VIANAGEMENT ‘ 19.1. SERIALIZABILITY AND RECOVERABILITY 965

1 could be repre- _ 1. Our first step is to reconstruct the state of the database at the time of the
block where the crash, including blocks whose current values were in buffers and therefore
/0 or more times, , got lost. To do so:

r, should we need
the insertion into
er we had already

(a) Find the most recent checkpoint on the log, and determine from it
the set of transactions that were active at that time.

(b) For each log entry <L,T, A, B>, compare the log sequence number

und within blocks
annot associate a

we can do is place

N on block B with the log sequence number L for this log record.
If N < L, then redo action A; that action was never performed on
block B. However, if N > L, then do nothing; the effect of A was

here on block B.” ' already felt by B.

wind up with two ' (c¢) For each log entry that informs us that a transaction T started, com-

 block B with the ; mitted, or aborted, adjust the set of active transactions accordingly.
other database . .
;ir‘éen to disk. for 2. The set of transactions that remain active when we reach the end of the
T log must be aborted. To do so:

using a logical log, (a) Scan the log again, this time from the end back to the previous check-

point. Each time we encounter a record <L, T, A, B> for a transac-

. tion T that must be aborted, perform the compensating action for

at of the previous _ f A on block B and record in the log the fact that that compensating
orm <L, T, 4, B> ‘ action was performed.

If we must abort a transaction that began prior to the most recent
checkpoint (i.e., that transaction was on the active list for the check-
point), then continue back in the log until the start-records for all
such transactions have been found.

(c) Write abort-records in the log for each of the transactions we had to
abort.

.1.9 Exercises for Section 19.1

ercise 19.1.1: What are all the ways to insert locks (of a single type only,
in Section 18.3) into the sequence of actions

r1(A); r1(B); wi(A); wi(B);

base
ied on the databa that the transaction 73 is:

a) Two-phase locked, but not strict.

> number of the last b) Two-phase locked, and strict.

xercise 19.1.2: Suppose that each of the sequences of actions below is fol-
wed by an abort action for transaction 77. Tell which transactions need to be

cover after a crash

ime between restarts o




966 CHAPTER 19. MORE ABOUT TRANSACTION MANAG’

b) r3(A4); r2(A4); ri(A); wi(B); r3(B); r2(B); ws(C); r2(C);
¢) r3(A); r2(4); r1(A); w1 (B); ro(B); w3(C); r2(C);
d) r1(4); r3(B); w1 (B); w3(C); r2(B); r2(C); wa(D);

Exercise 19.1.3: Give an example of an ACR schedule with shared
clusive locks that is not strict.

Exercise 19.1.4: Consider each of the sequences of actions in Exerci
but now suppose that all three transactions commit and write their
record on the log immediately after their last action. However, a crash
and a tail of the log was not written to disk before the crash and is t
lost. Tell, depending on where the lost tail of the log begins:

;. What transactions could be considered uncommitted?

. Are any dirty reads created during the recovery process? If
transactions need to be rolled back?

1. What additional dirty reads could have been created if the porti
log lost was not a tail, but rather some portions in the middle?

! Exercise 19.1.5: Consider the following two transactions:

T1: w1 (A); wi(B); r1(C); 3
Ty: wa(A); r2(B); wa(C); co3

a) How many schedules of T} and T, are recoverable?
b) Of these, how many are ACR schedules?
c) How many are both ACR and serializable?

d) How many are both recoverable and serializable?

19.2 Deadlocks

Several times we have observed that concurrently executing transacti
compete for resources and thereby reach a state where there is a dead!
of several transactions is waiting for a resource held by one of the othe:
none can make progress.

e In Section 18.3.4 we saw how ordinary operation of two-phase
transactions can still lead to a deadlock, because each has locke
thing that another transaction also needs to lock.

¢ In Section 18.4.3 we saw how the ability to upgrade locks from s
exclusive can cause a deadlock because each transaction holds
lock on the same element and wants to upgrade the lock.




974 CHAPTER 19. MORE ABOUT TRANSACTION MANAGEM

Why Timestamp-Based Deadlock Detection Work

We claim that in either the wait-die or wound-wait scheme, there can
no cycle in the waits-for graph, and hence no deadlock. Suppose ther
a cycle such as T} — To — T35 — T4. One of the transactions is the oldes
say Ts.

In the wait-die scheme, you can only wait for younger transactio
Thus, it is not possible that T is waiting for Tb, since Tb is surely ol
than T3. In the wound-wait scheme, you can only wait for older trans
tions. Thus, there is no way T, could be waiting for the younger Tj.
conclude that the cycle cannot exist, and therefore there is no deadloc

On the other hand, when a rollback does occur, wait-die rolls back a t
action that is still in the stage of gathering locks, presumably the earliest p
of the transaction. Thus, although wait-die may roll back more transac
than wound-wait, these transactions tend to have done little work. In cont
when wound-wait does roll back a transaction, it is likely to have acquire
locks and for substantial processor time to have been invested in its act
Thus, either scheme may turn out to cause more wasted work, dependin
the population of transactions processed.

We should also consider the advantages and disadvantages of both wo
wait and wait-die when compared with a straightforward construction an
of the waits-for graph. The important points are:

¢ Both wound-wait and wait-die are easier to implement than a system
maintains or periodically constructs the waits-for graph.

¢ Using the waits-for graph minimizes the number of times we must a
a transaction because of deadlock. If we abort a transaction, there r
is a deadlock. On the other hand, either wound-wait or wait-di
sometimes roll back a transaction when there really is no deadlock.

19.2.6 Exercises for Section 19.2

Exercise 19.2.1: For each of the sequences of actions below, assume
shared locks are requested immediately before each read action, and excl
locks are requested immediately before every write action. Also, unlocks 0
immediately after the final action that a transaction executes. Tell what ac
are denied, and whether deadlock occurs. Also tell how the waits-for gr
evolves during the execution of the actions. If there are deadlocks, pi
transaction to abort, and show how the sequence of actions continues.

a) r1(A4); r3(B); r2(0); w1 (B); ws(C); wa(D);



NAGEMENT

Works

there can be
pose there is
is the oldest,

transactions.
y surely older
lder transac-
mger T3. We
no deadlock.

e S,

lls back a trans-
he earliest phase
ore transactions
ork. In contrast,
Lave acquired its
d in its activity.
’k, depending on

s of both wound-
struction and use

han a system that
N ,

Les we must abort
ction, there really
it or wait-die will
no deadlock.

elow, assume that
tion, and exclusive

Also, unlocks occu
5. Tell what actions

the waits-for graph ,

» deadlocks; pick
s continues.

19.3. LONG-DURATION TRANSACTIONS

b) r1(A); r3(B); r2(C); wi(B); w3(C); wa(A);
¢) r1(A); r3(B); w1(C); ws(D); r2(C); wi(B); wa(D); ws(A);
d) 1(A); r3(B); w1 (C); r2(D); r4(E); wa(B); w3 (C); wa(A); wi(D);

Exercise 19.2.2: For each of the action sequences in Exercise 19.2.1, tell what

happens under the wait-die deadlock avoidance system. Assume the order of
deadlock-timestamps is the same as the order of subscripts for the transactions,
that is, Ty, T, T, Ty. Also assume that transactions that need to restart do so
in the order that they were rolled back.

Exercise 19.2.3: For each of the action sequences in Exercise 19.2.1, tell

what happens under the wound-wait deadlock avoidance system. Make the
ame assumptions as in Exercise 19.2.2.

Exercise 19.2.4: One approach to avoiding deadlocks is to require each trans-
action to announce all the locks it wants at the beginning, and to either grant

all those locks or deny them all and make the transaction wait. Does this ap-
roach avoid deadlocks due to locking? Either explain why, or give an example
f a deadlock that can arise.

xercise 19.2.5: Consider the intention-locking system of Section 18.6. De-
cribe how to construct the waits-for graph for this system of lock modes. Espe-
ially, consider the possibility that a database element A is locked by different
ransactions in modes I.S and also either S or I X If a request for a lock on A
as to wait, what arcs do we draw?

Exercise 19.2.6: In Section 19.2.5 we pointed out that deadlock-detection

methods other than wound-wait and wait-die do not necessarily prevent star-

ation, where a transaction is repeatedly rolled back and never gets to finish.
ive an example of how using the policy of rolling back any transaction that
ould cause a cycle can lead to starvation. Does requiring that transactions

equest locks on elements in a fixed order necessarily prevent starvation? What
out timeouts as a deadlock-resolution mechanism?

Exercise 19.2.7: Can one have a waits-for graph with a cycle of length n, but
, smaller cycle, for any integer n > 17 What about n = 1, i.e., a loop on a
de?

9.3 Long-Duration Transactions

here is a family of applications for which a database system is suitable for

aintaining data, but the model of many short transactions on which database

ncurrency-control mechanisms are predicated, is inappropriate. In this sec-

on we shall examine some examples of these applications and the problems

at arise. We then discuss a solution based on “compensating transactions”
t negate the effects of transactions that were committed, but shouldn’t have
n.




GEMENT

nple 19.16,
to a form.

npensating
i, this saga
e database
1d we need
s cashing a
first try to
woney back,
declaring a

15, where a
. The prob-

 an account
saction that
assume that
unt and the
that deletes
is that C by
e B then C,

counts and a

be supported
system must

hey take any
n about com-

compensating

ollowed by its

ith any inter-

ctions nor the

on 1.

] is when we are

ions require that

saction was going

19.3. LONG-DURATION TRANSACTIONS 981

BASIS: If n = 1, then the sequence of all actions between A; and its compen-
sating transaction Al_1 looks like AjaAT!. By the fundamental assumption
about compensating transactions, AjaA] = a

INDUCTION: Assume the statement for paths of up to n — 1 actions, and
consider a path of n actions, followed by its compensating transactions in reverse
order, with any other transactions intervening. The sequence looks like

A1a1A2a2 m Oén_lAn,BA;;l’}’n_l .- ’}’2A2_1’}’1A1—1 (191)

where all Greek letters represent sequences of zero or more actions. By the
definition of compensating transaction, 4,84, = . Thus, (19.1) is equivalent
to

Ay Asas -+ Ap—10m—1BYn1 A7 1 Yne2 - 12 A ' AT (19.2)

By the inductive hypothesis, expression (19.2) is equivalent to

0103+ Op—1BYn—1""" 12N

since there are only n — 1 actions in (19.2). That is, the saga and its compen-
 sation leave the database state the same as if the saga had never occurred.

19.3.5 Exercises for Section 19.3

! Exercise 19.3.1: The process of “yninstalling” software can be thought of as
a compensating transaction for the action of installing the same software. In a
simple model of installing and uninstalling, suppose that an action consists of
loading one or more files from the source (e.g., a CD-ROM) onto the hard disk
of the machine. To load a file f, we copy f from CD-ROM. If there was a file
f! with the same path name, we back up f’ before replacement. To distinguish
files with the same path name, we may assume each file has a timestamp.

a) What is the compensating transaction for the action that loads file f?
Consider both the case where no file with that path name existed, and
where there was a file f' with the same path name.

b) Explain why your answer to (a) is guaranteed to compensate. Hint: Con-
sider carefully the case where after replacing f' by f, a later action re-
places f by another file with the same path name.

Exercise 19.3.2: Describe the process of booking an airline seat as a saga.
Consider the possibility that the customer will query about a seat but not book
t. The customer may book the seat, but cancel it, or not pay for the seat
within the required time limit. The customer may or may not show up for the
flight. For each action, describe the corresponding compensating transaction.




