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elapsed time is primarily the 150 disk 1/O’s performed at each processor, plus
the time to ship tuples between processors and perform the main-memory com-
putations. Note that 150 disk I/O’s is less than 1 /10th of the time to perform
the same algorithm on a uniprocessor; we have not only gained because we had
10 processors working for us, but the fact that there are a total of 1010 buffers
among those 10 processors gives us additional efficiency. O

20.1.5 Exercises for Section 20.1
Exercise 20.1.1: Suppose that a disk I/O takes 100 milliseconds. Let B(R) =

900, so the disk I/0’s for computing oc(R) on a uniprocessor machine will take

about 20 seconds. What is the speedup if this selection is executed on a parallel
machine with p processors, where: (a) p = 1000 (b) p=12 (c) p=100.

Exercise 20.1.2: In Example 20.2 we described an algorithm that computed
the join R b« S in parallel by first hash-distributing the tuples among the
processors and then performing a one-pass join at the processors. In terms of
B(R) and B(S), the sizes of the relations involved, p (the number of processors),
and M (the number of blocks of main memory at each processor), give the

condition under which this algorithm can be executed successfully.

20.2 The Map-Reduce Parallelism Framework

Map-reduce is a high-level programming system that allows many imp(;rtant
_database processes to be written simply. The user writes code for two functions,

map and reduce. A master controller divides the input data into chunks, and
assigns different processors to execute the map function on each chunk. Other
processors, perhaps the same ones, are then assigned to perform the reduce
function on pieces of the output from the map function.

20.2.1 The Storage Model

For the map-reduce framework to make sense, we should assume a massively
parallel machine, most likely shared-nothing. Typically, the processors are com-
modity computers, mounted in racks with a simple communication network
among the processors on a rank. If there is more than one rack, the racks are
also connected by a simple network.

Data is assumed stored in files. Typically, the files are very large compared
with the files found in conventional systems. For example, one file might be all
the tuples of a very large relation. Or, the file might be a terabyte of “market-

askets,” as discussed in Section 22.1.4. For another example of a single file,
e shall talk in Section 23.2.2 of the “transition matrix of the Web,” which is
representation of the graph with all Web pages as nodes and hyperlinks as
dges.
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Notice how this organization of the computation makes excellent u
whatever parallelism is available. The map function works on a single docum
so we could have as many processes and processors as there are documer
the database. The reduce function works on a single word, so we could ha
many processes and processors as there are words in the database. Of co
it is unlikely that we would use so many processors in practice. [

Example 20.5: Suppose rather than constructing an inverted index, w
to construct a word count. That is, for each word w that appears: a
once in our database of documents, we want our output to have the pair (
where c is the number of times w appears among all the documents. Th
function takes an input document, goes through the document characte
character, and each time it encounters another word w, it emits the pair
The intermediate result is a list of pairs (w1,1), (w2, 1),....

In this example, the reduce function is addition of integers. That i
input to reduce is a pair (w,[1,1,...,1]), with a 1 for each occurrence of
word w. The reduce function sums the 1’s, producing the count. O

Example 20.6: It is a little trickier to express the join of relations i
map-reduce framework. In this simple special case, we shall take the n
Join of relations R(A, B) and S(B,C). First, the input to the map funct
key-value pairs (x,t), where z is either R or S, and t is a tuple of the re
named by z. The output is a single pair consisting of the join value B t
from the tuple ¢ and a pair consisting of = (to let us remember which rela
this tuple came from) and the other component of t, either 4 (if z =
C (if ¢ = 5). All these records of the form (b, (R, a)) or (b,(S,c)) forr
intermediate result. '
The reduce function takes a B-value b, the key, together with a list
consists of pairs of the form (R,a) or (S,¢). The result of the join will
as many tuples with B-value b as we can form by pairing an a from an (I
element on the list with a ¢ from an (S, c) element on the list. Thus, rec
must extract from the list all the A-values associated with R and the list
C-values associated with 5. These are paired in all possible ways, with
in the middle to form a tuple of the result. O

20.2.4 Exercises for Section 20.2

Exercise 20.2.1: Express, in the map-reduce framework, the following
ations on relations: (a) 7 (b) oc (c) RUS (d) RN S. () Rg S

Exercise 20.2.2: Modify Example 20.5 to count the number of docum
which each word w appears.

store (or :

store and

with data

card custo

and what
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20.3.4 Exercises for Section 20.3

Exercise 20.3.1: The following exercise will allow you to address s
the problems that come up when deciding on a replication strategy fo
Suppose there is a relation R that is accessed from n sites. The ith si
g; queries about R and u; updates to R per second, for i = 1,2,...
cost of executing a query if there is a copy of R at the site issuing the
¢, while if there is no copy there, and the query must be sent to some
site, then the cost is 8¢c. The cost of executing an update is d for the
R at the issuing site and 12d for every copy of R that is not at the issu
As a function of these parameters, how would you choose, for large n,
sites at which to replicate R.

20.4 Distributed Query Processing

We now turn to optimizing queries on a network of distributed machine
communication among processors is a significant cost, there are som
plans that can be more efficient than the ones we developed in Section
processors that could communicate locally. Our principal objective i
way of computing joins, using the semijoin operator that was intro

Exercise 2.4.8.

20.4.1 The Distributed Join Problem

Suppose we want to compute R(4, B) > S(B,C). However, R and S 1
different nodes of a network, as suggested in Fig. 20.5. There are tw
ways to compute the join.

R(AB)

Figure 20.5: Joining relations at different nodes of a network

1. Send a copy of R to the site of S, and compute the join there

2. Send a copy of S to the site of R and compute the join there.

In many situations, either of these methods is fine. However, prob
arise, such as: '

a) What happens if the channel between the sites has low-capaci
phone line or wireless link? Then, the cost of the join is pri
time it takes to copy one of the relations, so we need to design
plan to minimize communication.
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Note that this statement is true because G is the only link between H and the
remaining relations.

By induction, all tuples that are dangling in the join of the remaining rela-
tions are eliminated. When we do the final semijoin H := H P< G to eliminate
dangling tuples from H, we know that no relation has dangling tuples.
20.4.7 Exercises for Section 20.4

Exercise 20.4.1: Determine which of the following hypergraphs are acyclic.
Each hypergraph is represented by a list of its hyperedges.

a) {A,B}, {B,C, D}, {B,E,F}, {F,G,H},{G,I}, {B, H}.
b) {4,B,C,D}, {4, B,E}, {B,D,F},{C,D,G}, {4,C,H}.
¢) {4,B}, {B,C,D}, {B,E,F}, {F,G,H},{G,I}, {H,J}.

Exercise 20.4.2: For those hypergraphs of Exercise 20.4.1 that are acyclic,
construct a full reducer.

Exercise 20.4.3: Besides the full reducer of Example 20.11, how many other
full reducers of six steps can be constructed for the hypergraph of Fig. 20.9 by

~ choosing other orders for the elimination of ears?

1 Exercise 20.4.4: A well known property of acyclic graphs is that if you delete

an edge from an acyclic graph it remains acyclic. Is the analogous statement
true for hypergraphs? That is, if you eliminate a hyperedge from-an acyclic
hypergraph, is the remaining hypergraph always acyclic? Hint: consider the
acyclic hypergraph of Fig. 20.9.

Exercise 20.4.5: Suppose we want to take the natural join of R(A,B) and
S(B,C), where R and S are at different sites, and the size of the data commu-
nicated is the dominant cost of the join. Suppose the sizes of R and S are sgr
and sg, respectively. Suppose that the size of g (R) is fraction pr of the size of
R and 7g(9) is fraction pg of the size of S. Finally, suppose that fractions dr

‘and dg of relations R and S, respectively, are dangling. Write expressions, in

erms of these six parameters, for the costs of the four strategies for evaluating
R > S, and determine the conditions under which each is the best strategy.
The four strategies are:

i) Ship R to the site of S.
4i) Ship S to the site of R.
i) Ship mp(S) to the site of R, and then R >< S to the site of S.

w) Ship 75(R) to the site of S, and then S P<R to the site of R.
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!! Exercise 20.4.6: Not all binary operations on relations located a
nodes of a network can have their execution time reduced by preliminar
tions like the semijoin. Is it possible to improve on the obvious algorit
one of the relations to the other site) when the operation is (a) int
(b) difference (c) union?

20.5 Distributed Commit

In this section, we shall address the problem of how a distributed tran
that has components at several sites can execute atomically. The next
discusses another important property of distributed transactions: e
them serializably.

20.5.1 Supporting Distributed Atomicity

We shall begin with an example that illustrates the problems that mig

Example 20.13: Consider our example of a chain of stores mentioned
tion 20.3. Suppose a manager of the chain wants to query all the stores,
inventory of toothbrushes at each, and issue instructions to move tooth
from store to store in order to balance the inventory. The operation
by a single global transaction T’ that has component T; at the ith st
a component Ty at the office where the manager is located. The seq
activities performed by T are summarized below:

1. Component Ty is created at the site of the manager.

2. Tp sends messages to all the stores instructing them to create com
T;.

- Each T; executes a query at store i to discover the number of toothl
in inventory and reports this number to Tp.

. Ty takes these numbers and determines, by some algorithm we
need to discuss, what shipments of toothbrushes are desired.
sends messages such as “store 10 should ship 500 toothbrushes &
7”7 to the appropriate stores (stores 7 and 10 in this instance).

. Stores receiving instructions update their inventory and perform t.
ments.

There are a number of things that could go wrong in Example 20..
many of these result in violations of the atomicity of 7. That is, some
actions comprising T' get executed, but others do not. Mechanisms
logging and recovery, which we assume are present at each site, will assu
each T; is executed atomically, but do not assure that T itself is atomic
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receive consistent messages, then there is a unique choice for new coordinator,
and everyone knows about it. If there is inconsistency, or a surviving site has
failed to respond, that too will be universally known, and the election starts
over.

Now, the new leader polls the sites for information about each distributed
transaction T. Each site reports the last record on its log concerning T', if there
is one. The possible cases are:

1. Some site has <Commit 7'> on its log. Then the original coordinator
must have wanted to send commit T messages everywhere, and it is safe
to commit T'.

. Similarly, if some site has <Abort 7> on its log, then the original coordi-
nator must have decided to abort T', and it is safe for the new coordinator
to order that action.

. Suppose now that no site has <Commit 7> or <Abort T'> on its log, but
at least one site does not have <Ready 7> on its log. Then since actions
are logged before the corresponding messages are sent, we know that the
old coordinator never received ready T from this site and therefore could
not have decided to commit. It is safe for the new coordinator to decide
to abort T'.

. The most problematic situation is when there is no <Commit T> or
<Abort T'> to be found, but every surviving site has <Ready T>. Now,
we cannot be sure whether the old coordinator found some reason to abort
T or not; it could have decided to do so because of actions at its own site,
or because of a don’t commit T message from another failed site, for
example. Or the old coordinator may have decided to commit T' and al-
ready committed its local component of T'. Thus, the new coordinator is
not able to decide whether to commit or abort 7' and must wait until the
original coordinator recovers. In real systems, the database administrator
has the ability to intervene and manually force the waiting transaction
components to finish. The result is a possible loss of atomicity, but the
person executing the blocked transaction will be notified to take some
appropriate compensating action. '

20.5.4 Exercises for Section 20.5

Exercise 20.5.1: Consider a transaction T initiated at a home computer that

asks bank B to transfer $10,000 from an account at B to an account at another
bank C.

~ a) What are the components of distributed transaction 7?7 What should the
components at B and C do?

b) What can go wrong if there is not $10,000 in the account at B?
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¢) What can go wrong if one or both banks’ computers crash, o
network is disconnected?

d) If one of the problems suggested in (c) occurs, how could the tran
resume correctly when the computers and network resume operat

Exercise 20.5.2: In this exercise, we need a notation for describing sex
of messages that can take place during a two-phase commit. Let (i, 7, M
that site ¢ sends the message M to site j, where the value of M and its m
can be P (prepare), R (ready), D (don’t commit), C (commit), or A (
We shall discuss a simple situation in which site 0 is the coordinator,
otherwise part of the transaction, and sites 1 and 2 are the componen
instance, the following is one possible sequence of messages that coul
place durmg a successful commit of the transaction:

(0,1,P), (0,2,P), (2,0,R), (1,0,R), (0,2,C), (0,1,0)

a) Give an example of a sequence of messages that could occur if site
to commit and site 2 wants to abort.

!'b) How many possible sequences of messages such as the above are t
‘ the transaction successfully commits?

!c) If site 1 wants to commit, but site 2 does not, how many seque
messages are there, assuming no failures occur?

!d) If site 1 wants to commit, but site 2 is down and does not resp
messages, how many sequences are there?

o
oy

Exercise 20.5.3: Using the notation of Exercise 20.5.2, suppose the s
a coordinator and n other sites that are the transaction components
function of n, how many sequences of messages are there if the tran
successfully commits?

20.6 Distributed Locking

In this section we shall see how to extend a locking scheduler to an envir
where transactions are distributed and consist of components at sever:
We assume that lock tables are managed by individual sites, and t}
component of a transaction at a site can request locks on the data el
only at that site.

When data is replicated, we must arrange that the copies of a singl
ment X are changed in the same way by each transaction. This requ
introduces a distinction between locking the logical database element
locking one or more of the copies of X. In this section, we shall offer
model for distributed locking algorithms that applies to both replicat
nonreplicated data. However, before introducing the model, let us cons
obvious (and sometimes adequate) solution to the problem of maintainin
in a distributed database — centralized locking.
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~ when most transactions are read-only, but transactions to read an element X

initiate at different sites. An example would be a distributed digital library

_ that caches copies of documents where they are most frequently read.

Majority Locking

Here, s = z = [(n +1)/2]. It seems that this system requires many messages
no matter where the transaction is. However, there are several other factors

that may make this scheme acceptable. First, many network systems support
broadcast, where it is possible for a transaction to send out one general request
for local locks on an element X, which will be received by all sites. Similarly,

_the release of locks may be achieved by a single message.

Moreover, this selection of s and z provides an advantage others do not:

it allows partial operation even when the network is disconnected. As long as
there is one component of the network that contains a majority of the sites with

copies of X, then it is possible for a transaction to obtain a lock on X. Even if

_ other sites are active while disconnected, we know that they cannot even get a

shared lock on X, and thus there is no risk that transactions running in different

 components of the network will engage in behavior that is not serializable.

20.6.6 Exercises for Section 20.6

Exercise 20.6.1: We showed how to create global shared and exclusive locks

- from local locks of that type. How would you create:

a) Global shared, exclusive, and update locks
b) Global shared, exclusive, and increment locks

1! ¢) Global shared, exclusive, and intention locks for each type
from local locks of the same types?

Exercise 20.6.2: Suppose there are five sites, each with a copy of a database
element X. One of these sites P is the dominant site for X and will be used
as X’s primary site in a primary-copy distributed-lock system. The statistics
regarding accesses to X are:

i. 50% of all accesses are read-only accesses originating at P.

ii. Each of the other four sites originates 10% of the accesses, and these are
read-only.

ii. The remaining 10% of accesses require exclusive access and may originate
at any of the five sites with equal probability (i.e., 2% originate at each).

For each of the lock methods below, give the average number of messages needed
to obtain a lock. Assume that all requests are granted, so no denial messages
are needed.
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Grid Computing

Grid computing is a term that means almost the same as peer-to-
computing. However, the applications of grids usually involve sharin
computing resources rather than data, and there is often a master n
that controls what the others do. Popular examples include SETI, w
attempts to distribute the analysis of signals for signs of extraterres
intelligence among participating nodes, and Folding-at-Home, which
tempts to do the same for protein-folding.

a) Primary-copy locking, with the primary copy at P.
b) Read-locks-one; write-locks-all.

¢) Majority locking.

20.7 Peer-to-Peer Distributed Search

In this section, we examine peer-to-peer distributed systems. When thes
tems are used to store and deliver data, the problem of search becomes s
ingly hard. That is, each node in the peer-to-peer network has a subset
data elements, but there is no centralized index that says where someth
located. The method called “distributed hashing” allows peer-to-peer netw
to grow and shrink, yet allows us to find available data much more effic
than sending messages to every node.

20.7.1 Peer-to-Peer Networks

A peer-to-peer network is a collection of nodes or peers (participating mac
that:

1. Are autonomous: participants do not respect any central control and
Jjoin or leave the network at will.

2. Are loosely coupled; they communicate over a general-purpose netwi
such as the Internet, rather than being hard-wired together like the .
cessors in a parallel machine.

3. Are equal in functionality; there is no leader or controlling node.

4. Share resources with one another.

Peer-to-peer networks initially received a bad name, because their first
ular use was in sharing copyrighted files such as music. However, they h
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into groups of (say) three or more. Nodes in a cluster replicate their data
and can substitute for one another, if one leaves or fails. When clusters get
too large, they can be split into two clusters that are adjacent on the circle,
using an algorithm similar to that described in Section 20.7.7 for node insertion.
Similarly, clusters that get too small can be combined with a neighbor, a process
similar to graceful leaving as in Section 20.7.8. Insertion of a new node is
executed by having the node join its nearest cluster.

20.7.10 Exercises for Section 20.7

Exercise 20.7.1: Given the circle of nodes of Fig. 20.14, where do key-value
pairs reside if the key hashes to: (a) 35 (b) 20 (c) 607

Exercise 20.7.2: Given the circle of nodes of Fig. 20.14, construct the finger
tables for: (a) N14 (b) N51

Exercise 20.7.3: Given the circle of nodes of Fig. 20.14, what is the sequence
of messages sent if:

a) Ny searches for a key that hashes to 27.
b) Ng searches for a key that hashes to 5.

¢) Nsg searches for a key that hashes to 54.

Exercise 20.7.4: Show the sequence of steps that adjust successor and pre-

- decessor pointers and share data, for the circle of Fig. 20.14 when nodes are
“added that hash to: (a) 16 (b) 45.

Exercise 20.7.5: Suppose we want to guard against node failures by having

each node maintain the predecessor information, successor information, and
_data of its predecessor and successor, as well as its own, as discussed in Sec-

tion 20.7.9. How would you modify the node-insertion algorithm described in
Section 20.7.77

20.8 Summary of Chapter 20

4 Parallel Machines: Parallel machines can be characterized as shared-
memory, shared-disk, or shared-nothing. For database applications, the
shared-nothing architecture is generally the most cost-effective.

4 Parallel Algorithms: The operations of relational algebra can generally
be sped up on a parallel machine by a factor close to the number of
processors. The preferred algorithms start by hashing the data to buckets
that correspond to the processors, and shipping data to the appropriate
processor. Each processor then performs the operation on its local data.




