
1

IN
F 3110/4110 -2005

Types, Polymorphism and
Overloading

Inf3110/4110

Gerardo Schneider
Department of Informatics – University of Oslo

Based on John C. Mitchell’s slides

2

IN
F 3110/4110 -2005

Before starting... Some clarifications

Mandatory exercises must be done individually

Side-effect: a property of a function that modifies
some state other than its return value
• E.g., a function might modify a global variable or one

of its arguments; write a result in the screen or in a
file.

3

IN
F 3110/4110 -2005

ML lectures

1. 05.09: A quick introduction to ML
2. 12.09: The Algol Family and more on ML

(Mitchell’s Chapter 5 + more)
3. Today: Types, Polymorphism and

Overloading (Mitchell’s Chapter 6)
4. 17.10: Exceptions and Continuations (Mitchell’s

Chapter 8)
5. 24.10: Revision (!?)

4

IN
F 3110/4110 -2005

Outline

Types in programming

Type safety

Polymorphisms

Type inference

Type declaration

5

IN
F 3110/4110 -2005

Type

A type is a collection of computational entities
sharing some common property

Examples
• Integers
• [1 .. 100]
• Strings
• int → bool
• (int → int) →bool

“Non-examples”
• {3, true, 5.0}
• Even integers
• {f:int → int | if x>3

then f(x) > x*(x+1)}

Distinction between types and non-types is language
dependent.

6

IN
F 3110/4110 -2005

Uses for types

Program organization and documentation
• Separate types for separate concepts

– E.g., customer and accounts (banking program)

• Types can be checked, unlike program comments

Identify and prevent errors
• Compile-time or run-time checking can prevent

meaningless computations such as 3 + true - “Bill”

Support optimization
• Short integers require fewer bits
• Access record component by known offset

7

IN
F 3110/4110 -2005

Type errors

Hardware error
• Function call x() (where x is not a function) may

cause jump to instruction that does not contain a
legal op code

Unintended semantics
• int_add(3, 4.5): Not a hardware error, since bit

pattern of float 4.5 can be interpreted as an integer

8

IN
F 3110/4110 -2005

General definition of type error

A type error occurs when execution of program
is not faithful to the intended semantics
Type errors depend on the concepts defined in
the language; not on how the program is
executed on the underlying software
All values are stored as sequences of bits
• Store 4.5 in memory as a floating-point number

– Location contains a particular bit pattern
• To interpret bit pattern, we need to know the type
• If we pass bit pattern to integer addition function,

the pattern will be interpreted as an integer pattern
– Type error if the pattern was intended to represent 4.5

9

IN
F 3110/4110 -2005

Subtyping

Subtyping is a relation on types allowing values
of one type to be used in place of values of
another
• Substitutivity: If A is a subtype of B (A<:B), then

any expression of type A may be used without type
error in any context where B may be used

In general, if f: A -> B, then f may be applied to
x if x: A
• Type checker: If f: A -> B and x: C, then C = A
In languages with subtyping
• Type checker: If f: A -> B and x: C, then C <: A

Remark: No subtypes in ML!

10

IN
F 3110/4110 -2005

Monomorphism vs. Polymorphism

Monomorphic means ”having only one form”, as
opposed to Polymorphic
A type system is monomorphic if each constant,
variable, etc. has unique type
Variables, expressions, functions, etc. are polymorphic if
they ”allow” more than one type

Example. In ML, the identity function fn x => x is
polymorphic: it has infinitely many types!

- fn x => x

Warning! The term ”polymorphism” is used with different
specific technical meanings (more on that later)

11

IN
F 3110/4110 -2005

Outline

Types in programming

Type safety

Polymorphisms

Type inference

Type declaration

12

IN
F 3110/4110 -2005

Type safety

A Prog. Lang. is type safe if no program can
violate its type distinction (e.g. functions and integer)

Examples of not type safe language features:
• Type casts (a value of one type used as another type)

– Use integers as functions (jump to a non-instruction or
access memory not allocated to the program)

• Pointer arithmetic
– *(p) has type A if p has type A*
– x = *(p+i) what is the type of x?

• Explicit deallocation and dangling pointers
– Allocate a pointer p to an integer, deallocate the memory

referenced by p, then later use the value pointed to by p

13

IN
F 3110/4110 -2005

Relative type-safety of languages

Not safe: BCPL family, including C and C++
• Casts; pointer arithmetic

Almost safe: Algol family, Pascal, Ada.
• Explicit deallocation; dangling pointers

– No language with explicit deallocation of memory is fully
type-safe

Safe: Lisp, ML, Smalltalk, Java
• Lisp, Smalltalk: dynamically typed
• ML, Java: statically typed

14

IN
F 3110/4110 -2005

Compile-time vs. run-time checking

Lisp uses run-time type checking
(car x) check first to make sure x is list

ML uses compile-time type checking
f(x) must have f : A → B and x : A

Basic tradeoff
• Both prevent type errors
• Run-time checking slows down execution (compiled ML

code, up-to 4 times faster than Lisp code)

• Compile-time checking restricts program flexibility
Lisp list: elements can have different types
ML list: all elements must have same type

15

IN
F 3110/4110 -2005

Compile-time type checking

Sound type checker: no program with error is
considered correct
Conservative type checker: some programs
without errors are considered to have errors
Static typing always conservative

if (possible-infinite-run-expression)
then (expression-with-type-error)
else (expression-with-type-error)

Cannot decide at compile time if run-time error will occur
(from the undecidability of the Turing machine’s halting problem)

16

IN
F 3110/4110 -2005

Outline

Types in programming

Type safety

Polymorphisms

Type inference

Type declaration

17

IN
F 3110/4110 -2005

Polymorphism: three forms

Parametric polymorphism
• Single function may be given (infinitely) many types
• The type expression involves type variables

Example: in ML the identity function is polymorphic

- fn x => x;
val it = fn : 'a -> 'a

An instance of the type scheme may give:
int→int, bool→bool, char→char,

int*string*int→int*string*int, (int→real)→(int→real), ...

Type variable may be replaced by any type

This pattern is called type scheme

18

IN
F 3110/4110 -2005

Polymorphism: three forms (cont.)

Ad-hoc polymorphism (or Overloading)
• A single symbol has two (or more) meaning (it refers to

more than one algorithm)
• Each algorithm may have different type
• Choice of algorithm determined by type context
• Types of symbol may be arbitrarily different

Example: In ML, + has 2 different associated
implementations: it can have types int*int→int
and real*real→real, no others

19

IN
F 3110/4110 -2005

Polymorphism: three forms (cont.)

Subtype polymorphism
• The subtype relation allows an expression to have

many possible types
• Polymorphism not through type parameters, but

through subtyping:
– If method m accept any argument of type t then m may also

be applied to any argument from any subtype of t

REMARK 1: In OO, the term “polymorphism” is usually used
to denote subtype polymorphism (ex. Java, OCAML, etc)

REMARK 2: ML does not support subtype polymorphism!

20

IN
F 3110/4110 -2005

Parametric polymorphism

Explicit: The program contains type variables
• Often involves explicit instantiation to indicate how

type variables are replaced with specific types
• Example: C++ templates

Implicit: Programs do not need to contain types
• The type inference algorithm determines when a

function is polymorphic and instantiate the type
variables as needed

• Example: ML polymorphism

21

IN
F 3110/4110 -2005

Parametric Polymorphism: ML vs. C++

C++ function template
• Declaration gives type of funct. arguments and result
• Place inside template to define type variables
• Function application: type checker does instantiation

ML polymorphic function
• Declaration has no type information
• Type inference algorithm

– Produce type expression with variables
– Substitute for variables as needed

ML also has module system with explicit type parameters

22

IN
F 3110/4110 -2005

Example: swap two values

C++

Instantiations:
• int i,j; … swap(i,j); //use swap with T replaced with int

• float a,b;… swap(a,b); //use swap with T replaced with
float

• string s,t;… swap(s,t); //use swap with T replaced with
string

void swap (int& x, int& y){
int tmp=x; x=y; y=tmp;

}

template <typename T>
void swap(T& , T& y){

T tmp=x; x=y; y=tmp;
}

23

IN
F 3110/4110 -2005

Example: swap two values

ML
- fun swap(x,y) =

let val z = !x in x := !y; y := z end;
val swap = fn : 'a ref * 'a ref -> unit

Remark: Declarations look similar in ML and C++,
but compile code is very different!

24

IN
F 3110/4110 -2005

Parametric Polymorphism: Implementation

C++
• Templates are instantiated at program link time
• Swap template may be stored in one file and the

program(s) calling swap in another
• Linker duplicates code for each type of use

ML
• Swap is compiled into one function (no need for

different copies!)
• Typechecker determines how function can be used

25

IN
F 3110/4110 -2005

Parametric Polymorphism: Implementation

Why the difference?
• C++ arguments passed by reference (pointer), but

local variables (e.g. tmp, of type T) are on stack
– Compiled code for swap depends on the size of type T =>

Need to know the size for proper addressing

• ML uses pointers in parameter passing (uniform data
representation)

– It can access all necessary data in the same way, regardless
of its type

Efficiency
• C++: more effort at link time and bigger code
• ML: run more slowly

26

IN
F 3110/4110 -2005

ML overloading

Some predefined operators are overloaded
• + has types int*int→int and real*real→real

User-defined functions must have unique type
• fun plus(x,y) = x+y; (compiled to int or real function, not

both)

In SML/NJ:
- fun plus(x,y) = x+y;

val plus = fn : int * int -> int
If you want to have plus = fn : real * real -> real you

must provide the type:
- fun plus(x:real,y:real) = x+y;

27

IN
F 3110/4110 -2005

ML overloading (cont.)

Why is a unique type needed?

• Need to compile code implies need to know which +
(different algorithm for distinct types)

• Efficiency of type inference

• Overloading is resolved at compile time
– Choosing one algorithm among all the possible ones
– Automatic conversion is possible (not in ML!)

28

IN
F 3110/4110 -2005

Outline

Types in programming

Type safety

Polymorphisms

Type inference

Type declaration

29

IN
F 3110/4110 -2005

Type checking and type inference

Type checking: The process of checking
whether the types declared by the programmer
“agrees” with the language constraints/
requirement
Type inference: The process of determining the
type of an expression based on information
given by (some of) its symbols/sub-expressions

ML is designed to make type inference tractable
(one of the reason for not having subtypes in ML!)

30

IN
F 3110/4110 -2005

Type checking and type inference

Standard type checking
int f(int x) { return x+1; };
int g(int y) { return f(y+1)*2;};

• Look at body of each function and use declared types
of identifies to check agreement.

Type inference
int f(int x) { return x+1; };
int g(int y) { return f(y+1)*2;};

• Look at code without type information and figure out
what types could have been declared.

31

IN
F 3110/4110 -2005

Type inference algorithm: some history

Usually known as Milner-Hindley algorithm
1958: Type inference algorithm given by H.B.
Curry and R. Feys for the typed lambda calculus
1969: R. Hindley extended the algorithm and
proved it gives the most general type
1978: R. Milner -independently of Hindley-
provided an equivalent algorithm (for ML)
1985: L. Damas proved its completeness and
extended it with polymorphism

32

IN
F 3110/4110 -2005

ML Type Inference

Example
- fun f(x) = 2+x;
val f = fn : int → int

How does this work?
• + has two types: int*int → int, real*real→real
• 2 : int, has only one type
• This implies + : int*int → int
• From context, need x: int
• Therefore f(x:int) = 2+x has type int → int

Overloaded + is unusual. Most ML symbols have unique type.

In many cases, unique type may be polymorphic.

33

IN
F 3110/4110 -2005

Another presentation

Example
- fun f(x) = 2+x;
val f = fn : int → int

How does this work?

x

λ

@

@

+ 2

1. Assign types to leaves

: t

int → int → int
real → real→real

: int
2. Propagate to internal
nodes and generate
constraints

int (t = int)

int→int

t→int

3. Solve by substitution

= int→int

Graph for λx. ((plus 2) x)

f(x) = 2+x equiv f = λx. (2+x) equiv f = λx. ((plus 2) x)

34

IN
F 3110/4110 -2005

Application and Abstraction

Application
• f(x)

• f must have function type
domain→ range

• domain of f must be type
of argument x

• result type is range of f

Function expression
• λx.e (fn x => e)
• Type is function type

domain→ range
• Domain is type of variable x
• Range is type of function

body e

x

@

f x

λ

e: s

: s → t

: t: s

: r (s = t→ r)

: t

35

IN
F 3110/4110 -2005

Types with type variables

Example
- fun f(g) = g(2);
val f = fn : (int→’a)→’a

How does this work?

2

λ

@

g

1. Assign types to leaves

: int: s2. Propagate to internal
nodes and generate
constraints

t (s= int→t)

s→t = (int→t)→t

Graph for λg. (g 2)

’a is syntax for “type variable” (t in the graph)

3. Solve by substitution

36

IN
F 3110/4110 -2005

Use of Polymorphic Function

Function
- fun f(g) = g(2);
val f = fn : (int→’a)→’a

Possible applications

g may be the function:
- fun add(x) = 2+x;
val add = fn : int → int
Then:
- f(add);
val it = 4 : int

g may be the function:
- fun isEven(x) = ...;
val it = fn : int → bool
Then:
- f(isEven);
val it = true : bool

37

IN
F 3110/4110 -2005

Recognizing type errors

Function
- fun f(g) = g(2);
val f = fn : (int→’a)→’a

Incorrect use
- fun not(x) = if x then false else true;
val not = fn : bool → bool
- f(not);

Why?

Type error: cannot make bool → bool = int → ’a

38

IN
F 3110/4110 -2005

Another type inference example

Function Definition
- fun f(g,x) = g(g(x));
val f = fn : (’a→’a)*’a → ’a

Type Inference

Solve by substitution

= (v→v)*v→v
λ

@

g

x

@

g

Assign types to leaves

: t

: s

: s

Propagate to internal
nodes and generate
constraints

v (s = u→v)

s*t→v

u (s = t→u)

Graph for λ〈g,x〉. g(g x)

39

IN
F 3110/4110 -2005

Polymorphic datatypes

Datatype with type variable
- datatype ’a list = nil | cons of ’a*(’a list);
nil : ’a list
cons : ’a*(’a list) → ’a list

Polymorphic function
- fun length nil = 0

| length (cons(x,rest)) = 1 + length(rest);
length : ’a list → int

Type inference
• Infer separate type for each clause
• Combine by making two types equal (if necessary)

40

IN
F 3110/4110 -2005

Main points about type inference

Compute type of expression
• Does not require type declarations for variables
• Find most general type by solving constraints
• Leads to polymorphism

Static type checking without type specifications
May lead to better error detection than ordinary
type checking
• Type may indicate a programming error even if there

is no type error (example following slide).

41

IN
F 3110/4110 -2005

Information from type inference

An interesting function on lists
fun reverse (nil) = nil
| reverse (x::lst) = reverse(lst);

Most general type
reverse : ’a list → ’b list

What does this mean?
Since reversing a list does not change its type,
there must be an error in the definition

x is not used in “reverse(lst)”!

42

IN
F 3110/4110 -2005

Outline

Types in programming

Type safety

Polymorphisms

Type inference

Type declaration

43

IN
F 3110/4110 -2005

Type declaration

Transparent: alternative name to a type that
can be expressed without this name

Opaque: new type introduced into the program,
different to any other

ML has both forms of type declaration

44

IN
F 3110/4110 -2005

Type declaration: Examples

Transparent (”type” declaration)

• Since Fahrenheit and Celsius are synonyms for real,
the function may be applied to a real:

- type Celsius = real;
- type Fahrenheit = real;

- toCelsius(60.4);
val it = 15.77904 : Celsius

More information:
- fun toCelsius(x: Fahrenheit) = ((x-32.0)*0.5556): Celsius;
val toCelsius = fn : Fahrenheit → Celsius

- fun toCelsius(x) = ((x-32.0)*0.5556);
val toCelsius = fn : real → real

45

IN
F 3110/4110 -2005

Type declaration: Examples

Opaque (”datatype” declaration)

• A and B are different types
• Since B declaration follows A decl.: C has type int→B
Hence:
- fun f(x:A) = x: B;
Error: expression doesn't match constraint [tycon mismatch]
expression: A constraint: B
in expression: x: B

• Abstract types are also opaque (Mitchell’s chapter 9)

- datatype A = C of int;
- datatype B = C of int;

46

IN
F 3110/4110 -2005

Equality on Types

Two forms of type equality:

Name type equality: Two type names are equal
in type checking only if they are the same name

Structural type equality: Two type names are
equal if the types they name are the same

Example: Celsius and Fahrenheit are structurally
equal although their names are different

47

IN
F 3110/4110 -2005

Remarks – Further reading

More on subtype polymorphism (Java):
Mitchell’s Section 13.3.5

48

IN
F 3110/4110 -2005

ML lectures

1. 05.09: A quick introduction to ML
2. 12.09: The Algol Family and more on ML

(Mitchell’s Chapter 5 + more)
3. Today: Types, Polymorphism and Overloading

(Mitchell’s Chapter 6)
4. 17.10: Exceptions and Continuations

(Mitchell’s Chapter 8)
5. 24.10: Revision (!?)

	Types, Polymorphism and Overloading
	Before starting... Some clarifications
	ML lectures
	Outline
	Type
	Uses for types
	Type errors
	General definition of type error
	Subtyping
	Monomorphism vs. Polymorphism
	Outline
	Type safety
	Relative type-safety of languages
	Compile-time vs. run-time checking
	Compile-time type checking
	Outline
	Polymorphism: three forms
	Polymorphism: three forms (cont.)
	Polymorphism: three forms (cont.)
	Parametric polymorphism
	Parametric Polymorphism: ML vs. C++
	Example: swap two values
	Example: swap two values
	Parametric Polymorphism: Implementation
	Parametric Polymorphism: Implementation
	ML overloading
	ML overloading (cont.)
	Outline
	Type checking and type inference
	Type checking and type inference
	Type inference algorithm: some history
	ML Type Inference
	Another presentation
	Application and Abstraction
	Types with type variables
	Use of Polymorphic Function
	Recognizing type errors
	Another type inference example
	Polymorphic datatypes
	Main points about type inference
	Information from type inference
	Outline
	Type declaration
	Type declaration: Examples
	Type declaration: Examples
	Equality on Types
	Remarks – Further reading
	ML lectures

