CHAPTER 17. COPING WITH SYSTEM F.

17.4.4 Exercises for Section 17.4

Exercise 17.4.1: For each of the sequences of log records repres
actions of one transaction 7T, tell all the sequences of events that
according to the rules of undo/redo logging, where the events of inter
writing to disk of the blocks containing database elements, and the
the log containing the update and commit records. You may assum
records are written to disk in the order shown; i.e., it is not possibl
one log record to disk while a previous record is not written to disk.

a) <START T>; <T, 4,10,11>; <T, B, 20, 21>; <COMMIT T>:

b) <START T>; <T, 4,10,21>; <T, B,20,21>; <T, C, 30, 31>;
<COMMIT T'>;

Exercise 17.4.2: The following is a sequence of undo /redo-log rec
ten by two transactions 7" and U: <START U>; <U, A,10,11>; <8
<T,B,20,21>; <U,C, 30,31>; <T,D,40,41>; <COMMIT T">; <U,E
<COMMIT U>. Describe the action of the recovery manager, includin
to both disk and the log, if there is a crash and the last log record
on disk is:

(a) <START T> (b) <COMMIT T> (c) <U, E, 50,51> (d). <comm

Exercise 17.4.3: For each of the situations described in Exercise 17
values written by 7" and U must appear on disk? Which values mig
on disk?

<COMMIT U>; <T,E,50,51>; <COMMIT T'>; <V, B, 21,22>: <COMN
Suppose that we begin a nonquiescent checkpoint immediately after o
following log records has been written (in memory):

(a) <S,4,60,61> (b) <T, A4,61,62> (c) <U, B,20,21>
(d) <U,D,40,41> (e) <T, E,50,51>

For each, tell:
i. At what points could the <END CKPT> record be written, and

. For each possible point at which a crash could occur, how far ba
log we must look to find all possible incomplete transactions.
both the case that the <END CKPT> record was or was not writ
to the crash.

Exercise 17.4.5: Show the undo/redo-log records for each of the tra
(call each T') of Exercise 17.1.1, assuming that initially A = 50 and B

\ILURES

beginning

in Exam-
B) and Tz
7.13 shows

isual that a
in progress,
nethod that

he database ’,,

reached the

lowing steps:

atabase from

ase according

»d of recovery

mp of Exam-
sume, to make
, not include a
record shown

17.6. SUMMARY OF CHAPTER 17 879

in that figure. The database is first restored to the values in the archive, which

is, for database elements A, B, C, and D, respectively, (1,2,6,4).

Now, we must look at the log. Since T> has completed, we redo the step

that sets C to 6. In this example, C already had the value 6, but it might be
that:

a) The archive for C was made before T5 changed C, or

b) The archive actually captured a later value of C, which may or may not
have been written by a transaction whose commit record survived. Later
in the recovery, C' will be restored to the value found in the archive if the
transaction was committed.

Since Ty does not have a COMMIT record, we must undo Ty. We use the log
records for T} to determine that A must be restored to value 1 and B to 2. It
‘happens that they had these values in the archive, but the actual archive value
could have been different because the modified A and/or B had been included

n the archive. O

7.5.4 Exercises for Section 17.5

xercise 17.5.1: If a redo log, rather than an undo/redo log, were used in
xamples 17.14 and 17.15:

a) What would the log look like?

! b) If we had to recover using the archive and this log, what would be the
consequence of T; not having committed?

¢) What would be the state of the database after recovery?

’ 7.6 Summary of Chapter 17

4 Transaction Management: The two principal tasks of the transaction
manager are assuring recoverability of database actions through logging,
and assuring correct, concurrent behavior of transactions through the
scheduler (discussed in the next chapter).

Database Elements: The database is divided into elements, which are typ-
ically disk blocks, but could be tuples or relations, for instance. Database
elements are the units for both logging and scheduling.

Logging: A record of every important action of a transaction — beginning,
changing a database element, committing, or aborting — is stored on a
log. The log must be backed up on disk at a time that is related to
‘when the corresponding database changes migrate to disk, but that time
depends on the particular logging method used.

