'Y CONTROL

tailed behavior

s from Fig. 18.6
F multiplying A
ogardless of the
from the serial
serial schedule;

n itself with the
mnsactions often

uage as well as
y say for certain

see the read and
tabase elements
simplify the job

s given a valu
t no arithmeti

A+100+ 200

s are carried out
ere is somethin
ate inconsisten

18.1. SERIAL AND SERIALIZABLE SCHEDULES

18.1.5 A Notation for ’I‘ransactidns and Schedules

If we assume “no coincidences,” then only the reads and writes performed by
the transaction matter, not the actual values involved. Thus, we shall represent
transactions and schedules by a shorthand notation, in which the actions are
rr(X) and wr(X), meaning that transaction T reads, or respectively writes,
database element X. Moreover, since we shall usually name our transactions
N, T,... , we adopt the convention that r; (X) and w;(X) are synonyms for
1, (X) and wr, (X), respectively.

Example 18.5: The transactions of Fig. 18.2 can be written:

Ti: m1(A); wi(A); r1(B); wyi(B);
T3: r2(A); wa(A); r2(B); wa(B);

As another example,

r1(A); wi(A); r2(A); wa(4); 71(B); wi(B); r2(B); wa(B);
s the serializable schedule from Fig. 18.5. O

- To make the notation precise:

1. An action is an expression of the form r;(X) or w; (X), meaning that
transaction T; reads or writes, respectively, the database element X.

2. A transaction T; is a sequence of actions with subscript 4.

3. A schedule S of a set of transactions 7 is a sequence of actions, in which
for each transaction T; in 7, the actions of T; appear in S in the same
order that they appear in the definition of 7} itself. We say that S is an
interleaving of the actions of the transactions of which it is composed.

r instance, the schedule of Example 18.5 has all the actions with subscript
appearing in the same order that they have in the definition of T1, and the
tions with subscript 2 appear in the same order that they appear in the
finition of T.

.1.6 Exercises for Section 18.1

rcise 18.1.1: A transaction T3, executed by an airline-reservation system,
orms the following steps:

- The customer is queried for a desired flight time and cities. Information
about the desired flights is located in database elements (perhaps disk
blocks) A and B, which the system retrieves from disk.

The customer is told about the options, and selects a flight whose data,
including the number of reservations for that flight is in B. A reservation
on that flight is made for the customer.

890 CHAPTER 18. CONCURRENCY CON

174. The customer selects a seat for the flight; seat data for the fli
database element C.

. The system gets the customer’s credit-card number and appends
for the flight to a list of bills in database element D.

v. The customer’s phone and flight data is added to another list ond
element E for a fax to be sent confirming the flight.

Express transaction 7 as a sequence of 7 and w actions.

! Exercise 18.1.2: If two transactions each consist of 5 actions, ho
interleavings of these transactions are there?

18.2 Conflict-Serializability

Schedulers in commercial systems generally enforce a condition, called “c
serializability,” that is stronger than the general notion of serializabilit
duced in Section 18.1.3. Tt is based on the idea of a conflict: a pair of cons
actions in a schedule such that, if their order is interchanged, then the b
of at least one of the transactions involved can change. '

18.2.1 Conflicts

To begin, let us observe that most pairs of actions do not conflict.
follows, we assume that 7} and T} are different transactions; i.e., #73.

L. r(X); 7;(Y) is never a conflict, even if X = Y. The reason is that
of these steps change the value of any database element.

- 7i(X); w;(Y) is not a conflict provided X # Y. The reason is that
T write Y before T} reads X, the value of X is not changed. Al
read of X by T; has no effect on Tj, so it does not affect the val
writes for V.

3. wi(X); r;(Y) is not a conflict if X # V', for the same reason as (2
4. Similarly, w;(X); w;(Y) is not a conflict as long as X #Y.

On the other hand, there are three situations where we may not swap the
of actions:

a) Two actions of the same transaction, e.g., ri(X); w;(Y), always cc
The reason is that the order of actions of a single transaction ar
and may not be reordered.

Y CONTROL

Example 18.7
r transactions
it it is indeed
h of the three

'3 (A);

ts, first notice
y three swaps
vening actions
, position just
L is S, O

95(B);

forward three
nly the prece-
[lly T <s: TS
s, T1 [because
h of Fig. 18.10

ict-serializable

s not conflict-
would have to

lule exists. O

S

Ty, then in
se of T, which

which therefor
because of th

f we can do so
edence graph i

18.2. CONFLICT-SERIALIZABILITY

BASIS: If n = 1, i.e., there is only one transaction in the schedule, then the
schedule is already serial, and therefore surely conflict-serializable.

INDUCTION: Let the schedule S consist of the actions of n transactions

-

We suppose that S has an acyclic precedence graph. If a finite graph is acyclic,
then there is at least one node that has no arcs in; let the node 4 corresponding
to transaction T; be such a node. Since there are no arcs into node ¢, there can
be no action 4 in S that:

1. Involves any transaction T} other than T,

2. Precedes some action of T;, and

- 3. Conflicts with that action.

or if there were, we should have put an arc from node j to node i in the

5

It is thus possible to swap all the actions of T;, keeping them in order, but
1oving them to the front of S. The schedule has now taken the form

(Actions of T;)(Actions of the other n — 1 transactions)

t us now consider the tail of S — the actions of all transactions other than
Since these actions maintain the same relative order that they did in S, the
cedence graph for the tail is the same as the precedence graph for S, except

hat the node for T; and any arcs out of that node are missing.

Since the original precedence graph was acyclic, and deleting nodes and arcs

annot make it cyclic, we conclude that the tail’s precedence graph is acyclic.
oreover, since the tail involves n — 1 transactions, the inductive hypothesis
plies to it. Thus, we know we can reorder the actions of the tail using
al swaps of adjacent actions to turn it into a serial schedule. Now, S itself

s been turned into a serial schedule, with the actions of T; first and the
ions of the other transactions following in some serial order. The induction

complete, and we conclude that every schedule with an acyclic precedence

h is conflict-serializable.

2.4 Exercises for Section 18.2

rcise 18.2.1: Below are two transactions, described in terms of their effect
wo database elements A and B, which we may assume are integers.

. READ(A,t); t:=t+2; WRITE(A,t); READ(B,t); t:=t*3; WRITE(B,t);
READ(B,s); s:=s*2; WRITE(B,s); READ(A,s); s:=s+3; WRITE(A,s);

896 CHAPTER 18. CONCURRENCY CONTR

We assume that, whatever consistency constraints there are on the datab
these transactions preserve them in isolation. Note that A = B is not
consistency constraint.

a) Give examples of a serializable schedule and a nonserializable schedu
the 12 actions above.

b) How many serial schedules of the 12 actions are there?
!! ¢) How many serializable schedules of the 12 actions are there?

d) It turns out that both serial orders have the same effect on the datab
that is, (T1,7T%) and (7»,T}) are equivalent. Demonstrate this fact
showing the effect of the two transactions on an arbitrary initial data
state.

Exercise 18.2.2: The two transactions of Exercise 18.2.1 can be writter
our notation that shows read- and write-actions only, as:

Th: r1(A); wi(A); r1(B); wi(B);
Ts: r2(B); wa(B); ra(A); wa(A);

Answer the following:

a) Among the possible schedules of the eight actions above, how man
equivalent to the serial order (73, 7%)?

! b) How many schedules of the eight actions are conflict-equivalent t
serial order (T5,77)? '

!l ¢) How many schedules of the eight actions are equivalent (not necess
conflict-equivalent) to the serial schedule (1%, T3), assuming the tra
tions have the effect on the database described in Exercise 18.2.17

! d) Why are the answers to (c) above and Exercise 18.2.1(c) different?

! Exercise 18.2.3: Suppose the transactions of Exercise 18.2.2 are change
be:

T1: TI(A); wl(A); Tl(B); 'wl(B);
To: r2(A); w2 (A); r2(B); wa(B);

That is, the transactions retain their semantics from Exercise 1821, b
has been changed so A is processed before B. Give:

a) The number of serializable schedules, assuming the transactions ha
same effect on the database state as in Exercise 18.2.1.

b) The number of conflict-serializable schedules.

Y CONTROL

, the database,
- B is not the

able schedule of ,’

re?

yn the database;
ate this fact by
- initial database

an be written in

re, how many are

equivalent to the

t (not necessarily

ming the transac
cise 18.2.17

c) different?

2.2 are changed to

cise 18.2.1, but Th

snsactions have th
1.

3. ENFORCING SERIALIZABILITY BY LOCKS

xercise 18.2.4: Explain how, for any n > 1, one can find a schedule whose

cedence graph has a cycle of length n, but no smaller cycle.
ercise 18.2.5: For each of the following schedules:
a) ws(A); r1(A); wi(B); r2(B): w2(C); r3(C);
b) r1(A); r2(A); wi(B); wa(B); r1(B); m2(B); w2(C); wi(D);
©) 1(A); ra(4); 71(B); 72(B); ra(A); ra(B); wi(A); wa(B);
d) r1(A); 72(A); r3(B); wi(4); 2(C); 72(B); wa(B); wa(0);
) r1(A); wi(B); ra(B): w2(C); r3(C); wa(A);
nswer the following questions:
i. What is the precedence graph for the schedule?

i. Is the schedule conflict-serializable? If so, what are all the equivalent
serial schedules?

Are there any serial schedules that must be equivalent (regardless of what
the transactions do to the data), but are not conflict-equivalent?

ercise 18.2.6: Say that a transaction T precedes a transaction U in a sched-
if every action of T precedes every action of U in S. Note that if T and U
the only transactions in S, then saying T precedes U is the same as saying
t S is the serial schedule (T,U). However, if S involves transactions other
an T and U, then S might not be serializable, and in fact, because of the
ct of other transactions, S might not even be conflict-serializable. Give an
ample of a schedule S such that:

In S, Ty precedes T, and
.S is conflict-serializable, but

ii. In every serial schedule conflict-equivalent to S, Ty precedes T1.

3 Enforcing Serializability by Locks

this section we consider the most common architecture for a scheduler, one
hich “locks” are maintained on database elements to prevent unserializable
avior. Intuitively, a transaction obtains locks on the database elements it
sses to prevent other transactions from accessing these elements at roughly
same time and thereby incurring the risk of unserializability.
In this section, we introduce the concept of locking with an (overly) simple
ing scheme. In this scheme, there is only one kind of lock, which transac-
s must obtain on a database element if they want to perform any operation
tsoever on that element. In Section 18.4, we shall learn more realistic lock-
schemes, with several kinds of lock, including the common shared/exclusive
ts that correspond to the privileges of reading and writing, respectively.

"CONTROL 18.3. ENFORCING SERIALIZABILITY BY LOCKS

A Risk of Deadlock

One problem that is not solved by two-phase locking is the potential for
deadlocks, where several transactions are forced by the scheduler to wait
forever for a lock held by another transaction. For instance, consider the
9PL transactions from Example 18.11, but with 75 changed to work on B
first:

which it may
Ti: 11(A); r1(A); A 1= A+100; wi(A); lh(B); ui(A); r1(B); B := B+100;

w1 (B); u1(B);

ds and writes, ’ Ty: 15(B); r2(B); B := Bx2; wa(B); la(A); ua(B); ra(A); A := Ax2;
| write actions wa(A); ua(A);
d them as the

ocks before its A possible interleaving of the actions of these transactions is:

Ty T, A B

, and let T; be ‘ l(A); ri(A);
e S, say ui(X)- ls(B); r2(B);

f T; forward to A := A+100;

ads or writes.
d in S by some
1;(Y) and ;(Y)

B := Bx*2;
w1 (4);

wsy(B); 50
l1(B) Denied [3(A) Denied

Now, neither transaction can proceed, and they wait forever. In Sec-

tion 19.2, we shall discuss methods to remedy this situation. However,

is, S might look _observe that it is not possible to allow both transactions to proceed, since
' if we do so the final database state cannot possibly have A = B.

(YD)

) appears before
yssumed. While
writes, the same
one from T; and

nflict-equivalent serial schedule, and now all of S has been shown conflict-

e forward 3.5 Exercises for Section 18.3
ons of T;

nd write actions. ercise 18.3.1: Below are two transactions, with lock requests and the se-

That is, S can b . ntics of the transactions indicated. Recall from Exercise 18.2.1 that these
nsactions have the unusual property that they can be scheduled in ways that

ions) not conflict-serializable, but, because of the semantics, are serializable.

tion:

istent, 2PL trans - v L(A); Ti(A); A i= A+2; wi(A); wi(A); L(B); r1(B); B := Bx3; wi(B);

vert the tail to u1(B);

CHAPTER 18. CONCURRENCY CO:

Ty: 13(B); r2(B); B := B+2; wa(B); u2(B); l2(A); ra(A); A := A+3;
uz(A);

In the questions below, consider only schedules of the read and wnte
not the lock, unlock, or assignment steps.

a) Give an example of a schedule that is prohibited by the locks.

b) Of the (§) = 70 orders of the eight read and write actions, how m
legal schedules (i.e., they are permitted by the locks)?

!'¢) Of those schedules that are legal and serializable, how many are co
serializable?

d) Of the legal schedules, how many are serializable (according to
mantics of the transactions given)?

!''e) Since Ty and T are not two-phase-locked, we would expect th
nonserializable behaviors would occur. Are there any legal schedule
are unserializable? If so, give an example, and if not, explain why

Exercise 18.3.2: For each of the schedules of Exercise 18.2. 5, assum
each transaction takes a lock on each database element immediately bef
reads or writes the element, and that each transaction releases its locks i im
ately after the last time it accesses an element. Tell what the locking sch
would do with each of these schedules; i.e., what requests would get de
and when would they be allowed to resume?

Exercise 18.3.3: Here are the transactions of Exercise 18.3.1, with all
moved to the end so they are two-phase-locked.

Ti: L(A); mi(A); A == A+2; wy(A); I1(B); r1(B); B := B*3; w(B);
u1(B);

To: 12(B); m2(B); B := B*2; wz(B); la(A); ra(A); A := A+3; wy(A); u
uz(A);

How many legal schedules of all the read and write actions of these transa
are there?

Exercise 18.3.4: For each of the transactions described below, suppos
we insert one lock and one unlock action for each database element t
accessed.

a) r2(A); w2(A4); wa(B);
b) r1(A); w1 (B);

Tell how many orders of the lock, unlock, read, and write actions are:

Y CONTROL

= A+3; wa (A);

write actions,

cks.

how many are

ny are conflict-

-ding to the se-

pect that some
1 schedules that
lain why.

.5, assume that
diately before it
its locks immedi-
ocking scheduler
yuld get delayed,

, with all unlocks

3; wi (B); u1(4);

-3 'wz(A); 'u,2(B),

these transactions.

slow, suppose tha
se element that i

ctions are:

LOCKING SYSTEMS WITH SEVERAL LOCK MODES

i. Consistent and two-phase locked.
ii. Consistent, but not two-phase locked.
ii. Inconsistent, but two-phase locked.

iv. Neither consistent nor two-phase locked.

18.4 Locking Systems With Several Lock Modes

The locking scheme of Section 18.3 illustrates the important ideas behind lock-
ing, but it is too simple to be a practical scheme. The main problem is that a
transaction T must take a lock on a database element X even if it only wants
0 read X and not write it. We cannot avoid taking the lock, because if we
didn’t, then another transaction might write a new value for X while T' was
active and cause unserializable behavior. On the other hand, there is no reason
hy several transactions could not read X at the same time, as long as none is
lowed to write X.
- We are thus motivated to introduce the most common locking scheme, where
here are two different kinds of locks, one for reading (called a “shared lock” or
read lock”), and one for writing (called an “exclusive lock” or “write lock”).
e then examine an improved scheme where transactions are allowed to take
hared lock and “upgrade” it to an exclusive lock later. We also consider
increment locks,” which treat specially write actions that increment a database
lement; the important distinction is that increment operations commute, while
eneral writes do not. These examples lead us to the general notion of a lock
1eme described by a “compatibility matrix” that indicates what locks on a
tabase element may be granted when other locks are held.

.4.1 Shared and Exclusive Locks

e lock we need for writing is “stronger” than the lock we need to read,
ce it must prevent both reads and writes. Let us therefore consider a locking
heduler that uses two different kinds of locks: shared locks and exclusive locks.
r any database element X there can be either one exclusive lock on X, or no
clusive locks but any number of shared locks. If we want to write X, we need
ave an exclusive lock on X, but if we wish only to read X we may have
er a shared or exclusive lock on X. If we want to read X but not write it,
better to take only a shared lock.
We shall use sl;(X) to mean “transaction T; requests a shared lock on
abase element X” and zl;(X) for “T; requests an exclusive lock on X.” We
tinue to use u;(X) to mean that T; unlocks X; i.e., it relinquishes whatever
s) it has on X.
he three kinds of requirements — consistency and 2PL for transactions,
egality for schedules — each have their counterpart for a shared /exclusive
system. We summarize these requirements here:

'Y CONTROL 18.4. LOCKING SYSTEMS WITH SEVERAL LOCK MODES 913

sents a lock in We may move the last action, inc;(B), to the second position, since it does
~ not conflict with another increment of the same element, and surely does not
‘ conflict with a read of a different element. This sequence of swaps shows that
, for j # i, but S is conflict-equivalent to the serial schedule 71(A); inci(B); r2(A); inca(B);.
‘Similarly, we can move the first action, 71 (A4) to the third position by swaps,

giving a serial schedule in which T precedes T;. O

18.4.6 Exercises for Section 18.4

Exercise 18.4.1: For each of the schedules of transactions T3, T,
below:

r1(A); r2(B); r3(C); wi(B); we(C); wa(4);
r1(A); r2(B); r3(C); r1(B); r2(C); r3(D); w1(C); wa(D); w3 (E);

increment locks

ad database ele- r1(A); r2(B); r3(C); r1(B); r2(C); r3(A); wi(A); w2(B); ws(C);
r1(A); r2(B); r3(C); wi(B); w2(C); ws(D);
r1(A); r2(B); r3(C); 1(B); r2(C); 3(D); w1 (A); wa(B); ws(C);

erform an incre-

read while they
of Ty and To. T - Insert shared and exclusive locks, and insert unlock actions. Place a

wever, Ty is then shared 1(_)ck immediately in front of each read action that is not followed
' by a write action of the same element by the same transaction. Place
an exclusive lock in front of every other read or write action. Place the

necessary unlocks at the end of every transaction.

Tell what happens when each schedule is run by a scheduler that supports
shared and exclusive locks.

i. Insert shared and exclusive locks in a way that allows upgrading. Place
a shared lock in front of every read, an exclusive lock in front of every
write, and place the necessary unlocks at the ends of the transactions.

Tell what happens when each schedule from (4it) is run by a scheduler

tions and locks that supports shared locks, exclusive locks, and upgrading.

sts in Fig. 18.23 1 v. Insert shared, exclusive, and update locks, along with unlock actions.
rements B by 24 ‘ Place a shared lock in front of every read action that is not going to be
t change, and the ‘, upgraded, place an update lock in front of every read action that will be

» upgraded, and place an exclusive lock in front of every write action. Place
yck actions in the - unlocks at the ends of transactions, as usual.

Tell what happens when each schedule from (v) is run by a scheduler that
supports shared, exclusive, and update locks.

CHAPTER 18. CONCURRENCY CO

Exercise 18.4.2: For each of the following schedules, insert appropriat
(read, write, or increment) before each action, and unlocks at the ends of t
actions. Then tell what happens when the schedule is run by a scheduler
supports these three types of locks.

a) r1(A); r2(B); inci1(B); inca(A); w1 (C); wa(D);
b) inci(A); inca(B); inci(B); inca(C); wy (C); wa(D);
¢) r1(A); r2(B); inci (B); inca(C); wy (C); wa(D);

Exercise 18.4.3: In Exercise 18.1.1, we discussed a hypothetical transa
involving an airline reservation. If the transaction manager had available
shared, exclusive, update, and increment locks, what lock would you reco.
for each of the steps of the transaction?

Exercise 18.4.4: The action of multiplication by a constant factor
modeled by an action of its own. Suppose MC(X, c) stands for an atomic
tion of the steps READ(X,t); t := c*t; WRITE (X,t) ;. We can also intro
a lock mode that allows only multiplication by a constant factor.

a) Show the compatibility matrix for read, write, and multiplication
constant locks. :

!'b) Show the compatibility matrix for read, write, incrementation, and
iplication-by-a-constant locks.

-

Exercise 18.4.5: Consider the two transactions:

Th: r1(A); r1(B); inci(A); inci (B);
T: ry(A); r2(B); inca(A); inca(B);

Answer the following:

a) How many interleavings of these transactions are serializable?

b) If the order of incrementation in T, were reversed [i.e., incs(B) fo
by inc2(A)], how many serializable interleavings would there be?

o

Exercise 18.4.6: Suppose for sake of argument that database elements
two-dimensional vectors. There are four operations we can perform on vee
and each will have its own type of lock.

i. Change the value along the z-axis (an X-lock).

ii. Change the value along the y-axis (a Y-lock).

iii. Change the angle of the vector (an A-lock).

. Change the magnitude of the vector (an M-lock).

CONTROL

ypriate locks
nds of trans-
heduler that

1 transaction
wvailable to it
u recommend

actor can be
ytomic execu-
Wso introduce

lication-by-a-

on, and mult-

Hle?

co(B) followed
re be?

e elements ar
rm on vector

18.5. AN ARCHITECTURE FOR A LOCKING SCHEDULER

Answer the following questions.

a) Which pairs of operations commute? For example, if we rotate the vector
so its angle is 120° and then change the z-coordinate to be 10, is that
the same as first changing the z-coordinate to 10 and then changing the
angle to 120°7

Based on your answer to (a), what is the compatibility matrix for the four
types of locks?

Suppose we changed the four operations so that instead of giving new
values for a measure, the operations incremented the measure (e.g., “add
10 to the z-coordinate,” or “rotate the vector 30° clockwise”). What
would the compatibility matrix then be?

Exercise 18.4.7: Here is a schedule with one action missing:
r1(A); r2(B); 7775 w1 (C); wa(A);

our problem is to figure out what actions of certain types could replace the
? and make the schedule not be serializable. Tell all possible nonserializable

eplacements for each of the following types of action: (a) Read (b) Increment
) Update (d) Write.

18.5 An Architecture for a Locking Scheduler

aving seen a number of different locking schemes, we next consider how a
heduler that uses one of these schemes operates. We shall consider here only
simple scheduler architecture based on several principles:

1. The transactions themselves do not request locks, or cannot be relied
upon to do so. It is the job of the scheduler to insert lock actions into the
stream of reads, writes, and other actions that access data.

2. Transactions do not release locks. Rather, the scheduler releases the locks
when the transaction manager tells it that the transaction will commit or
abort.

.5.1 A Scheduler That Inserts Lock Actions

gure 18.24 shows a two-part scheduler that accepts requests such as read,
te, commit, and abort, from transactions. The scheduler maintains a lock
le, which, although it is shown as secondary-storage data, may be partially
completely in main memory. Normally, the main memory used by the lock
le is not part of the buffer pool that is used for query execution and logging.
ther, the lock table is just another component of the DBMS, and will be

e entry for
he request
e decision
18.26 is U,
or lock can
other locks
ed, and an
r mode was

would hap-
| or update
would have
e new lock
Whether or
oh its Tnext
entry in the
r t0 examine

is deleted. If
1d an S lock, -
_group mode.
) examine the
.26, we know
ased, the new
g) or nothing
ve know there
mine whether

or more locks
proaches, each

en waiting the
1ation where a

waiting. Then
nt an exclusiv

starvation, if a

e are no locks and

>lement.

 18.6. HIERARCHIES OF DATABASE ELEMENTS 921

3. Priority to upgrading: If there is a transaction with a U lock waiting to
upgrade it to an X lock, grant that first. Otherwise, follow one of the
other strategies mentioned.

18.5.3 Exercises for Section 18.5
Exercise 18.5.1: For each of the schedules of Exercise 18.2.5, tell the steps

that the locking scheduler described in this section would execute.

‘Exercise 18.5.2: What are suitable group modes for a lock table if the lock

modes used are:
a) Shared and exclusive locks.
1 b) Shared, exclusive, and increment locks.

‘y'y" ¢) The lock modes of Exercise 18.4.6.

8.6 Hierarchies of Database Elements

et us now return to the exploration of different locking schemes that we began
n Section 18.4. In particular, we shall focus on two problems that come up
‘hen there is a tree structure to our data.

1. The first kind of tree structure we encounter is a hierarchy of lockable
clements. We shall discuss in this section how to allow locks on both large
elements, e.g., relations, and smaller elements contained within these, such
as blocks holding several tuples of the relation, or individual tuples.

_ The second kind of hierarchy that is important in concurrency-control
systems is data that is itself organized in a tree. A major example is
B-tree indexes. We may view nodes of the B-tree as database elements,
but if we do, then as we shall see in Section 18.7, the locking schemes
studied so far perform poorly, and we need to use a new approach.

8.6.1 Locks With Multiple Granularity

ecall that the term “database element” was purposely left undefined, because

different systems use different gizes of database elements to lock, such as tuples,

ages or blocks, and relations. Some applications benefit from small database
ments, such as tuples, while others are best off with large elements.

xample 18.20: Consider a database for a bank. If we treated relations as
tabase elements, and therefore had only one lock for an entire relation such
“the one giving account balances, then the system would allow very little
ncurrency. Since most transactions will change an account balance either
ositively or negatively, most transactions would need an exclusive lock on the

NCY CONTROL 18.7. THE TREE PROTOCOL

18.6.4 Exercises for Section 18.6

Exercise 18.6.1: Change the sequence of actions in Example 18.22 so that the
w4 (D3) action becomes a write by Ty of the entire relation Movie. Then, show
the action of a warning-protocol-based scheduler on this sequence of requests.

orrectly

nt, there are some
ck existing items;
st but might later

Exercise 18.6.2: Consider, for variety, an object-oriented database. The ob-
jects of class C are stored on two blocks, By and Bs>. Block By contains objects
01, O, and O3, while block By contains objects O4 and Os. The entire set of
objects of class C, the blocks, and the individual objects form a hierarchy of
lockable database elements. Tell the sequence of lock requests and the response
of a warning-protocol-based scheduler to the following sequences of requests.
You may assume all requests occur just before they are needed, and all unlocks
occur at the end of the transaction.

a) 11(0s); w2(0s); r2(03); w1(O4);

b) r1(01); 11(0s); 72(01); w2(04); w2(0s);

) 71(01); wa(02); 72(03); w1 (O4);

d) 71(01); 72(03); r3(01); w1(03); w2(04); w3(0s); wi(02);

tion as in Exam-
 the query

ght start by getting
e tuples for Disney

; Disney movie. It
T, incorrect. That
ial order (Ts,T4) is
d also be some other
st, so there could be
. Exercise 18.6.3: Show how to add increment locks to a warning-protocol-
sting Disney movies, o scbedulor

he sum of the lengths
onsistency constraint.
all the lengths of the
|. Then the following

otocol:

13(X);
D3 by transaction T
, value of L is not the
urrent Disney movies
\d not Ty rules out th
Jlent serial order. O

18.7 The Tree Protocol

Like Section 18.6, this section deals with data in the form of a tree. However,
here, the nodes of the tree do not form a hierarchy based on containment.
_Rather, database elements are disjoint pieces of data, but the only way to get
_to anode is through its parent; B-trees are an important example of this sort of
ata. Knowing that we must traverse a particular path to an element gives us
ome important freedom to manage locks differently from the two-phase locking
pproaches we have seen so far.

18.7.1 Motivation for Tree-Based Locking

Let us consider a B-tree index in a system that treats individual nodes (i.e.,
blocks) as lockable database elements. The node is the right level of lock granu-
arity, because treating smaller pieces as elements offers no benefit, and treating
he entire B-tree as one database element prevents the sort of concurrent use
of the index that can be achieved via the mechanisms that form the subject of
this section.

. If we use a standard set of lock modes, like shared, exclusive, and update
ocks, and we use two-phase locking, then concurrent use of the B-tree is almost
impossible. The reason is that every transaction using the index must begin by

y movie has a phantqm;
because it didn’t exds
a simple way to avol
ertion or deletion of a

Thus, transaction T4
on Movie. Since T3 has
, is not compatible with
oS-

ore efficient just to get an

932 CHAPTER 18. CONCURRENCY C

the root and therefore appear on the list in that order. Thus, we ¢
serial order for the full set of transactions by starting with the transac
lock the root, in their appropriate order, and interspersing those tr
that do not lock the root in any order consistent with the serial order
subtrees.

Example 18.25: Suppose there are 10 transactions T, Ty, ..., 1%
these, Ty, T, and T3 lock the root in that order. Suppose also t
are two children of the root, the first locked by T7 through T% and the
locked by T, T, Ty, Ty, and Ty,. Hypothetically, let the serial ord
first subtree be (Ty, Ty, Ts, T»,Tg, T3, T7); note that this order must in
T, and T3 in that order. Also, let the serial order for the second sul
(T3, T5,To,T10,T3). As must be the case, the transactions T, and
locked the root, appear in this sequence in the order in which they]

\@ p

4

s
v
/

Figure 18.34: Combining serial orders for the subtrees into a serial ord
transactions

shown in Fig. 18.34. Solid lines represent constraints due to the ord
first child of the root, while dashed lines represent the order at the secon(
(T4, Ts, Th, Ts, Ty, To, T, Tho, T3,T7) is one of the many topological sorts
graph. O

18.7.4 Exercises for Section 18.7

Exercise 18.7.1: Suppose we perform the following actions on the
Fig. 14.13. If we use the tree protocol, when can we release a write-lock
of the nodes searched?

(a) Insert 4 (b) Insert 30 (c) Delete 37 (d) Delete 7.

Exercise 18.7.2: Consider the following transactions that operate on t]

of Fig. 18.30.

Ti: r1(A); r1(B); r1(E);
T: r2(A); m2(C); r2(B);
T5: r3(B); r3(E); r3(F);

sactions,

is not to s
ce, Sectior
ever uses

Y CONTROL

e can build a
nsactions that
e transactions
| order of their

.., Tho, and of
also that there
and the second
al order for the
qust include 71,
-ond subtree be
: a,nd T3’ Which
they locked the

),

serial ofder for all

ansactions are as

) the order at th
t the second child
ogical sorts of thi

s on the B-tree Qf
 write-lock on each

elete 7.

operate on the tr

18.8. CONCURRENCY CONTROL BY TIMESTAMPS 933

If schedules follow the tree protocol, in how many ways can we interleave:
(a) Ty and T3 (b) T and T3 ! (c) all three?

Exercise 18.7.3: Suppose we use the tree protocol with shared and exclusive
locks for reading and writing, respectively. Rule (2), which requires a lock on
the parent to get a lock on a node, must be changed to prevent unserializable
behavior. What is the proper rule (2) for shared and exclusive locks? Hint:
Does the lock on the parent have to be of the same type as the lock on the

child?

Exercise 18.7.4: Suppose there are eight transactions 11,75, ... ,Tg, of which
the odd-numbered transactions, T1, T3, Ts, and T%, lock the root of a tree, in

- that order. There are three children of the root, the first locked by 171, 15, T3,

and Ty in that order. The second child is locked by T3, Ts, and T5, in that
order, and the third child is locked by T3 and I7, in that order. How many
serial orders of the transactions are consistent with these statements?

18.8 Concurrency Control by Timestamps

ext, we shall consider two methods other than locking that are used in some
systems to assure serializability of transactions:

1. Timestamping. Assign a “timestamp” to each transaction. Record the
timestamps of the transactions that last read and write each database
element, and compare these values with the transactions timestamps, to
assure that the serial schedule according to the transactions’ timestamps
is equivalent to the actual schedule of the transactions. This approach is
the subject of the present section.

Validation. Examine timestamps of the transaction and the database
elements when a transaction is about to commit; this process is called
“validation” of the transaction. The serial schedule that orders transac-
tions according to their validation time must be equivalent to the actual
schedule. The validation approach is discussed in Section 18.9.

yth these approaches are optimistic, in the sense that they assume that no
serializable behavior will occur and only fix things up when a violation is
parent. In contrast, all locking methods assume that things will go wrong
less transactions are prevented in advance from engaging in nonserializable
havior. The optimistic approaches differ from locking in that the only rem-
v when something does go wrong is to abort and restart a transaction that
s to. engage in unserializable behavior. In contrast, locking schedulers de-

transactions, but do not abort them.® Generally, optimistic schedulers are

That is not to say that a system using a locking scheduler will never abort a transaction;
nstance, Section 19.2 discusses aborting transactions to fix deadlocks. However, a locking
duler never uses a transaction abort simply as a response to a lock request that it cannot

942 CHAPTER 18. CONCURRENCY CO.

18.8.7 Exercises for Section 18.8

Exercise 18.8.1: Below are several sequences of events, including start
where st; means that transaction T; starts. These sequences represent re
and the timestamp scheduler will allocate timestamps to transaction
order of their starts. Tell what happens as each executes.

a) st1; r1(A); sta; wa(B); r2(4); wi(B);

b) st1; sta; r1(A); r2(B); we(A); wi(B);

¢) sti; st; sta; r1(A); r3(B); wi(C); r2(B); 72(C); ws(B); wa(4);
d) st; sta; sts; r1(A); 73(B); wi(C); r2(B); r2(C); ws(B); wa(A4);

Exercise 18.8.2: We observed in our study of lock-based schedulers th
are several reasons why transactions that obtain locks could deadlock
timestamp scheduler using the commit bit C(X) have a deadlock?

Exercise 18.8.3: Tell what happens during the following sequences o
if a multiversion, timestamp scheduler is used. What happens insteac
scheduler does not maintain multiple versions?

a) st1; sta; st3; sty; wi(A); wz(A); r4(A); r2(A);
b) sty; sta; st3; sta; wi(A); wa(A); r3(A); wa(A);
c) sty; sta; stz; sta; wi(A); wa(A); ws(A); ra(A); ra(A);

18.9 Concurrency Control by Validation

Validation is another type of optimistic concurrency control, where we
transactions to access data without locks, and at the appropriate time we
that the transaction has behaved in a serializable manner. Validatio
from timestamping principally in that the scheduler maintains a record
active transactions are doing, rather than keeping read and write time
database elements. Just before a transaction starts to write values of d
elements, it goes through a “validation phase,” where the sets of eleme
read and will write are compared with the write sets of other active trans
Should there be a risk of physically unrealizable behavior, the transa
rolled back.

18.9.1 Architecture of a Validation-Based Schedule

When validation is used as the concurrency-control mechanism, the s
must be told for each transaction T the sets of database elements T re
writes, the read set, RS(T'), and the write set, WS(T'), respectively. Tran
are executed in three phases: ' '

948

CHAPTER 18. CONCURRENCY CON

e When a rollback is necessary, timestamps catch some problems
than validation, which always lets a transaction do all its internal
before considering whether the transaction must rollback.

18.9.4 Exercises for Section 18.9

Exercise 18.9.1: In the following sequences of events, we use R;i(X) to
“transaction T; starts, and its read set is the list of database elements X .

Vi means “T; attempts to validate,” and W;(X) means that “T; finishes
its write set was X.” Tell what happens when each sequence is process
validation-based scheduler.

a) Ri(A, B); Rz(B,C); Rs(C); Vi; Va; Va; Wi(A); Wa(B); Ws(C);
b) Ri(4, B); Ra(B, C); R3(C); Va; Va; Va; Wi (C); Wa(B); Wa(A);
¢) Ri(4, B); Ra(B,C); Rs(C); Va; Vas Va; Wa(A); Wa(C); Wa(B):
d) Ri(4, B); Ra(B, C); Vi; Rs(C, D); Va; Wi(A); Va; Wa(A); Ws(B)
¢) Bi(4, B); Ry(B,C); Vi; R3(C, D); Va; Wi(A); Va; Wa(A); Ws(D);
f) Ri(A, B); Ry(B,C); Vi; Rs(C, D); Va; W1(C); Va; Wa(A); Wa(D)

18.10 Summary of Chapter 18

4 Consistent Database States: Database states that obey whatever i
or declared constraints the designers intended are called consiste
is essential that operations on the database preserve consistency, t
they turn one consistent database state into another.

4+ Consistency of Concurrent Transactions: Tt is normal for several
actions to have access to a database at the same time. Transaction:
in isolation, are assumed to preserve consistency of the database. It
job of the scheduler to assure that concurrently operating trans
also preserve the consistency of the database.

4 Schedules: Transactions are broken into actions, mainly reading an

ing from the database. A sequence of these actions from one o
transactions is called a schedule.

4 Serial Schedules: If transactions execute one at a time, the schec
said to be serial. '

4 Serializable Schedules: A schedule that is equivalent in its effect

database to some serial schedule is said to be serializable. Interleay
actions from several transactions is possible in a serializable schedul
is not itself serial, but we must be very careful what sequences of a although th

