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Before starting... Some clarifications

Mandatory exercises must be done individually

Side-effect: a property of a function that modifies 
some state other than its return value
• E.g., a function might modify a global variable or one 

of its arguments; write a result in the screen or in a 
file.
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ML lectures

1. 05.09: A quick introduction to ML 
2. 12.09: The Algol Family and more on ML 

(Mitchell’s Chapter 5 + more)
3. Today: Types, Polymorphism and 

Overloading (Mitchell’s Chapter 6)
4. 17.10: Exceptions and Continuations (Mitchell’s 

Chapter 8)
5. 24.10: Revision (!?)
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Outline
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Type inference

Type declaration
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Type

A type is a collection of computational entities 
sharing some common property

Examples
• Integers
• [1 .. 100]
• Strings
• int → bool
• (int → int) →bool

“Non-examples”
• {3, true, 5.0}
• Even integers
• {f:int → int | if x>3   

then f(x) > x*(x+1)}

Distinction between types and non-types is language 
dependent.
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Uses for types 

Program organization and documentation
• Separate types for separate concepts

– E.g., customer and accounts (banking program) 

• Types can be checked, unlike program comments

Identify and prevent errors
• Compile-time or run-time checking can prevent 

meaningless computations such as  3 + true - “Bill”

Support optimization
• Short integers require fewer bits
• Access record component by known offset
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Type errors

Hardware error
• Function call x() (where x is not a function) may 

cause jump to instruction that does not contain a 
legal op code 

Unintended semantics
• int_add(3, 4.5): Not a hardware error, since bit 

pattern of float 4.5 can be interpreted as an integer
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General definition of type error

A type error occurs when execution of program 
is not faithful to the intended semantics
Type errors depend on the concepts defined in 
the language; not on how the program is 
executed on the underlying software
All values are stored as sequences of bits
• Store 4.5 in memory as a floating-point number

– Location contains a particular bit pattern 
• To interpret bit pattern, we need to know the type
• If we pass bit pattern to integer addition function, 

the pattern will be interpreted as an integer pattern
– Type error if the pattern was intended to represent 4.5
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Subtyping

Subtyping is a relation on types allowing values 
of one type to be used in place of values of 
another
• Substitutivity: If A is a subtype of B (A<:B), then 

any expression of type A may be used without type 
error in any context where B may be used

In general, if f: A -> B, then f may be applied to 
x if x: A
• Type checker: If f: A -> B and x: C, then C = A
In languages with subtyping
• Type checker: If f: A -> B and x: C, then C <: A

Remark: No subtypes in ML!
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Monomorphism vs. Polymorphism

Monomorphic means ”having only one form”, as 
opposed to Polymorphic
A type system is monomorphic if each constant, 
variable, etc. has unique type
Variables, expressions, functions, etc. are polymorphic if 
they ”allow” more than one type

Example. In ML, the identity function fn x => x is  
polymorphic: it has infinitely many types!

- fn x => x

Warning! The term ”polymorphism” is used with different 
specific technical meanings (more on that later) 
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Type safety

A Prog. Lang. is type safe if no program can 
violate its type distinction (e.g. functions and integer)

Examples of not type safe language features:
• Type casts (a value of one type used as another type)

– Use integers as functions (jump to a non-instruction or 
access memory not allocated to the program)

• Pointer arithmetic
– *(p)               has type A if p has type A*
– x = *(p+i)      what is the type of x?

• Explicit deallocation and dangling pointers
– Allocate a pointer p to an integer, deallocate the memory 

referenced by p, then later use the value pointed to by p 
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Relative type-safety of languages 

Not safe: BCPL family, including C and C++
• Casts;  pointer arithmetic

Almost safe: Algol family, Pascal, Ada. 
• Explicit deallocation; dangling pointers

– No language with explicit deallocation of memory is fully 
type-safe

Safe: Lisp, ML, Smalltalk, Java 
• Lisp, Smalltalk: dynamically typed 
• ML, Java: statically typed
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Compile-time vs. run-time checking

Lisp uses run-time type checking
(car x) check first to make sure x is list

ML uses compile-time type checking
f(x) must have f : A → B and x : A

Basic tradeoff
• Both prevent type errors
• Run-time checking slows down execution (compiled ML 

code, up-to 4 times faster than Lisp code)

• Compile-time checking restricts program flexibility
Lisp list: elements can have different types
ML list: all elements must have same type 
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Compile-time type checking

Sound type checker: no program with error is 
considered correct
Conservative type checker: some programs 
without errors are considered to have errors
Static typing always conservative 

if  (possible-infinite-run-expression) 
then  (expression-with-type-error)
else   (expression-with-type-error)

Cannot decide at compile time if run-time error will occur
(from the undecidability of the Turing machine’s halting problem)
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Polymorphism: three forms

Parametric polymorphism
• Single function may be given (infinitely) many types
• The type expression involves type variables

Example: in ML the identity function is polymorphic

- fn x => x;
val it = fn : 'a -> 'a

An instance of the type scheme may give: 
int→int,  bool→bool,   char→char,   

int*string*int→int*string*int, (int→real)→(int→real), ...   

Type variable may be replaced by any type

This pattern is called type scheme
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Polymorphism: three forms (cont.)

Ad-hoc polymorphism (or Overloading)
• A single symbol has two (or more) meaning (it refers to 

more than one algorithm)
• Each algorithm may have different type
• Choice of algorithm determined by type context
• Types of symbol may be arbitrarily different

Example: In ML, + has 2 different associated 
implementations: it can have types int*int→int
and real*real→real, no others
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Polymorphism: three forms (cont.)

Subtype polymorphism
• The subtype relation allows an expression to have 

many possible types
• Polymorphism not through type parameters, but 

through subtyping:
– If method m accept any argument of type t then m may also 

be applied to any argument from any subtype of t

REMARK 1: In OO, the term “polymorphism” is usually used 
to denote subtype polymorphism (ex. Java, OCAML, etc)

REMARK 2: ML does not support subtype polymorphism!
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Parametric polymorphism

Explicit: The program contains type variables
• Often involves explicit instantiation to indicate how 

type variables are replaced with specific types
• Example: C++ templates

Implicit: Programs do not need to contain types
• The type inference algorithm determines when a 

function is polymorphic and instantiate the type 
variables as needed

• Example: ML polymorphism
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Parametric Polymorphism: ML vs. C++

C++ function template
• Declaration gives type of funct. arguments and result
• Place inside template to define type variables
• Function application: type checker does instantiation

ML polymorphic function
• Declaration has no type information
• Type inference algorithm 

– Produce type expression with variables
– Substitute for variables as needed

ML also has module system with explicit type parameters



22

IN
F 3110/4110 -2005

Example: swap two values

C++

Instantiations:
• int i,j;   … swap(i,j);  //use swap with T replaced with int

• float a,b;… swap(a,b); //use swap with T replaced with 
float

• string s,t;… swap(s,t);  //use swap with T replaced with 
string

void swap (int& x, int& y){
int tmp=x;  x=y;  y=tmp;

}

template <typename T>
void swap(T& , T& y){

T tmp=x; x=y; y=tmp;
}
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Example: swap two values

ML
- fun swap(x,y) = 

let val z = !x in x := !y; y := z end;
val swap = fn : 'a ref * 'a ref -> unit

Remark: Declarations look similar in ML and C++, 
but compile code is very different!
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Parametric Polymorphism: Implementation

C++
• Templates are instantiated at program link time
• Swap template may be stored in one file and the 

program(s) calling swap in another 
• Linker duplicates code for each type of use

ML
• Swap is compiled into one function (no need for 

different copies!)
• Typechecker determines how function can be used
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Parametric Polymorphism: Implementation

Why the difference?
• C++ arguments passed by reference (pointer), but 

local variables (e.g. tmp, of type T) are on stack
– Compiled code for swap depends on the size of type T => 

Need to know the size for proper addressing 

• ML uses pointers in parameter passing (uniform data 
representation) 

– It can access all necessary data in the same way, regardless 
of its type

Efficiency
• C++: more effort at link time and bigger code
• ML: run more slowly
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ML overloading

Some predefined operators are overloaded
• + has types  int*int→int and  real*real→real

User-defined functions must have unique type
• fun plus(x,y) = x+y; (compiled to int or real function, not 

both)

In SML/NJ: 
- fun plus(x,y) = x+y;

val plus = fn : int * int -> int
If you want to have plus = fn : real * real -> real  you

must provide the type:
- fun plus(x:real,y:real) = x+y;
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ML overloading (cont.)

Why is a unique type needed?

• Need to compile code implies need to know which + 
(different algorithm for distinct types)

• Efficiency of type inference

• Overloading is resolved at compile time
– Choosing one algorithm among all the possible ones
– Automatic conversion is possible (not in ML!)
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Type checking and type inference

Type checking: The process of checking 
whether the types declared by the programmer 
“agrees” with the language constraints/ 
requirement 
Type inference: The process of determining the 
type of an expression based on information 
given by (some of) its symbols/sub-expressions

ML is designed to make type inference tractable
(one of the reason for not having subtypes in ML!)
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Type checking and type inference

Standard type checking
int f(int x) { return x+1; };
int g(int y) { return f(y+1)*2;};

• Look at body of each function and use declared types 
of identifies to check agreement.

Type inference
int f(int x) { return x+1; };
int g(int y) { return f(y+1)*2;};

• Look at code without type information and figure out 
what types could have been declared.
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Type inference algorithm: some history

Usually known as Milner-Hindley algorithm
1958: Type inference algorithm given by H.B. 
Curry and R. Feys for the typed lambda calculus
1969: R. Hindley extended the algorithm and 
proved it gives the most general type
1978: R. Milner -independently of Hindley-
provided an equivalent algorithm (for ML)
1985: L. Damas proved its completeness and 
extended it with polymorphism
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ML Type Inference

Example
- fun f(x) = 2+x;
val f = fn : int → int

How does this work?
• + has two types: int*int → int, real*real→real
• 2 : int, has only one type
• This implies + : int*int → int
• From context, need x: int
• Therefore f(x:int) = 2+x has type int → int

Overloaded + is unusual. Most ML symbols have unique type. 

In many cases, unique type may be polymorphic.
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Another presentation 

Example
- fun f(x) = 2+x;
val f = fn : int → int

How does this work?

x 

λ

@

@

+ 2

1. Assign types to leaves

: t

int → int → int
real → real→real

: int
2. Propagate to internal 
nodes and generate 
constraints

int (t = int)

int→int

t→int

3. Solve by substitution

= int→int

Graph for λx. ((plus 2) x)

f(x) = 2+x equiv f = λx. (2+x) equiv f = λx. ((plus 2) x)
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Application and Abstraction 

Application 
• f(x)

• f must have function type   
domain→ range

• domain of f must be type 
of argument x

• result type is range of f

Function expression 
• λx.e (fn x => e)
• Type is function type 

domain→ range
• Domain is type of variable x
• Range is type of function 

body e

x

@

f x

λ

e: s

: s → t

: t: s

: r   (s = t→ r)

: t
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Types with type variables 

Example
- fun f(g) = g(2);
val f = fn : (int→’a)→’a

How does this work?

2 

λ

@

g

1. Assign types to leaves

: int: s2. Propagate to internal 
nodes and generate 
constraints

t (s= int→t)

s→t = (int→t)→t

Graph for λg. (g 2)

’a is syntax for “type variable” (t in the graph)

3. Solve by substitution
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Use of Polymorphic Function

Function
- fun f(g) = g(2);
val f = fn : (int→’a)→’a

Possible applications

g may be the function:
- fun add(x) = 2+x;
val add = fn : int → int
Then:
- f(add);
val it = 4 : int

g may be the function:
- fun isEven(x) = ...;
val it = fn : int → bool
Then:
- f(isEven);
val it = true : bool
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Recognizing type errors

Function
- fun f(g) = g(2);
val f = fn : (int→’a)→’a

Incorrect use
- fun not(x) = if x then false else  true;
val not = fn : bool → bool
- f(not);

Why?

Type error: cannot make bool → bool = int → ’a
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Another type inference example 

Function Definition
- fun f(g,x) = g(g(x));
val f = fn : (’a→’a)*’a → ’a

Type Inference

Solve by substitution

= (v→v)*v→v 
λ

@

g

x

@

g

Assign types to leaves

: t

: s

: s

Propagate to internal 
nodes and generate 
constraints

v  (s = u→v)

s*t→v

u (s = t→u)

Graph for λ〈g,x〉. g(g x)
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Polymorphic datatypes

Datatype with type variable
- datatype ’a list = nil | cons of ’a*(’a list);
nil : ’a list 
cons : ’a*(’a list) → ’a list

Polymorphic function
- fun length nil = 0

|   length (cons(x,rest)) = 1 + length(rest);
length : ’a list → int

Type inference 
• Infer separate type for each clause
• Combine by making two types equal (if necessary)
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Main points about type inference

Compute type of expression
• Does not require type declarations for variables
• Find most general type by solving constraints
• Leads to polymorphism

Static type checking without type specifications
May lead to better error detection than ordinary 
type checking
• Type may indicate a programming error even if there 

is no type error (example following slide).
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Information from type inference

An interesting function on lists
fun reverse (nil) = nil
|     reverse (x::lst) = reverse(lst);

Most general type
reverse : ’a list → ’b list

What does this mean? 
Since reversing a list does not change its type, 
there must be an error in the definition

x is not used in “reverse(lst)”!
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Type declaration

Transparent: alternative name to a type that 
can be expressed without this name

Opaque: new type introduced into the program, 
different to any other  

ML has both forms of type declaration
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Type declaration: Examples

Transparent (”type” declaration)

• Since Fahrenheit and Celsius are synonyms for real, 
the function may be applied to a real:

- type Celsius = real;
- type Fahrenheit = real;

- toCelsius(60.4);
val it = 15.77904 : Celsius

More information:
- fun toCelsius(x: Fahrenheit) = ((x-32.0)*0.5556): Celsius;
val toCelsius = fn : Fahrenheit → Celsius

- fun toCelsius(x) = ((x-32.0)*0.5556);
val toCelsius = fn : real → real
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Type declaration: Examples

Opaque (”datatype” declaration)

• A and B are different types
• Since B declaration follows A decl.: C has type int→B
Hence:
- fun f(x:A) = x: B;
Error: expression doesn't match constraint [tycon mismatch]
expression: A constraint: B
in expression:  x: B

• Abstract types are also opaque (Mitchell’s chapter 9)

- datatype A = C of int;
- datatype B = C of int;
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Equality on Types

Two forms of type equality:

Name type equality: Two type names are equal 
in type checking only if they are the same name

Structural type equality: Two type names are 
equal if the types they name are the same

Example: Celsius and Fahrenheit are structurally 
equal although their names are different
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Remarks – Further reading

More on subtype polymorphism (Java): 
Mitchell’s Section 13.3.5
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ML lectures

1. 05.09: A quick introduction to ML 
2. 12.09: The Algol Family and more on ML 

(Mitchell’s Chapter 5 + more)
3. Today: Types, Polymorphism and Overloading 

(Mitchell’s Chapter 6)
4. 17.10: Exceptions and Continuations 

(Mitchell’s Chapter 8)
5. 24.10: Revision (!?)
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