
Exam in INF3110, December 1, 2011 Page 1

 UNIVERSITETET I OSLO

 Det matematisk-naturvitenskapelige fakultet

Exam in: INF3110 Programming Languages

Day of exam: December 1, 2011
Exam hours: 14:30 – 18:30

This examination paper consists of 7 pages.
Appendices: No

Permitted materials: All printed and written
 Textbook:

 John C Mitchell:
Concepts in Programming Languages, 2003.
Cambridge University Press. ISBN: 0-521-78098-5.

Make sure that your copy of this examination paper is complete before answering.

This exam consists of 3 questions that may be answered independently. If you think the
text of the questions is unclear, make your own assumptions/interpretations, but be sure
to write these down as part of the answer.

Good luck!

Contents
	

Question 1 Runtime-systems, scoping, types (weight 40%) 2	

Question 2 ML (weight 40%) 7	

Question 3 Prolog (weight 20%) 8	

Exam in INF3110, December 1, 2011 Page 2

Question 1. Runtime-systems, scoping, types (weight 40%)
Ordinary object-oriented languages do not support the return of more than one value from a
method. The return type may be a predefined type like int or bool, or a user-defined class in which
case a reference to an object of that class is returned.

Suppose that we want to extend such a language with the possibility of returning in general a list of
values, and that these values may be assigned to a list of variables.

Given the following two definitions of equals, with the definition of return types by means of a list
notation:

class Point {
 int x,y;
 (bool) equals(Point p){
 return (x=p.x and y=p.y)}
}

class ColorPoint extends Point {
 Color c;
 (bool, Color) equals(ColorPoint cp) {
 return ((x=cp.x and y=cp.y and c=cp.c),c)}
}

and given variables declared like this:
bool b;
Color c;
Point p1 p2;
ColorPoint cp1, cp2;

it would then be possible to call them like this:
(b) = p1.equals(p2);
(b, c) = cp1.equals(cp2);

A method that takes a bool and a Color as parameters may then be called with a call to equals of a
ColorPoint as an actual parameter. Suppose that the main method looks like this:

void main() {
 bool verdict(bool b, Color c){
 return (b and (c = colorOfTheDay()))
 };
 bool b = verdict(cp1.equals(cp2))
}

with a verdict method that will only return true if the two points are equal and if the color is the
color that is returned by colorOfTheDay().

1a
How must an activation record be extended in order to cope with this new mechanism?

Look at page 171 in Mitchell or slide 13 in the slides dated 9/14/11 (Runtime Organization I)
Sketch how an activation record will have to be.

Exam in INF3110, December 1, 2011 Page 3

Answer:

Two result addresses. E.g.

In general as many as there are return values.

1b
How will the stack of activation records be just before the equals method exit. Fill in all fields and
links of the activation records.
Answer:

It is not important that they show that the two results have to taken care of in this way. The use of
intermediate results has been covered, but not the use of registers (that is for the compiler course).

It will not be an error if they indicate that the access link of the equals refers a ColorPoint object
denoted by cp1.

Exam in INF3110, December 1, 2011 Page 4

1c
We now assume that the equals method of Point is virtual so that may be redefined in
ColorPoint, in the same way as in Java. The equals of ColorPoint will therefore have the same
signature as equals of Point, i.e. is it has the same type (Point) of the parameter.

We allow covariant re-definition of the result to be a list (bool, Color)
class ColorPoint extends Point {
 Color c;
 (bool, Color) equals(Point p) {
 return if p instanceOf(Point)
 then ((x=p.x and y=p.y), white) else
 if p instanceOf(ColorPoint)
 then ((x=p.x and y=p.y and c=(ColorPoint)p.c),c)
 }
}

assuming that (bool, Color) is a subclass of (bool), as if implicit classes were defined:
class BoolList {bool b}
class BoolColorList extends BoolList {Color c}

The list returned from equals has the same type as the list (b,c):
(b,c) = cp1.equals(cp2)

where cp1 and cp2 are ColorPoint variables.

With this scheme, a BoolList can be assigned a BoolColorList (as BoolColorList is a subclass
of BoolList):

 (b) = (b1, c1)

with the obvious semantics that only the b is assigned a value (b1), as if the following assignment
was performed:

b = implicitBoolColorListObject.b1

An obvious question would be: Why not allow the following:
 (c) = (b1,c1)

However, given the above scheme of making implicit classes, the class BoolColorList is not a
subclass of the implicit class ColorList for the list (c). In order for this to be the case it would
require multiple inheritance:

class ColorList {Color c}
class BoolList { bool b }
class BoolColorList extends (BoolList, ColorList) {}

Suppose that we do not want multiple inheritance, but rather do this by means of interfaces.

Sketch a solution, both how the interfaces should be, how the class BoolColorList should be, and
what the semantics of

 (c) = (b1,c1)

should be, in terms of using an operation in one of these interfaces. Assume that the list (b1, c1) is
represented by an implicit object implicitBoolColorListObject of class BoolColorList.

Exam in INF3110, December 1, 2011 Page 5

Answer:

interface BoolListInf { bool getBool(); bool setBool(bool pb) }
interface ColorListInf { Color getColor(); Color setColor(Color pc)}
interface BoolColorListInf extends (BoolList, ColorList){}

class BoolColorList implements BoolColorListInf {
 bool b;
 Color c;

 bool getBool(){return b};
 bool setBool(bool pb) {p = pb}
 Color getColor(); {return c}
 Color setColor(Color pc) {c = pc}

}

Semantics of
(c) = (b1,c1)

is

c = implicitBoolColorListObject.getColor()

1d
Assume that we have following implementation of very simple expressions,

exp ::= const | exp + exp

in terms of an interface Exp with an interpret operation, and classes for the different kinds of
expressions:

interface Exp {int interpret()}

class Const implements Exp {
 int value; // value of constant
int interpret() { return value; }
}
class Plus implements Exp {
 Exp first, second;
 int interpret() {
 return first.interpret() + second.interpret();
 }
}

We have deliberately omitted details like constructors that would be used to set he values of value,
first and second.

When extending this implementation with a formatter operation, this is defined in a new interface
that extends the Exp interface:

interface FExp extends Exp {
 String formatter();
}
class FConst extends Const implements FExp {
 String formatter() { return "" + value;}
}
class FPlus extends Plus implements FExp {
 String formatter() {
 return "(" +

Exam in INF3110, December 1, 2011 Page 6

 first.formatter() + " + " + // (a)
 second.formatter() + ")"; // (b)
 }
}

What is the problem in lines marked with (a) and (b),

and how would you rather make these lines?

Answer:
 ((FExp)first).formatter() + " + " +
 ((FExp)second).formatter() + ")";

Exam in INF3110, December 1, 2011 Page 7

Question 2. ML (weight 40%)
2 (a)
Assume the following definitions. Recall that #"G" is ML’s notation for single characters.
fun hd : 'a list -> a

fun hd (x::xs) = x ;

fun map : ('a -> 'b) -> 'a list -> 'b list

fun map f nil = nil

 | map f (x::xs) = (f x) :: map f xs ;

fun h nil n = nil

 | h ((x,c)::xs) n = if (x = n) then c :: h xs n else h xs n ;

Give the result of evaluating the following two expressions:
hd (map (fn x => x+1) [3*2,2]) ;

h [(0,#"y"),(3,#"G"),(5,#"r"),(2,#"u"),(1,#"r"),(3,#"O")] 3 ;

Answer:
1) 7
2) [#"G",#"O"]

2 (b+c)
The following data structure represents polymorphic binary trees that contain values only in special
Value nodes that have a single successor:

 datatype 'a tree = Leaf
 | Node of ('a tree * 'a tree)
 | Value of ('a*'a tree);

Consider the tree t of characters on the right-hand side. The representation of t as an object of type
char tree in ML would be:

 Node (Value (#"a", (Value (#"b", Leaf))),
 Node (Node (Leaf,Leaf), Value (#"c",Leaf)))

Implement the following functions in ML.

2b
The function foldTree of type

 ('a * 'b -> 'b) -> ('b * 'b -> 'b) -> 'b -> 'a tree -> 'b

works as follows: foldTree f g h x replaces all occurrences of the constructor Value in the tree
x by f, it replaces all occurrences of the constructor Node in x by g, and it replaces all occurrences
of the constructor Leaf in x by h. So for the tree t above,

 foldTree (op ::) (op @) [] t

should compute
 ((@) (((::) (#”a”,((::) (#”b”,[])))),((@) (((@) ([],[])),
 ((::) (#”c”, []))))))

Exam in INF3110, December 1, 2011 Page 8

which in the end results in "abc" (i.e., in the list [#”a”,#”b”,”c”]). Here, Value is replaced by (::),
Node is replaced by (@), and Leaf is replaced by [].

Answer:
fun foldTree f g h (Value (n,x)) = f (n,(foldTree f g h x))
 | foldTree f g h (Node (x,y)) = g ((foldTree f g h x),
 (foldTree f g h y))
 | foldTree _ _ h Leaf = h;

2c
Use the foldTree function from (2a) to implement the average function, which has the type
int tree→int and returns the average of the values that are stored in the tree. This should be
accomplished as follows:

• Use foldTree with suitable functions as arguments in order to compute the sum of the values
stored in the trees.

• Use foldTree with suitable functions as arguments in order to compute the number of Value-
objects in the tree.

• Perform integer division with the pre-defined function div :: int → int → int on these
values to obtain the result.

Here your function is required to work correctly only on those trees that contain the constructor Value
at least once.

Answer:
fun average t = (foldTree (op +) (op +) 0 t)
 div
 (foldTree (fn (x,y) => y+1) (op +) 0 t)

2d
Draw the type inference parse tree of the following expression and describe the type inference steps
of the expression according to this tree. Give the type of the expression, or in the case of a type
error, explain how you detect this.

fix (λx. succ x)

Answer:

@:T

λ:D

@:C

:(α→α)→α

fix

x:B

succ
: int→int

Assume the following given types:
 fix : :(α → α) → α

 succ : int → int

Exam in INF3110, December 1, 2011 Page 9

Question 3. Prolog (weight 20%)
3a
Write a Prolog predicate sameHead(Xs,Ys) that is true if and only if Xs and Ys have the same
(unifiable) first elements

E.g.
| ?- sameHead([1,2,3],[1,4,5]).

yes
| ?- sameHead([X,1],[2,3]).

X = 2

| ?- sameHead([1,2],[3,4]).

no

Answer:
sameHead([X|Xs],[X|Ys]).

3b
Write a Prolog predicate zip(Xs,Ys,Zs) that is true if and only if Xs and Ys are lists of the same
length, and Zs consists of the first element of Xs, followed by the first element of Ys, then the
second of Xs, the second of Ys, etc.

E.g.
| ?- zip([1,2,3],[a,b,c],[1,a,2,b,3,c]).

yes

| ?- zip([1],[a,b],[1,a,b]).

no

Answer:
zip([],[],[]).
zip([X|Xs],[Y|Ys],[X,Y|Zs]) :- zip(Xs,Ys,Zs).

3c
Use zip to define a Prolog predicate stutter(Xs) that is true if and only if Xs is a list with an even
number of elements, where the first element is equal to (i.e. is unified with) the second, the third is
equal to (unified with) the fourth, etc. E.g.

| ?- stutter([a,a,b,b]).

yes

| ?- stutter([1,1,1,1,1,1]).

yes

| ?- stutter([1,a,a,1]).

no

Exam in INF3110, December 1, 2011 Page 10

Answer:

stutter(Xs) :- zip(Ys,Ys,Xs).

3d

What will the Prolog interpreter answer to the following queries:

 | ?- zip([X],[Y],[a,b]).

 | ?- zip([X],[Y],[Y,X]).

 | ?- stutter([X,a]).

 | ?- stutter([X,Y,Z,a,Z,Y,X,b]).

Answer:
Forgotten yes or question marks/semicolons in the responses don't matter, only the substitutions are
important. And "no" or something like that for the last one.

 | ?- zip([X],[Y],[a,b]).

X = a
Y = b

yes
 | ?- zip([X],[Y],[Y,X]).

Y = X

yes
 | ?- stutter([X,a]).

X = a ?

yes

 | ?- stutter([X,Y,Z,a,Z,Y,X,b]).
no

3e
Briefly explain:

- what the effect of the cut predicate is
- why it is needed in Prolog

- why it is problematic

Answer:
20%, 5 for the effect, 5 for the why, 10 for the problem

Exam in INF3110, December 1, 2011 Page 11

- what the effect of the cut predicate is

It tells the interpreter to cut off branches of the search tree in two ways: no further ways of
satisfying earlier literals in the same clause will be tried, and no further clauses will be tried to
satisfy the head.
- why it is needed in Prolog

It is needed for efficiency. It is used to cut off parts of the search tree which the programmer knows
will not give any new results.

- why it is problematic
Its effect is not related to the declarative semantics of Prolog programs. Its use prevents a
declarative reading of the program. This makes programs with cut hard to write and hard to read. It
is very difficult to find mistakes in programs that use the cut.

