
Exam in INF3110, 2. December 2010 Page 1

 UNIVERSITETET I OSLO

 Det matematisk-naturvitenskapelige fakultet

Exam in: INF3110 Programming Languages

Day of exam: 2. December 2010
Exam hours: 14:30 – 18:30

This examination paper consists of 8 pages
Appendices: No

Permitted materials: All printed and written

Make sure that your copy of this examination paper is complete before answering.

This exam consists of 3 questions that may be answered independently. If you think the
text of the questions is unclear, make your own assumptions/interpretations, but be sure
to write these down as part of the answer.

Good luck!

Contents
	

Question 1 Runtime-systems, scoping, types (weight 40%) 2	

Question 2 ML (weight 40%) 5	

Question 3 Prolog (weight 20%) 10	

Exam in INF3110, 2. December 2010 Page 2

Question 1 Runtime-systems, scoping, types (weight 40%)
Part I
1a

The following is a fragment of code in a language with static scoping:
{
 int x=0;
 void p(int y) {
 y=1;
 x=0;
 };
 p(x)
}

It defines a variable x, a function p with formal parameter y, and the function p is called with x as
actual parameter.
What will the value of x be after the call p(x) for these different cases of the parameter y:

Specification of
the parameter y

by-value by-reference by-value-result by name

Value of x after
the call p(x)

Answer

Specification of
the parameter y

by-value by-reference by-value-result by name

Value of x after
the call p(x)

0 0 1 0

1b
In the following code fragment the p has become a method of a class, and it has been extended with
a statement assigning a new A object to the rA in the enclosing scope.

{
 class A {
 int x=0;
 void A(int i) {x=i};
 void p(int y) {
 rA = new A(2);
 y=1;
 x=0;
 };
 }
 A rA = new A(1);
 rA.p(rA.x)
}

What will the value of rA.x be after the call rA.p(rA.x) for these different cases of the

Exam in INF3110, 2. December 2010 Page 3

parameter y:

Specification of
the parameter y

by-value by-reference by-value-result by name

Value of rA.x
after the call
rA.p(rA.x)

Answer

Specification of
the parameter y

by-value by-reference by-value-result by name

Value of rA.x
after the call
rA.p(rA.x)

2 2 2 1

Part II
1c
The Observer pattern is an example of a pattern where two classes (and their anticipated subclasses)
are dependent on each other. Assume that we have a language with virtual classes: A virtual class is
specified so that it can only be redefined to subclasses of a bound class. This may be used to specify
the dependency between the Observer and Subject classes, and to specify the requirement on the
type of events:
{

class Event {...}
class Observer {
 virtual class S extends Subject;
 virtual class E extends Event;

 public void notify(E e, S s){...}
}
class Subject {
 virtual class O extends Observer;
 virtual class E extends Event;
 observers () O;
 public void register(O o){...}
 public void notifyObservers(E e, S s){
 ... observers(i).notify(this, e); ...}
}
Observer someObserver;

}

Observer objects call register on the Subject objects they want to observe. Each Subject
object notifies the observers (kept in an array observers) when an event has happened. Subject
and Observer are dependant on each other, and the virtual classes express that subclasses of
Observer and Subject are similarly dependant on each other.

For a given type of events, the subclasses of Observer and Subject are specified with

Exam in INF3110, 2. December 2010 Page 4

redefinitions of the virtual classes in order to reflect that WindowObserver objects only observe
WindowSubject objects and that WindowSubject objects only are observed by
WindowObserver objects:

class WindowEvent extends Event {...}

class WindowObserver extends Observer{
 class S is WindowSubject;
 class E is WindowEvent;
 String label;
 ...
}
class WindowSubject extends Subject {
 class O is WindowObserver;
 class E is WindowEvent;
 String label;

 public void windowMethod(){...}
 ...

 }

Consider the following two statements as part of the windowMethod, assuming that the
someObserver in the enclosing scope is visible:

... print(someObserver.label);

... print(observers(i).label);

Insert casting or castings in order to get the required type checking done.
Answer:

... print((WindowObserver)someObserver.label);
// someObserver is typed by Observer, and Observer does not have label

... print(observers(i).label);
// no run-time type check

1d

We now assume that we do not have virtual classes. The pattern and an application of it will then
look as follows:

class Event {...}
class Observer {
 public void notify(Event e, Subject s){...}
}
class Subject {
 observers ()Observer;
 public void register(Observer o){...}
 public void notifyObservers(Event e, Subject s){
 ... observers(i).notify(this, e); ...}
}
Observer someObserver;

class WindowEvent extends Event {...}

class WindowObserver extends Observer {

Exam in INF3110, 2. December 2010 Page 5

 String label;
 ...
}
class WindowSubject extends Subject {
 String label;

 public void windowMethod(){...}

 ...

 }

Consider the following code as part of the windowMethod:
... print(someObserver.label);
... print(observers(i).label);

Insert the casting or castings in order to get the required type checking done.
Answer:

... print((WindowObserver)someObserver.label);

... print((WindowObserver)observers(i).label);

Question 2 ML (weight 40%)
2a
Let's define a filter function that only keeps list elements that satisfy a given predicate:

fun filter p nil = nil

| filter p (x::xs) = if (p x) then (x :: (filter p xs)) else (filter p xs)

val filter = fn : ('a -> bool) -> 'a list -> 'a list

1) What is the result of evaluating the expression:

 filter (fn x => x > 2) (map length [[1,2],[3,4,5],[6]])
 Answer: val it = [3] : int list

2) What is the type of the result? Answer: int list

3) What is the result of evaluating the expression:

 filter (fn x => x > 2) (map length [[[9,8],[7,6,5,4],[3]],[[6]]])

 Answer: val it = [3] : int list

4) Given the following function
 fun f x = if x < 2 then x = 0 else f (x-2)

val f = fn : int -> bool

Exam in INF3110, 2. December 2010 Page 6

What is the result of evaluating the expression f 1001? Answer: false

2b
Draw the type inference parse tree of the following function and describe the type inference steps of
the function according to this tree. What is the type of f?
 fun f = fn g => fn h => g(h(g))

Hint: the final result will not contain concrete types such as int or string, but only type variables.

Answer:

H = G -> A
G = A -> B
R = H -> B
S = G -> R = (A->B) -> (H->B) = (A->B) -> ((A->B)->B)
val f = fn : ('a -> 'b) -> (('a -> 'b) -> 'a) -> 'b

Exam in INF3110, 2. December 2010 Page 7

2c

Let's consider foraging lemmings ("lemen" in Norwegian). Each lemming has a non-negative int-
value indicating its hunger. When a lemming eats nuts, this will satiate him corresponding to the
(non-negative) number of nuts. We model this the following way in ML:

datatype lemen = Lemen of int ;

datatype noeter = Noeter of int ;

Given are also the two functions "driver" (Norwegian for doing something), and "spise" (to eat):

fun driver f (x::nil) = nil (lemmings don't like to eat alone!)

| driver f (x::xs) = (f x) :: (driver f xs) ;

fun spise (Lemen i) (Noeter j) = if j > i then Lemen 0

 else Lemen (i - j) ;

2c.1) What is the result of evaluating the following expression?

driver (fn x => spise x (Noeter(3))) [Lemen 5, Lemen 2, Lemen 2] ;

 SOLUTION: val it = [Lemen 2,Lemen 0] : lemen list

Exam in INF3110, 2. December 2010 Page 8

2c.2) Lemmings collect and hide their nuts in summer in their nest, which is a cave system. A cave
system has caves with food, empty caves, and branches into other cave systems left and right.

datatype nest = Cave of noeter

 | EmptyCave

 | Branch of nest * nest ;

Let's also define the ML-notion of "direction":

datatype direction = Left | Right ;

Define a function "hide" of type

 val hide = fn : nest -> noeter -> direction list -> nest
The arguments are a nest, collected nuts, and a path of type direction list.

The path elements of either "Left" or "Right" indicate, which branch to take. The result is an
updated nest, where the food has been deposited in the chamber that the path pointed to.

Assume that a path is always in so far valid, as that it will always end in an empty cave, which
correspondingly should be updated to a cave holding the given amount of nuts. The remainder of
the nest stays unchanged.
SOLUTION:

fun hide EmptyCave f nil = Cave f

| hide (Branch (l,r)) f (Left::ds) = Branch(hide l f ds, r)

| hide (Branch (l,r)) f (Right::ds) = Branch(l, hide r f ds) ;

Exam in INF3110, 2. December 2010 Page 9

2c.3) Define the function
 val maxCave = fn : nest -> nest

which should return the cave with the most nuts in a nest. If the nest does not contain a cave with
nuts, EmptyCave should be returned.

 SOLUTION:

fun maxCave EmptyCave = EmptyCave

| maxCave (Cave(f)) = Cave(f)

| maxCave (Branch(l,r)) = max (maxCave l, maxCave r) ;

fun max EmptyCave y = y

| max (Cave(i)) EmptyCave = Cave(i)

| max (Cave(Noeter(i))) (Cave(Noeter(j))) = if i > j then Cave(Noeter(i))

 else Cave(Noeter(j)) ;

Exam in INF3110, 2. December 2010 Page 10

Question 3 Prolog (weight 20%)
Peano's encoding of the natural numbers uses the constant zero, and a unary successor function "s".
We can use this encoding in Prolog. For example, the number 3 is represented as s(s(s(zero))).

We extend this notion with an additional symbol "p" for the predecessor of a number. With zero, s,
and p, we can represent every integer value: p(p(zero)) for example represents the value -2.

Alas, now every number can be represented by infinitely many terms! The terms s(zero),
s(p(s(zero))), and s(p(p(s(s(zero))))) represent the number 1. We call a term normalized, if
it does not use the symbols p and s at the same time. This means that s(p(s(zero))) and
s(p(p(s(s(zero))))) are not normalized. Every integer has a unique normalized representation.

3a) Implement a unary Prolog predicate normalized that determines if the term representation of a
number is normalized. Use two helper predicates that check separately whether a term contains only
zero or s(s(..(zero)..)), or only zero or p(p(..(zero)..)).

SOLUTION

normalized(X) :- normalizedS(X).
normalized(X) :- normalizedP(X).

normalizedS(zero).

normalizedS(s(X)) :- normalizedS(X).

normalizedP(zero).
normalizedP(p(X)) :- normalizedP(X).

3b) Implement the binary Prolog predicate normalize that normalizes a number in our term
representation. For example, it should be true that normalize(s(p(s(zero))), s(zero)).

SOLUTION (two possibilities)

normalize(zero,zero).

normalize(s(X),Y) :- normalize(X,p(Y)).
normalize(s(X),s(s(Y))) :- normalize(X,s(Y)).

normalize(s(X),s(zero)) :- normalize(X,zero).
normalize(p(X),Y) :- normalize(X,s(Y)).

Exam in INF3110, 2. December 2010 Page 11

normalize(p(X),p(p(Y))) :- normalize(X,p(Y)).

normalize(p(X),p(zero)) :- normalize(X,zero).

normalize(X,Y) :- norm(X,zero,X).

norm(zero,X,X).
norm(p(X),zero,Z) :- norm(X,p(zero),Z).

norm(p(X),s(Y),Z) :- norm(X,Y,Z).
norm(p(X),p(Y),Z) :- norm(X,p(p(Y)),Z).

norm(s(X),zero,Z) :- norm(X,s(zero),Z).
norm(s(X),s(Y),Z) :- norm(X,s(s(Y)),Z).

norm(s(X),p(Y),Z) :- norm(X,Y,Z).

3c) Implement a ternary Prolog predicate plus that adds two numbers in our term representation.
You do not need to normalize the result.
Hint: use the equalities zero+x = x, s(x)+y = s(x+y), p(x)+y = p(x+y).

SOLUTION:

plus(zero,X,X).

plus(s(X),Y,s(Z)) :- plus(X,Y,Z).
plus(p(X),Y,p(Y)) :- plus(X,Y,Z).

3d) Combine the predicates for normalization and addition into a single predicate normPlus that
calculates the normalized result of addition.
You do not need to have completed assignments b) and c) for this.

SOLUTION:

normPlus(X,Y,A) :- plus(X,Y,Z), normalize(Z,A).

Exam in INF3110, 2. December 2010 Page 12

Page for answering Question 1a Candidate no:

 Date:
1a

Exam in INF3110, 2. December 2010 Page 13

Page for answering Questions 1d & 1e Candidate no:

 Date:
1d

 Explanation

swapper(a)

Object temp = swappee[0]; Temp has type Object

swappee[0] will have type Shape

Shape <: Object, so no runtime check is needed

swappee[0] = swappee[1];

swappee[1] = temp;

1e

 Run time types and type checks

Object temp = swappee[0]; Object temp = (Object)swappee[0];

swappee[0] = swappee[1];

swappee[1] = temp;

Exam in INF3110, 2. December 2010 Page 14

Extra page for sketching the answer to Question 1a

